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ABSTRACT 
At the same time of providing a huge amount of energy to the world population (social sustainability) and 
global economy (economic sustainability), the fuel itself also releases a great amount of emissions to the 
environment the world people live in in the forms of gaseous pollutants (SOx, NOx, CO, CO2, CH4, etc.) 
and ash compositions (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc.), seriously 
impacting the environment (environmental sustainability) for the world population and global economy. 
Sustainability generally encompasses economic sustainability, environmental sustainability, and social 
sustainability, and all of these are significantly related to the energy/resource sustainability. This study 
addresses the sustainability of fuel from the viewpoint of exergy. It is demonstrated that the energy of a fuel 
is best evaluated by its chemical exergy, and the environmental impact of a fuel can be assessed through the 
chemical exergy of its emissions (the specific impacts such as toxicity or greenhouse effect are not detailed). 
Then, the sustainability of fuel can be understood from the viewpoint of exergy through three ways: (a) high 
chemical exergy of the fuel, (b) high exergy efficiency of the fuel conversion process, and (c) low chemical 
exergy of the emissions. 
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INTRODUCTION 

The world population and global economy are increasing and increasing, requiring more and more energy 
resources to support. These requirements include fossil fuel (coal, oil, natural gas, etc.), nuclear fuel (uranium 
dioxide, molten plutonium, uranium nitride, etc.), and renewable resources (biomass, hydropower, solar energy, 
geothermal energy, wind power, wave power, tidal power, etc.). 

At the same time of providing a huge amount of energy to the world population and global economy, the 
energy resources themselves also release a great amount of emissions to the environment the world people live in. 
These emissions may include gaseous pollutants (e. g. SOx, NOx, CO, CO2, CH4, etc.) and ash compositions (e. g. 
Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc.). These emissions would cause some 
effects on the environment. For example, the released CO2 would absorb infrared rays from the sun and result in 
greenhouse effects, which would cause global warming and melt glaciers. The released NO2 and SO2 would react 
with water in air and form acid rain, which would kill the plants and fish on the earth. The emitted ash would 
become very small particles and fly into air, which would impair the lungs of people and pollute the water in rivers. 
These impacts seriously deteriorate the environment for the world population and in return they cause heavy 
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burden on the global economy. Sustainability is therefore becoming more and more concerned, especially when 
the haze in China becomes heavier and heavier and the global environment becomes worse and worse. 

Exergy is an important tool for measuring the maximum amount of obtainable work (Szargut, 1980; Rosen and 
Dincer, 1997; Dincer, 2002; Rosen, 2009a), it has been widely used to evaluate the energy qualities of natural 
resources (Wall et al., 1994; Chen et al., 2006; Chen and Chen, 2007; Dai and Chen, 2010). With extensions, exergy 
is also developed to study labor (Sciubba, 2001; Jahangir et al., 2016), population (Sciubba and Zullo, 2013), capital 
(Sciubba, 2001; Rosen and Dincer, 2003; Sciubba, 2003; Colombo et al., 2015), and ecology (Ukidwe and Bakshi, 
2007; Jiang and Chen, 2011; Chen et al., 2014; Dai et al., 2014). 

Some researchers ever addressed/studied sustainability (sustainable development) from the viewpoint of 
exergy. Rosen and Dincer (2001) proposed that exergy can be used as the confluence of energy, environment, and 
sustainable development. Wall and Gong (2001) recommended using stored exergy as an ecological indicator for 
sustainable development. Sciubba and Zullo (2011) adopted thermodynamic function exergy to correlate 
sustainability and thermodynamics. Koroneos et al. (2012) developed an exergy indicator for measuring 
sustainability through establishing a relationship between exergy content and environmental impact of energy 
resources. Dincer and Rosen (2005) studied the relationship between exergy and sustainability of a process. Stougie 
and van der Kooi (2012) studied exergy and sustainability by addressing exergy loss as a qualitative measure of 
environmental effects. Wu et al. (2015) used cosmic exergy to assess the sustainability of biogas systems. Chen et 
al. used extended-exergy analysis to study the sustainability of Chinese societal system (Chen and Chen, 2009) and 
Chinese biogas project (Yang and Chen, 2014). Dincer and Naterer (2010) studied the sustainability index (SI) of 
an air-water heat pump through assessing exergy efficiency. Caliskan (2014) studied the sustainability index of a 
building heating system with a combi-boiler based on exergy efficiency. Whiting et al. (2017) evaluated the 
sustainability of fossil fuels through focusing on the exergy replacement cost methodology. Generally, these studies 
mainly concentrated on the energy resources, environment problems, or exergy efficiency. 

Fuel (e. g. coal, oil, natural gas, biomass, etc.) is a very important energy resource, and it is quite different from 
the other energy resources like hydropower, solar energy, geothermal energy, wind power, wave power, and tidal 
power which mainly supply energy to the society whereas release no pollutants to the environment. Fuel, on the 
other hand, not only supplies energy to the society but also releases emissions to the environment. A 
comprehensive understanding of the sustainability of fuel from the viewpoint of exergy is still needed. 

SUSTAINABILITY AND FUEL 

Statement for Sustainability 

There are various statements for sustainability or sustainable development. Some of the statements are 
presented in this section. 

The IUCN (International Union for the Conservation of Nature and Natural Resources) statement presented 
in the World Conservation Strategy (WCS) in 1980 (IUCN, 1980): the overall aim of achieving sustainable 
development through the conservation of living resources. 

The WCED (World Commission on Environment and Development) statement or Brundtland Commission 
Report in 1987 (WCED, 1987): sustainable development is development that meets the needs of the present 
without compromising the ability of future generations to meet their own needs. 

The statement presented in the Encyclopedia of Life Support Systems (EOLSS, 2002): the wise use of resources 
through critical attention to policy, social, economic, technological, and ecological management of natural and 
human engineered capital so as to promote innovations that assure a higher degree of human needs fulfillment, or 
life support, across all regions of the world, while at the same time ensuring intergenerational equity. 

The statement adopted by Wikipedia, the free encyclopedia (Wikipedia, 2017): sustainability is the endurance 
of systems and processes. 

Among the various statements, the WCED statement (also Brundtland Commission Report) is the most 
popular and often cited definition. The popularity is validated by the World Bank, the World Resources Institute, 
the World Wildlife Fund, the Worldwatch Institute, the Global Tomorrow Coalition, the International Institute 
for Environment and Development, the US Agency for International Development, the Canadian and Swedish 
International Development Agencies, etc. On November 18, 1992, the Rio de Janeiro (Brazil) conference gave the 
WCED statement a global mission status through the UN Conference on Environment and Development 
(UNCED). 

Even for the same WCED statement (Brundtland Commission Report), there are numerous understandings 
and interpretations. Up to now, 169 targets, 17 goals, and 304 indicators have been proposed to lead, evaluate, or 
measure sustainability (Wikipedia, 2017). Generally, sustainability encompasses several perspectives or pillars. Most 
of the scholars prefer that sustainability is a triangle of economic sustainability, environmental sustainability, and 
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social sustainability which is shown in Figure 1 (Rosen, 2009b; Romero and Linares, 2014; Bilgen and Sarıkaya, 
2015; Rosen, 2017 a). Dincer and Rosen (2005) furthered to state that sustainable development involves four key 
factors: environmental sustainability, economic sustainability, social sustainability, and resource/energy 
sustainability (Figure 2). Rosen (2017b) furthered to state that sustainable development is a multidisciplinary 
concept involving environment, ecology, sociology, economy, science, and engineering. Generally, sustainable 
development involves economic sustainability, social sustainability, and environmental sustainability, and all of 
them link to energy and resources sustainability, since all of these are strongly interlinked (Dincer and Rosen, 2005; 
Romero and Linares, 2014) and energy/resource sustainability is of great importance to the overall sustainability 
(Rosen, 2009b). Energy/resource sustainability is therefore focused on in the following sections. 

Sustainability and Fuel 

World population (social sustainability) and global economy (economic sustainability) are dependent on energy. 
Figure 3 shows the world population, global GDP, and world energy consumption during the years of 2006-2015. 
As the world population increased monotonically in the range of 6.52-7.35 billion with an increase rate of 12.73% 
(FAO, 2017) and the global GDP (gross domestic product) fluctuated in the range of 51.04-77.83 trillion U.S. 
dollars with an increase rate of 52.49% during the years of 2006-2015 (The World Bank, 2017; Statista, 2017), the 
world primary energy consumption nearly increased monotonically in the range of 11.27-13.15 ×103 Mtoe (million 
tonnes oil equivalent) with an increase rate of 16.68% during the same period (Statistical Review of World Energy, 
2017). This means that social sustainability and economic sustainability are significantly dependent on energy 
sustainability. 

Figure 4 shows the world energy production of fossil fuels (coal, oil, and natural gas) during the years of 2006-
2015 (Statistical Review of World Energy, 2017). The world production of fossil fuels nearly increased 
monotonically in the range of 9.76-11.39 ×103 Mtoe with an increase rate of 16.70%. These were 85.68%-87.81% 

 
Figure 1. Sustainability triangle (Rosen, 2009b; Romero and Linares, 2014; Bilgen and Sarıkaya, 2015; Rosen, 
2017a) 

 
Figure 2. Four key factors involved in sustainable development (Dincer and Rosen, 2005) 
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of world primary energy consumption (11.27-13.15 ×103 Mtoe), indicating that the fossil fuels contributed 
significantly to the world primary energy consumption. Specifically, the world energy production of fossil fuels 
was contributed by coal, oil, and natural gas which varied in the ranges of 3.19-3.83 ×103 Mtoe, 3.96-4.36 ×103 
Mt, and 2.61-3.20 ×103 Mtoe with increase rates of 20.06%, 10.10%, and 22.61% during the years of 2006-2015, 
respectively. 

The above data collectively indicate that social sustainability and economic sustainability are significantly 
dependent on energy/fuel sustainability. When we talk about sustainable development, sustainable energy/fuel 
resources should be available, and they should be efficiently used (Rosen, 2002; Dincer and Rosen, 2005; Kanoglu 
et al., 2009; Bilgen and Sarıkaya, 2015). 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

3

6

9

12

15

 

 
Va

lu
e

Year

 World population (billion)
 Global GDP (10 trillion)
 World energy consumption (1000 Mtoe)

 
Figure 3.  World population, global GDP, and world energy consumption during 2006-2015 (FAO, 2017; The 
World Bank, 2017; Statista, 2017; Statistical Review of World Energy, 2017) 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

2

4

6

8

10

12

 

 

Pr
od

uc
tio

n

Year

 Coal (1000 Mtoe)
 Oil (1000 Mt)
 Natural gas (1000 Mtoe)
 Total (1000 Mtoe)

 
Figure 4.  World energy production during 2006-2015 (Statistical Review of World Energy, 2017) 
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ENERGY FROM FUEL THROUGH EXERGY 

Statement for Exergy 

There are some modern statements for exergy. Szargut et al. (1988) defined: exergy is the amount of work 
obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components 
of natural surroundings by means of reversible processes, involving interactions only with the above mentioned 
components of nature. They also defined: exergy is the shaft work or electrical energy necessary to produce a 
material in its specified state from materials common in the environment in a reversible way, heat being exchanged 
only with the environment at temperature T0. 

Similarly, Sciubba and Wall (2004) defined exergy as: the maximum theoretical useful work obtained if a system 
‘S’ is brought into thermodynamic equilibrium with the environment by means of processes in which ‘S’ interacts 
only with this environment. 

According to the above statements, the exergy of an energy/fuel resource is the amount of maximum obtainable 
work when the energy/fuel resource is brought to a state of thermodynamic equilibrium with the common 
components of natural surroundings (environmental condition) by means of reversible processes, involving 
interactions only with the components (mentioned above) of natural surroundings (Rosen and Dincer, 1997; 
Rosen, 2002; Dincer and Rosen, 2005; Rosen et al., 2008). It measures not only how far the energy/fuel resource 
deviates from the state of equilibrium with its environment (Wall, 1986), but also measures the quality of the 
energy/fuel resource (Zhang et al., 2013; Zhang et al., 2015a; Zhang et al., 2016a). Therefore, exergy is widely used 
to evaluate the energy quality of an energy/fuel resource. 

Exergy of Fuel 

Generally, there are four forms of exergy for a fuel material: kinetic exergy, potential exergy, physical exergy, 
and chemical exergy (Figure 5). The kinetic exergy is associated with relative motion difference between the 
material and its surroundings. The potential exergy is associated with the gravitational or electromagnetic 
difference. The physical exergy is from differences in the pressures and temperatures, and the chemical exergy is 
from differences in the components and concentrations (Szargut, 2005). Since the kinetic exergy and potential 
exergy generally account for less than 0.001% of the total exergy of a material, they can therefore be neglected 
(Zhang et al., 2015b). The physical exergy of a material attributed by pressure and temperature differences is usually 
also neglected because the material in environmental condition is in equilibrium with the pressure and temperature 

 
Figure 5. Four forms of exergy for a fuel 

 
Figure 6. A comprehensive thermodynamic model for the (chemical) exergy of fuel 
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of the environment. The chemical exergy of a fuel, therefore, appears to be a more representative index than the 
total exergy of the fuel (Rosen and Dincer, 1999; Crane et al., 1992). 

According to the general definition of exergy, the (chemical) exergy of a fuel can be calculated from a multi-
process thermodynamic model which is also a comprehensive thermodynamic model (Figure 6). The multi-
process thermodynamic model includes three sub-process models: (a) the oxygen separation process, (b) the 
chemical reaction process, and (c) the products diffusion process. The oxygen separation process means oxygen 
(O2) is separated from the environment at the environmental sate (P0, T0), and the exergy involved is oxygen 
separation exergy. The chemical reaction process requires the fuel reacts with oxygen at the environmental sate 
(P0, T0), and the products are the environmental products which are the environmental compositions. The exergy 
involved in this process is called chemical reaction exergy. The products diffusion process means the 
environmental products diffuse to the environment and get equilibrium with the environment at the environmental 
sate (P0, T0). The exergy involved in this process is defined as products diffusion exergy. The (chemical) exergy of 
a fuel is then the sum of the oxygen separation exergy, chemical reaction exergy, and products diffusion exergy. 

This multi-process thermodynamic model would yield accurate results whereas the calculation process is a little 
complex. Recently, many authors dedicated to working on the estimation of exergy for fuels. The related work can 
be accessed everywhere (Szargut et al., 1988; Szargut, 2005; Zhang et al., 2016b; Li et al., 2017). 

ENVIRONMENTAL IMPACT FROM FUEL THROUGH EXERGY 

Emissions from Fuel 

At the same time of providing a huge amount of energy to the social sustainability and economic sustainability, 
the fuel itself also releases a great amount of emissions to the environment the world people live in. The energy 
contained in a fuel is mainly its chemical energy, and this energy can be obtained when the fuel is combusted 
(usually through combustion). This process can be illustrated by Figure 7. 

Table 1 shows the emission inventories for some common types of fuels (coal, crude oil, LPG (liquefied 
petroleum gas), fuel oil, and natural gas). Even for the easily combustible natural gas, SOx, NOx, CO, CO2, and 
CH4 may be released when the natural gas is combusted. Usually, these emissions may cause some environmental 
impacts on the environment, e. g. greenhouse effect, stratospheric ozone depletion, acid precipitation and 
photochemical smog as shown in Table 2 (Dincer, 2000). 

 If an ash containing fuel (usually solid fuels like coal and biomass) is used or combusted, the process would 
release not only gaseous pollutants (SOx, NOx, CO, CO2, CH4, etc.) but also ash compositions (Al2O3, CaO, Fe2O3, 
K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc.). This general process can be illustrated by Figure 8. 

Fuel

Energy

Emission

 
Figure 7.  Energy release process of fuel 

Table 1.  Emission inventories for some common types of fuels (Liu and Li, 2015) 
Fuel SOx NOx CO CO2 CH4 
Coal (g/kg) 0.007 0.043 0.005 6.2 9.320 
Crude oil (g/kg) 0.206 0.200 0.008 80.4 0.786 
LPG (g/kg) 1.360 0.988 0.157 260.0 0.253 
Fuel oil (g/kg) 1.130 0.823 0.131 210.0 0.211 
Natural gas (g/m³) 0.191 0.187 0.007 74.8 0.007 
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Environmental Impact of Emissions 

There are numerous methodologies that adopted for assessing the environmental impact of emissions, e. g. 
Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Greenhouse Gas (GHG) methodology, 
etc. Compared with the Life Cycle Assessment (LCA) and Environmental Impact Assessment (EIA) 
methodologies which refer to the specific conditions in specific production plants (Jegannathan and Nielsen, 2013) 
and therefore would be significantly affected (Atilgan and Azapagic, 2015), the Greenhouse Gas (GHG) 
methodology is indicated as carbon footprint and it is much more intuitive and simpler. 

Although the Greenhouse Gas (GHG) methodology can be easily used to assess the environmental impact of 
a fuel by demonstrating the greenhouse gas emissions of CO2 and CH4, the other environmental emissions (e. g. 
NOx, SO2, and ash) are not included (Zhang et al., 2017). On the other hand, the Greenhouse Gas (GHG) 
methodology lacks a uniform reference basis for assessing the environmental impacts of different emissions and 
it therefore shows difficulties in comparing the environmental impacts of different fuels. For example, if a coal 
generates a total emission of 1.1 kg of CO2 and a biofuel generates a total emission of 0.9 kg of SO2, how can we 
compare the environmental impacts of these two fuels? 

Exergy is the amount of work obtainable when a matter is brought to a state of thermodynamic equilibrium 
with the uniform environment reference (Szargut, 1980; Rosen and Dincer, 1997; Dincer, 2002; Rosen, 2009b), 
and it is an effective measure of the potential the matter impacts or changes the environment (Dincer and Rosen, 
1998; Utlu and Hepbasli, 2004; Dincer, 2007; Koroneos and Tsarouhis, 2012). Therefore, some researchers 
suggested that the environmental impacts of emissions are best addressed by considering exergy (Rosen and 
Dincer, 1997; Dincer, 2000; Midilli and Dincer, 2010; Caliskan, 2015). 

Since the kinetic exergy and potential exergy account for less than 0.001% of the total exergy of the emissions, 
they can therefore be neglected (Zhang et al., 2015 b). The physical exergy of an emission attributed by pressure 
and temperature differences is usually not significant and its potential environmental impact is limited as the 
pressure difference between the emission and the environment normally dissipates shortly after the emission enters 
the environment, and the temperature difference is normally localized near the emission source (Rosen and Dincer, 
1999; Ao et al., 2008, Crane et al., 1992). The chemical exergy of emissions, therefore, appears to be a more 
representative index than their total exergy (Rosen and Dincer, 1999; Crane et al., 1992; Kirova-Yordanova, 2010). 

Based on the emissions released from a fuel, the environmental impact of the fuel can be obtained by (Zhang 
et al., 2017): 

Table 2. Gaseous pollutants and their impacts on the environment (Dincer, 2000) 
Gaseous pollutant Greenhouse effect Ozone depletion Acid precipitation Photochemical smog 
Carbon monoxide (CO)     
Carbon dioxide (CO2) + ±   
Methane (CH4) + ±   
Nitric oxide (NO) and nitrogen dioxide (NO2)  ± + + 
Nitrous oxide (N2O) + ±   
Sulfur dioxide (SO2) － +   
+ stands for positive contribution, and － stands for variation with conditions and chemistry, may not be a general contributor. 

 
Figure 8.  Emissions from fuel 
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𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃Gas + 𝑃𝑃𝑃𝑃𝑃𝑃Ash (1) 

where: 
PEI is the total environmental impact of a fuel (kJ/kg) 
PEIGas is the environmental impact of the emission gases (kJ/kg) 
PEIAsh is the environmental impact of the ash (kJ/kg) 

The environmental impact of emission gases, PEIGas, is given by (Zhang et al., 2017): 

𝑃𝑃𝑃𝑃𝑃𝑃Gas = �𝑚𝑚𝑖𝑖𝑒𝑒𝑥𝑥𝑖𝑖 (2) 

where: 
i indicates the emission gases 
mi is the production of emission gas i (mol/kg) 
exi is the standard chemical exergy of emission gas i as shown in Table 3 (kJ/mol) 

The environmental impact of ash, PEIAsh, is given by (Zhang et al., 2017): 

𝑃𝑃𝑃𝑃𝑃𝑃Ash = �𝑚𝑚𝑗𝑗𝑒𝑒𝑥𝑥𝑗𝑗 (3) 
where: 

j indicates the ash components 
mj is the mass of ash component (mol/kg) 
exj is the standard chemical exergy of ash component j as shown in Table 3 (kJ/mol) 

As exergy is defined on a global uniform environment reference basis, the environmental impact of an emission 
demonstrated by its chemical exergy is therefore also on a universal basis (Figure 9). The methodology presented 
above overcomes the problem with the Greenhouse Gas (GHG) methodology which lacks a uniform reference 
basis and it therefore has difficulties in comparing the environmental impacts of different emissions. On the 
contrary, the methodology presented above can be easily used to assess the environmental impacts of different 
emissions including gaseous pollutants (SOx, NOx, CO, CO2, CH4, etc.) and ash compositions (Al2O3, CaO, Fe2O3, 
K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc.). However, the universal exergy method also has some limits, 
e. g. it doesn’t refer to the toxicity or greenhouse effect of an emission. 

Table 3. Chemical exergy of emission gases and ash compositions (Szargut et al., 1988) 
Material                      Standard chemical exergy (kJ/mol) 
Emission gases 
CO 275.10 
CO2 19.87 
N2O 106.90 
NO 88.90 
NO2 55.60 
SO2 313.40 
Ash compositions  
SiO2 7.90 
K2O 413.10 
CaO 110.20 
P2O5 412.65 
MgO 66.80 
Al2O3 200.40 
Fe2O3 16.50 
Na2O 296.20 
SO3 249.10 
 

 
Figure 9. Universal basis for emissions 
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Exergy Efficiency 

As exergy has a triangle relationship with sustainability, energy, and environment as shown in Figure 10, exergy 
is best used to evaluate the energy quality of an energy/fuel resource, it at the same time can be used to help benefit 
the environment. 

When exergy is used to evaluate the energy quality of a fuel resource, exergy efficiency can be used to assess 
the fuel convention and utilization processes. Figure 11 shows the relationship between the emissions and 
sustainability index (SI) of a typical process. To reduce the gaseous pollutants (SOx, NOx, CO, CH4, etc.) from a 
fuel convention or utilization process, one efficient alternative is to improve the process efficiency which is best 
evaluated by exergy efficiency (Rosen and Dincer, 2001; Kanoglu et al., 2009; Caliskan, 2014; Bilgen and Sarıkaya, 
2015). For a general fuel convention or utilization process, the best way to reduce the environmental impact and 
increase the fuel sustainability is to improve the exergy efficiency of the process (Figure 12) (Rosen and Dincer, 
2001; Rosen et al., 2008; Kanoglu et al., 2009). 

CONCLUSIONS 

The sustainability of fuel is important for the sustainability triangle which mainly includes economic 
sustainability, environmental sustainability, and social sustainability, and it can be understood from a universal 
exergy basis: (a) higher chemical exergy of fuel, (b) lower chemical exergy of emissions, and (c) higher exergy 
efficiency of fuel conversion process. 

 
Figure 10. Interdisciplinary triangle covered by exergy (Rosen and Dincer, 2001; Dincer, 2002) 

 
Figure 11. Relationship between the emissions and sustainability index (SI) of a typical process (Rosen et al., 2008) 
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