Performance Characterization of Gas-Solid Cyclone for Separation of Particle from Syngas Produced from Food Waste Gasifier Plant
Osezua O. Ibhadode 1, Emmanuel O. B. Ogedengbe 1 * , Marc A. Rosen 2
More Detail
1 University of Lagos, Nigeria2 University of Ontario Institute of Technology, Canada* Corresponding Author

Abstract

A biofuel from any biodegradable formation process such as a food waste bio-digester plant is a mixture of several gases such as methane (CH4), carbon dioxide (CO2), hydrogen sulfide (H2S), ammonia (NH3) and impurities like water and dust particles. The results are reported of a parametric study of the process of separation of methane, which is the most important gas in the mixture and usable as a biofuel, from particles and H2S. A cyclone, which is a conventional, economic and simple device for gas-solid separation, is considered based on the modification of three Texas A&M cyclone designs (1D2D, 2D2D and 1D3D) by the inclusion of an air inlet tube. A parametric sizing is performed of the cyclone for biogas purification, accounting for the separation of hydrogen sulfide (H2S) and dust particles from the biofuel. The stochiometric oxidation of H2S to form elemental sulphur is considered a useful cyclone design criterion. The proposed design includes geometric parameters and several criteria for quantifying the performance of cyclone separators such as the Lapple Model for minimum particle diameter collected, collection efficiency and pressure drop. For biogas volumetric flow rates between 0 and 1 m/s and inlet flow velocities of 12 m/s, 15 m/s and 18 m/s for the 1D2D, 2D2D and 1D3D cyclones, respectively, it is observed that the 2D2D configuration is most economic in terms of sizing (total height and diameter of cyclone). The 1D2D configuration experiences the lowest pressure drop. A design algorithm coupled with a user-friendly graphics interface is developed on the MATLAB platform, providing a tool for sizing and designing suitable cyclones.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article Type: Research Article

EUR J SUSTAIN DEV RES, 2017, Volume 1, Issue 2, Article No: 13

https://doi.org/10.20897/ejosdr.201713

Publication date: 30 Jun 2017

Article Views: 6415

Article Downloads: 5320

Open Access HTML Content References How to cite this article