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ABSTRACT 
This study reveals the thermal behavior of an unsteady nanofluid streaming between two parallel plates by 
using artificial neural network (ANN). Initially, a similarity solution is employed to simplify the partial 
differential equations (PDSs) and convert them into a system of coupled nonlinear ordinary differential 
equations (ODEs). Subsequently, a numerical analysis is undertaken to verify the predicted results applying 
forth order Runge Kutta method. ANN is utilized to provide a nonlinear map between the considered input 
parameters such as solid volume fraction (Φ), Eckert number (Ec) and a moving parameter which represents 
the movement of the parallel plates (S), and output parameters like Nusselt number (Nu). Considering the 
accuracy of the current results, it is concluded that ANN method can be a potential reliable approach for 
function approximation. Results indicate that an optimal network with 16 neurons exists in hidden layer for 
which the value of RMSE for testing data is found to be 0.001364. 
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INTRODUCTION 

Accurate anticipation of the behavior of fluid flows and heat transfer can remove harmful effects such as 
mechanical noises and vibrations from industrial systems (Jianu and Rosen, 2017; Shahriari et al., 2018). Fluid 
heating and cooling are important inevitable processes extensively occurring in many industries such as power, 
manufacturing and transportation. Due to their low heat transfer properties, common heat transfer fluids such as 
water, ethylene glycol, and engine oil suffer from relatively inappropriate heat transfer properties. On the other 
hand, in some cases, thermal conductivity of metals is up to three times higher than the aforementioned fluids. 
Therefore, mixing of stable and desirable substances can be a potential technique for reaching high thermal 
conductivities.  

So far, it has been proven in numerous research studies that nanofluids can be superior when they are utilized 
as a heat transfer agent over conventional fluids (Kumar et al., 2014; Kim, 2014; Kumar et al., 2015; 
Muthtamilselvan et al., 2014). 

Sheikholeslami et al. (2012) investigated the heat transfer characteristics of nanofluids flow between two 
horizontal plates in a rotating system. Their results showed that for suction and injection, the heat transfer rate at 
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the surface rises with enhancing the nanoparticle volume fraction, Reynolds number, and injection/suction 
parameter, and declines with power of rotation parameter. Azimi et al. (2014) examined the effects of solid volume 
fraction of a nanoparticle, moving parameter and Eckert number on heat transfer behavior of nanofluid flow 
between two moving parallel plates. In another study conducted by Azimi et al. (2015), MHD Jeffery Hamel flow 
problem with a nanoparticle was presented for several different values of Hartman number.  

 The major goal of enhanced heat transfer is to encourage high heat fluxes (Eiamsa-ard and Changcharoen, 
2015). In a report presented by Lihong and Hangmingthe (Lihong and Hangming, 2015), for enhancing heat 
transfer from walls to the interior and improving the isothermal characteristics of the isothermal chamber, 
distribution of thin copper wire in an isothermal chamber was described using topological methods. 

Moslehi and Saghafian (2015) numerically examined mixed convection heat transfer of a steady laminar flow 
of a Newtonian conductive fluid in an open-ended vertical parallel microchannel considering a uniform magnetic 
field. 

Azimi and Riazi (2015) employed an analytical method, namely Galerkin Optimal Homotopy Asymptotic 
Method (GOHAM), to discover the approximate solution of an unsteady MHD squeezing flow between two 
parallel disks. They presented that average Nusselt number is an increasing function of nanoparticle volume 
fraction as well as Rayleigh number, while it is a decreasing function of Hartmann number. Thermal analysis of an 
unsteady nanofluid flow between two moving parallel plates was conducted by Azimi and Mozaffari utilizing 
intelligent black-box identifier (Azimi and Mozaffari, 2015). Free convection boundary layer in a steady magneto-
hydrodynamic flow through a vertical semi-infinite flat plate embedded in water and filled with a nanofluid was 
theoretically investigated by Hamad et al. (2011). They found that Cu and Ag nanoparticles possessed the highest 
cooling performance in the considered problem. Sheikholeslami et al. (2012) performed a numerical analysis to 
study the natural convection heat transfer of Cu-water nanofluid in a circular enclosure surrounding a hot 
sinusoidal circular cylinder in presence of horizontal magnetic field using a Finite Element Method. The effect of 
viscous dissipation on temperature distribution of a two-dimensional unsteady nanofluid flow between two moving 
parallel plates was analytically studied by Shahriari et al. (2018). Sheikholeslami et al. (2013) determined the behavior 
of an unsteady nanofluid flow between two parallel plates applying Adomain Decomposition Method (ADM) 
(Sheikholeslami et al., 2013). According to their results, for the case in which both of the plates are moveable, 
Nusselt number decreases with an increment in squeeze number and grows with increasing the nanoparticle 
volume fraction and Eckert number. Sheikholeslami and Ganji (2013) employed Homotopy Perturbation Method 
to peruse the thermal behavior of a nanofluid squeezing flow (Sheikholeslami and Ganji, 2013). Based on their 
results, Nusselt number directly depended on the nanoparticle volume fraction, squeeze and Eckert numbers when 
plates are separated and inversely depended on squeeze number when the plates are squeezed. Rahimi-Gorji et al. 
(2016) employed Galerkin method (GM) to solve nonlinear differential equations for an unsteady squeezing 
nanofluid flow taking into account variable magnetic field (2016). With regard to their results, with an enhancement 
in nanofluid volume fraction Nusselt number increased while skin friction coefficient declined. In addition, an 
increment in the value of nanofluid volume fraction led to increments in the values of flow velocity and 
temperature. The main aim of the current study is to discuss the heat transfer solutions of a two-dimensional 
nanofluid sueezing flow between two moving parallel plates. 

PROBLEM DESCRIPTION 

In this section, as can be seen in Figure 1, we describe the unsteady 2D squeezing flow and heat transfer of a 
nanofluid between two infinite plates. 

The viscous dissipation impact occurring in high Eckert numbers and heat generation caused by shear stress in 
the flow are retained. Eckert number expresses the relationship between kinetic energy and enthalpy of flows. 
Table 1 lists the properties of the considered fluid (water) and a nanoparticle. As can be observed in Figure 1, the 
two plates are located at𝑧𝑧 = ±𝑙𝑙(1 − α𝑡𝑡)1 2⁄ = ±ℎ(𝑡𝑡) . The unsteady equations of mass conservation and 
momentum can be expressed as follows (Shahriari et al., 2018): 

∂𝑢𝑢
∂𝑥𝑥

+
∂𝑣𝑣
∂𝑦𝑦

= 0 (1) 

Table 1. Thermophysical properties of water and the nanoparticle 
𝑲𝑲(𝑾𝑾 𝒎𝒎.𝑲𝑲)⁄  𝑪𝑪𝒑𝒑(𝒋𝒋 𝒌𝒌𝒌𝒌.𝑲𝑲)⁄  𝝆𝝆(𝒌𝒌𝒌𝒌 𝒎𝒎𝟑𝟑)⁄  Fluid 

0.613 4179 997.1 Pure water 
5000 717 1800 Nanoparticle 
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where 𝑢𝑢 and 𝑣𝑣 are velocities in 𝑥𝑥 and 𝑦𝑦 directions, respectively. Effective density (ρ𝑛𝑛𝑛𝑛), effective dynamic viscosity 
(μ𝑛𝑛𝑛𝑛), effective heat capacity �𝜌𝜌𝐶𝐶𝑝𝑝�𝑛𝑛𝑛𝑛 and effective thermal conductivity 𝑘𝑘𝑛𝑛𝑛𝑛 of the nanofluid can be defined as 
follows (Hamad et al., 2011): 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ρ𝑛𝑛𝑛𝑛 = ρ𝑛𝑛(1 − ϕ) + ρ𝑠𝑠ϕ𝑠𝑠
�ρ𝐶𝐶𝑝𝑝�𝑛𝑛𝑛𝑛 = �ρ𝐶𝐶𝑝𝑝�𝑛𝑛(1 −ϕ) + �ρ𝐶𝐶𝑝𝑝�𝑠𝑠

μ𝑛𝑛𝑛𝑛 =
μ𝑛𝑛

(1 − ϕ)2.5

𝑘𝑘𝑛𝑛𝑠𝑠
𝑘𝑘𝑛𝑛

=
𝑘𝑘𝑠𝑠 + 2𝑘𝑘𝑛𝑛 − 2φ�𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑠𝑠�
𝑘𝑘𝑠𝑠 + 2𝑘𝑘𝑛𝑛 + 2φ�𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑠𝑠�

𝑣𝑣𝑛𝑛𝑛𝑛 =
μ𝑛𝑛
ρ𝑛𝑛𝑛𝑛

 (5) 

 
It is notable that the effective thermal conductivity and effective viscosity of the nanofluid are obtained by 

Maxwell–Garnetts (MG) and Brinkman models, respectively.  
Reliable boundary conditions for the above equations are presented in the following (Shahriari et al., 2018): 

𝑦𝑦 = ℎ(𝑡𝑡) → 𝑣𝑣 = 𝑣𝑣𝑤𝑤 =
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡 , T = 𝑇𝑇𝐻𝐻

𝑦𝑦 = 0 → 𝑣𝑣 =
∂𝑢𝑢
∂𝑦𝑦 =

∂𝑇𝑇
∂𝑦𝑦 = 0

 (6) 

 
Figure 1. Schematic of the problem considered in this study 
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In order to simplify the above-presented equations, following parameters are introduced (Shahriari et al., 2018): 

η =
𝑦𝑦

[𝑙𝑙(1 − α𝑡𝑡)1 2⁄ ]
, u =

α𝑥𝑥
[2(1 − α𝑡𝑡)]𝑓𝑓′(η),𝑣𝑣 = −

α𝑙𝑙
[2(1 − α𝑡𝑡)1 2⁄ ]

𝑓𝑓(η),

θ =
𝑇𝑇
𝑇𝑇𝐻𝐻

,𝐴𝐴 = (1 − φ) + φ
ρ𝑠𝑠
ρ𝑛𝑛

,𝐵𝐵 = (1 − φ) + φ
�ρ𝐶𝐶𝑝𝑝�𝑠𝑠
�ρ𝐶𝐶𝑝𝑝�𝑛𝑛

,𝐶𝐶 =
𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

 (7) 

where 𝑎𝑎(𝑡𝑡) is the time-dependent distance between the plates and x-axis and 𝑣𝑣ω(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

 is defined as the 
velocity of the moving plates. For 𝛼𝛼 > 0, the plates move away from each other, while for 𝛼𝛼 < 0, as time increases, 
the plates move towards each other which is known as squeezing flow. However, for the latter case, the plates 
move towards each other when 0 < 𝑡𝑡 < 1

α
. 

Applying the parameters presented in Eq. 7, conservation laws will be as follows (Shahriari et al., 2018): 

𝑓𝑓(𝐼𝐼𝐼𝐼) − 𝑆𝑆𝐴𝐴(1 −φ)2.5(η𝑓𝑓′′′+ 3𝑓𝑓′′+ 𝑓𝑓′𝑓𝑓′′ − 𝑓𝑓𝑓𝑓′′′) = 0 (8) 

θ′′ + Pr𝑆𝑆 �
𝐵𝐵
𝐶𝐶
� (𝑓𝑓θ′ − ηθ′) +

Pr𝐸𝐸𝐸𝐸
𝐶𝐶(1 − φ)2.5 (𝑓𝑓′′2 + 4δ2𝑓𝑓′2) = 0 (9) 

In Eq. 9, pressure gradient is eliminated. Furthermore, Eqs. (8) and (9) are subjected to the following boundary 
conditions (Shahriari et al., 2018): 

𝑓𝑓(0) = 0,𝑓𝑓′′(0) = 0,𝑓𝑓(1) = 1,𝑓𝑓′(1) = 0, θ′(0) = 0, θ(1) = 1 (10) 

where 𝑆𝑆, Pr and 𝐸𝐸𝐸𝐸 are moving parameter, Prandtl number and Eckert number, respectively. The definition of 
these parameters are presented in the following (Shahriari et al., 2018): 

𝑆𝑆 =
α𝑙𝑙2

2𝑣𝑣𝑛𝑛
, Pr =

μ𝑛𝑛�ρ𝐶𝐶𝑝𝑝�𝑛𝑛
ρ𝑛𝑛𝑘𝑘𝑛𝑛

,𝐸𝐸𝐸𝐸 =
ρ𝑛𝑛

�ρ𝐶𝐶𝑝𝑝�𝑛𝑛
�

α𝑥𝑥
2(1 − α𝑡𝑡)

�
2

, δ =
𝑙𝑙
𝑥𝑥

 (11) 

𝑆𝑆 determines the movement of the plates. When 𝑆𝑆 > 0, the plates move apart and when 𝑆𝑆 < 0, the plates 
move towards each other. 

Incompressible, no-chemical reaction, negligible viscous dissipation and negligible radiative heat transfer are 
the assumptions considered for the analysis of the water-based nanofluid flow. In addition, it is assumed that the 
solid nanoparticles and the base fluid are in thermal equilibrium and no slip occurs between these materials. 

One of the effective parameters studied in the current paper is the local Nusselt number (𝑁𝑁𝑢𝑢). The Nusselt 
number is calculated by the multiplication of temperature gradient and thermal conductivity ratio presented in the 
following (Azimi and Mozaffari, 2015): 

𝑁𝑁𝑢𝑢 =
−𝑙𝑙𝑘𝑘𝑛𝑛𝑛𝑛 �

∂𝑇𝑇
∂𝑦𝑦
�
𝑦𝑦=ℎ(𝑇𝑇)

𝑘𝑘𝑇𝑇𝐻𝐻
 (12) 

By using Eqs. (7) and (11), following equation is obtained (Azimi and Mozaffari, 2015): 

𝑁𝑁𝑢𝑢 = −𝐶𝐶θ′(1) (13) 

ARTIFICIAL NEURAL NETWORKS 

Network Structure 

Artificial neural network (ANN) is a computational method for prediction of output solutions in complex 
systems. ANN, inspired by biological neural systems and human brain, possesses numerous interconnected 
processing elements called neurons working together harmoniously for solving problems. The multilayer 
perceptron (MLP) is the most famous and promising ANN among the available ANN models (Cay et al., 2012). 
MLP network encompasses at least three layers, an input layer, an output layer and one or more hidden layer(s). 
In MLP network, the number of layers mainly depends on the complexity of problems. Each layer possesses some 
neurons in which the number of input and output layers is equal to the number of input and output variables. In 
the current study the number of variables is considered to be 3 and 1. Nevertheless, number of neurons in hidden 
layer (layers) hasn’t got any specific values which is related to the problem and needs trials for determination. It 
should be pointed out that the neurons in one layer are connected to the neurons of next layer, but there is no 
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interconnection between neurons at the same layer (Akdag et al., 2016). In this paper, ANN is composed of one 
input layer, one hidden layer (the number neurons (Z) of hidden layer will be determined) and one output layer 
illustrated in Figure 2.  

The data in input layer’s neurons (input variables received from outside) do not process as the data in the 
hidden and output layers. It is worth mentioning that outputs are created by summation and activation functions. 
In these layers, all neuron’s inputs are multiplied by weights and are then aggregated by biases to produce 
summation functions as follows (Akdag et al., 2016): 

𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗 = �𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 (14) 

where 𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗 is the summation function of the 𝑗𝑗th neuron for the inputs transported from former layer possessing 
n neurons, 𝑤𝑤𝑖𝑖𝑗𝑗  is the weight between 𝑗𝑗th and 𝑖𝑖th neurons in pervious layer, 𝑥𝑥𝑖𝑖  is the output of 𝑖𝑖th neuron in 
pervious layer and 𝑏𝑏𝑗𝑗  is the bias term of the 𝑗𝑗th neuron. Neurons in hidden and output layers have specific 
activation function for generation of outputs from summation function. In this paper, hyperbolic tangent sigmoid 
(tansig) and linear function (purelin) are used as hidden and output layers’ activation function as follows, 
respectively (Azizi and Ahmadloo, 2016): 

𝑂𝑂𝑢𝑢𝑡𝑡𝑗𝑗 = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗 − 𝑁𝑁−𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗 + 𝑁𝑁−𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗
, for hidden layer neurons

𝑁𝑁𝑁𝑁𝑡𝑡𝑗𝑗 , for output layer neuron
 (15) 

where 𝑂𝑂𝑢𝑢𝑡𝑡𝑗𝑗 is the 𝑗𝑗th neuron output. 

Learning Algorithm 

The weights and biases used in summation function need a learning algorithm to determine their values. The 
learning process, called training, is iterated for adjusting weights and biases until the ANN reaches one of the 
stopping criteria such as number of epochs, number of validation checks and performance function value. In other 
words, finding the optimal set of weights and biases is the main goal of the learning process. There are many 
learning algorithms for training like gradient descent with adaptive learning rule, gradient descent with momentum 
adaptive learning rule, scaled conjugate gradient and Levenberg-Marquardt (LM) (Cay et al., 2012). In this study, 
LM was utilized as the training function for learning process due to its fast convergence and stability in training 
(Azizi and Ahmadloo, 2016). 

 
Figure 2. Schematic of the ANN architecture (3-Z-1) applied in this study 
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Training, Validation and Testing Data  

The ANN’s input data are classified into three groups called training, validation and testing data. According to 
the literature, different ratios have been considered for the data set so far (Akdag et al., 2016). A total of 128 
numerical data points were selected for ANN considering Eckert number (Ec), squeezing parameter (S) and solid 
volume fraction (Φ) as input variables and Nusselt number (Nu) as output variable. The percentage of training, 
validation and testing data were considered as 70%, 15% and 15%, respectively. 

Statistical Criteria for Outputs Comparison 

Network outputs are compared with actual data obtained from numerical simulation for investigating the 
performance of the ANN in predicting the solution of the problem. For the ANN, statistical criteria of mean 
square error (MSE), root mean square error (RMSE), coefficient related to the actual and predicted values (R) and 
mean relative error (MRE) defined as follows (Azizi and Ahmadloo, 2016): 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑛𝑛
��𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁 − 𝑌𝑌Pr𝑁𝑁𝑑𝑑,𝑁𝑁�

2
𝑛𝑛

𝑁𝑁=1

 (16) 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑛𝑛
��𝑌𝑌𝑛𝑛𝑁𝑁𝑁𝑁,𝑁𝑁 − 𝑌𝑌Pr𝑁𝑁𝑑𝑑,𝑁𝑁�

2
𝑛𝑛

𝑁𝑁=1

 (17) 

𝑅𝑅 = ��
∑ �𝑌𝑌Pr𝑁𝑁𝑑𝑑,𝑁𝑁 − 𝑌𝑌�Pr𝑁𝑁𝑑𝑑�𝑛𝑛
𝑁𝑁=1 �𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁 − 𝑌𝑌�𝑁𝑁𝑁𝑁𝑁𝑁�

∑ �𝑌𝑌Pr𝑁𝑁𝑑𝑑,𝑁𝑁 − 𝑌𝑌�Pr𝑁𝑁𝑑𝑑�
2𝑛𝑛

𝑁𝑁=1 �𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁 − 𝑌𝑌�𝑁𝑁𝑁𝑁𝑁𝑁�
2� (18) 

𝑀𝑀𝑅𝑅𝐸𝐸 =
1
𝑛𝑛 �

� �
�𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁 − 𝑌𝑌Pr𝑁𝑁𝑑𝑑,𝑁𝑁�

𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁,𝑁𝑁
�

𝑛𝑛

𝑁𝑁=1

× 100� (19) 

where 𝑛𝑛, 𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑌𝑌𝑃𝑃𝑃𝑃𝑁𝑁𝑑𝑑 are the number of data points, numerical value and network output, respectively. 𝑌𝑌�𝑁𝑁𝑁𝑁𝑁𝑁 
and 𝑌𝑌�𝑃𝑃𝑃𝑃𝑁𝑁𝑑𝑑 are the average value of 𝑌𝑌𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑌𝑌𝑃𝑃𝑃𝑃𝑁𝑁𝑑𝑑 , respectively. 

NUMERICAL METHOD 

The current problem is a boundary value problem (BVP) and so a proper numerical solver is required. Most of 
the existing numerical solvers in MAPLE software are achieved based on the combination of trapezoid or midpoint 
methods. Each of these basic schemes has its own specifications. Methods implemented based on trapezoid 
method work efficiently for typical problems; however, midpoint-based techniques are highly beneficial for 
handling harmless end-point singularities. Fourth order Runge–Kutta method is a midpoint approach that 
improves the Euler method by one order (Sheikholeslami et al., 2012). In this section, the normalized equations 
(8-9) which are coupled with the boundary conditions given in Eq. (10) are numerically solved by Runge–Kutta 
method utilizing MAPLE software. Fourth order is the most popular Runge–Kutta methods because the second-
order approaches have infinite number of versions. The following formulation is the most commonly used form, 
i.e. the forth order Runge–Kutta method: 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 +
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4) (20) 

where 

𝑘𝑘1 = 𝐸𝐸(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) (21) 

𝑘𝑘2 = 𝐸𝐸 �𝑥𝑥𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
𝑘𝑘1ℎ� (22) 

𝑘𝑘3 = 𝐸𝐸 �𝑥𝑥𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
𝑘𝑘2ℎ� (23) 

𝑘𝑘4 = 𝐸𝐸(𝑥𝑥𝑖𝑖 + ℎ,𝑦𝑦𝑖𝑖 + 𝑘𝑘3ℎ) (24) 
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Table 2. Numerical results obtained from Runge–Kutta method 
𝝓𝝓 EC S 𝑵𝑵𝑵𝑵 

0.05 0.05 -1 1.636789 
0.05 0.05 -0.75 1.470782 
0.05 0.05 -0.5 1.354454 
0.05 0.05 -0.25 1.271857 
0.05 0.05 0.25 1.170396 
0.05 0.05 0.5 1.140187 
0.05 0.05 0.75 1.11895 
0.05 0.05 1 1.104435 
0.05 0.1 -1 3.273579 
0.05 0.1 -0.75 2.941565 
0.05 0.1 -0.5 2.708909 
0.05 0.1 -0.25 2.543713 
0.05 0.1 0.25 2.340792 
0.05 0.1 0.5 2.280374 
0.05 0.1 0.75 2.237901 
0.05 0.1 1 2.20887 
0.05 0.15 -1 4.910368 
0.05 0.15 -0.75 4.412347 
0.05 0.15 -0.5 4.063363 
0.05 0.15 -0.25 3.81557 
0.05 0.15 0.25 3.511188 
0.05 0.15 0.5 3.420562 
0.05 0.15 0.75 3.356851 
0.05 0.15 1 3.313304 
0.05 0.2 -1 6.547157 
0.05 0.2 -0.75 5.88313 
0.05 0.2 -0.5 5.417818 
0.05 0.2 -0.25 5.087426 
0.05 0.2 0.25 4.681584 
0.05 0.2 0.5 4.560749 
0.05 0.2 0.75 4.475801 
0.05 0.2 1 4.417739 
0.1 0.05 -1 1.736122 
0.1 0.05 -0.75 1.606287 
0.1 0.05 -0.5 1.510992 
0.1 0.05 -0.25 1.440535 
0.1 0.05 0.25 1.349583 
0.1 0.05 0.5 1.321137 
0.1 0.05 0.75 1.300538 
0.1 0.05 1 1.286014 
0.1 0.1 -1 3.472245 
0.1 0.1 -0.75 3.212573 
0.1 0.1 -0.5 3.021984 
0.1 0.1 -0.25 2.881069 
0.1 0.1 0.25 2.699166 
0.1 0.1 0.5 2.642274 
0.1 0.1 0.75 2.601075 
0.1 0.1 1 2.572027 
0.1 0.15 -1 5.208368 
0.1 0.15 -0.75 4.81886 
0.1 0.15 -0.5 4.532975 
0.1 0.15 -0.25 4.321604 
0.1 0.15 0.25 4.04875 
0.1 0.15 0.5 3.963411 
0.1 0.15 0.75 3.901613 
0.1 0.15 1 3.858041 
0.1 0.2 -1 6.94449 
0.1 0.2 -0.75 6.425146 
0.1 0.2 -0.5 6.043967 
0.1 0.2 -0.25 5.762139 
0.1 0.2 0.25 5.398333 
0.1 0.2 0.5 5.284548 
0.1 0.2 0.75 5.202151 
0.1 0.2 1 5.144054 
0.15 0.05 -1 1.890097 
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Table 2 (cont). Numerical results obtained from Runge–Kutta method 
𝝓𝝓 EC S 𝑵𝑵𝑵𝑵 

0.15 0.05 -0.75 1.786852 
0.15 0.05 -0.5 1.708051 
0.15 0.05 -0.25 1.647719 
0.15 0.05 0.25 1.566315 
0.15 0.05 0.5 1.539694 
0.15 0.05 0.75 1.519878 
0.15 0.05 1 1.505492 
0.15 0.1 -1 3.780194 
0.15 0.1 -0.75 3.573705 
0.15 0.1 -0.5 3.416103 
0.15 0.1 -0.25 3.295437 
0.15 0.1 0.25 3.132629 
0.15 0.1 0.5 3.079389 
0.15 0.1 0.75 3.039755 
0.15 0.1 1 3.010983 
0.15 0.15 -1 5.670291 
0.15 0.15 -0.75 5.360557 
0.15 0.15 -0.5 5.124154 
0.15 0.15 -0.25 4.943156 
0.15 0.15 0.25 4.698944 
0.15 0.15 0.5 4.619083 
0.15 0.15 0.75 4.559633 
0.15 0.15 1 4.516475 
0.15 0.2 -1 7.560388 
0.15 0.2 -0.75 7.147409 
0.15 0.2 -0.5 6.832205 
0.15 0.2 -0.25 6.590874 
0.15 0.2 0.25 6.265259 
0.15 0.2 0.5 6.158777 
0.15 0.2 0.75 6.07951 
0.15 0.2 1 6.021967 
0.2 0.05 -1 2.103868 
0.2 0.05 -0.75 2.021093 
0.2 0.05 -0.5 1.95577 
0.2 0.05 -0.25 1.904214 
0.2 0.05 0.25 1.831845 
0.2 0.05 0.5 1.807207 
0.2 0.05 0.75 1.788394 
0.2 0.05 1 1.774363 
0.2 0.1 -1 4.207735 
0.2 0.1 -0.75 4.042186 
0.2 0.1 -0.5 3.91154 
0.2 0.1 -0.25 3.808427 
0.2 0.1 0.25 3.663691 
0.2 0.1 0.5 3.614414 
0.2 0.1 0.75 3.576787 
0.2 0.1 1 3.548726 
0.2 0.15 -1 6.311603 
0.2 0.15 -0.75 6.063279 
0.2 0.15 -0.5 5.86731 
0.2 0.15 -0.25 5.71264 
0.2 0.15 0.25 5.495536 
0.2 0.15 0.5 5.421621 
0.2 0.15 0.75 5.36518 
0.2 0.15 1 5.32309 
0.2 0.2 -1 8.415471 
0.2 0.2 -0.75 8.084371 
0.2 0.2 -0.5 7.82308 
0.2 0.2 -0.25 7.616854 
0.2 0.2 0.25 7.327382 
0.2 0.2 0.5 7.228828 
0.2 0.2 0.75 7.153574 
0.2 0.2 1 7.097453 
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It is worth mentioning that the fourth-order Range-Kutta numerical solver is a simple and efficient potential 
technique for solving differential equations. Table 2 presents the numerical results obtained by Range-Kutta 
method. 

RESULTS AND DISCUSSION 

 Results of Neural Network  

In this study, Matlab software was employed for coding ANN computer program. The ANN was used for 
different neuron numbers in hidden layer varying from 1 to 20. In order to reach hidden layer’s optimum neuron 
number, the number of runs was set to be 50. The performance of each network is presented in Table 3. According 
to the results, the network with 16 neurons in hidden layer (3-16-1) has the best performance for which RMSE is 
found to be 0.001364 for testing data. Furthermore, the network possesses the best MRE and R whose values are 
found to be 0.033837% and 1, respectively. 
 

Figure 3 indicates the variation of MSE with epoch during training process for reaching optimum network (3-
16-1) in which the minimum MSE of validated data is found to be of 3.0342 × 10−6 occurring at epoch 445. 

The numerical results versus the predicted values are presented in Figure 4 for the training, validation, testing 
and all data sets for which R is equal to unity showing the highest accuracy of the network prediction. The 
performance of each data set is given in Table 4 based on the RMSE, R, MRE. The training data set has the best 
performance and the performance of testing data set is better than that of validation data set.  

Figure 5 compares the numerical results and the network prediction values for all data sets. As can be seen in 
this figure, there is an appropriate agreement between the numerical and network predicted results. Thus, the 
network is efficiently capable of predicting Nusslet number in this problem. 

Influences of solid volume fraction, moving parameter and Eckert number on Nusselt number are depicted in 
Figures 6(a)-6(c). As can be implied from Figure 6(a), for constant values of moving parameter, when the Eckert 
number is lower than or equal to 0.05, an increment in nanoparticle volume fraction leads to significant changes 
in thermal boundary layer thickness and value of Nusselt number. Nevertheless, at high values of Eckert number, 
an increase in nanoparticles volume fraction results in more intensive growth in thermal boundary layer thickness 
and greater values of Nusselt number are obtained. 

With regard to Figure 6(b), impact of moving parameter on Nusselt number is more crucial than solid volume 
fraction. As already expressed, taking into account constant values of Eckert number and solid volume fraction, 
the maximum value of Nusselt number occurs when 𝑆𝑆 = −1.  

Table 3. Performance results of testing data obtained from ANN for hidden layer with different neuron 
numbers 

No. of Neuron RMSE MRE (%) R 
1 0.20441 4.701448 0.994059 
2 0.120778 2.90331 0.998487 
3 0.030445 0.644519 0.999941 
4 0.017872 0.5982 0.999947 
5 0.007865 0.257124 0.999995 
6 0.015765 0.510349 0.999973 
7 0.008219 0.22748 0.999986 
8 0.002828 0.091221 0.999999 
9 0.006454 0.23689 0.999995 
10 0.009071 0.208922 0.999988 
11 0.002346 0.054285 0.999999 
12 0.002295 0.048782 0.999999 
13 0.003146 0.067985 0.999999 
14 0.007375 0.14978 0.999991 
15 0.005537 0.082705 0.999995 
16 0.001364 0.033837 1 
17 0.006184 0.107867 0.999996 
18 0.006704 0.171417 0.999992 
19 0.009615 0.285296 0.999994 
20 0.004566 0.119007 0.999997 

 

Table 4. Performance of ANN for training, validation and testing data sets 
ANN Model Training  Validation  Testing   RMSE R MRE (%)  RMSE R MRE (%)  RMSE R MRE (%)   0.000292 1 0.008037  0.001742 1 0.051157  0.001364 1 0.033837 
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Figure 3. Variation of MSE against epoch during training process 

 
Figure 4. Scatter plot of the numerical results versus the predicted values for training, validation, testing for all of 
the data sets 
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It is notable that an enhancement in the absolute magnitude of moving parameter is directly related to kinematic 
viscosity reduction and increment of moving speed of the plates, which causes faster growth of thermal boundary 
layer and higher values of Nusselt number. Regarding Figure 6(b), this value (Nusselt number) will be increase by 
increment ofφ. 
 

Figure 6(c) depicts the impact of Eckert number and moving parameter on Nusselt number. According to 
this figure, it is obvious that the moving parameter plays key role in heat transfer performance and its effect on 

 
Figure 5. Comparison of numerical results and network predicted values for all of the data sets 

 
Figure 6. Effects of a) solid volume fraction and Eckert number, b) Moving parameter and solid volume fraction, 
c) Moving parameter and Eckert number on Nusselt number 
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Nusselt number is significant. As can be observed in Figure 6(c), changing the value of moving parameter from 0 
to -1 leads to an increment in Nusselt number from to 1.3 to 1.6. This effect is more intensive at higher values of 
Eckert number. Also it can be implied that raising the value of Eckert number results in enhancement in the surface 
curvature when solid particle volume fraction is constant. 

CONCLUSION 

In the present paper, heat transfer in a two-dimensional unsteady nanofluid flow between two parallel moving 
plates was studied applying artificial neural network. In order to present reliable results, a powerful numerical 
method known as forth order Runge-Kutta method was employed for solving the coupled nonlinear ordinary 
differential governing equations. Subsequently, the results yielded by ANN were compared with the numerical 
results. On the basis of the results, it was revealed that an increment in the absolute magnitude of moving parameter 
was directly affected by kinematic viscosity reduction and increment of plates moving speed. Moreover, increase 
in the moving parameter caused faster growth in thermal boundary layer and a remarkable increase in the value of 
Nusselt number. 

Nomenclature  
𝑢𝑢 Velocity in x direction 
v Velocity in y direction 
𝑝𝑝 Pressure 
𝜌𝜌𝑛𝑛𝑛𝑛 Effective density of nanofluid 

(𝜌𝜌𝐶𝐶𝑃𝑃)𝑛𝑛𝑛𝑛 Effective heat capacity of nanofluid 
𝑘𝑘𝑛𝑛𝑛𝑛 Effective thermal conductivity of nanofluid 
Nu Nusselt Number 
𝑃𝑃𝑃𝑃 Prandtl number 
𝑆𝑆 Moving parameter 

Greek symbols  

𝛼𝛼 Constant rotational velocity 
𝜑𝜑 Dimensionless concentration 
𝜇𝜇 Dynamic viscosity 
𝜗𝜗 Kinematic viscosity 
𝜃𝜃 Dimensionless temperature 
𝜌𝜌 Fluid density 

Subscripts  

𝑓𝑓 Base fluid 
𝑛𝑛𝑓𝑓 Nanofluid 
𝑝𝑝 Nano particle 
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