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ABSTRACT 
Currently, majority of the researchers concentrate on algal biomass production with autotrophic cultivation, 
however this cultivation strategy induces low biomass yield and it is troublesome to be utilized in large-scale 
algal biomass production. In contrary to this, heterotrophic algae can accumulate high level lipid production. 
Therefore, the present study was aimed to assess the effect of various carbon sources viz., glucose, sucrose, 
fructose, glycerol, sodium acetate and various nitrogen sources viz., NaNO3, urea, KNO3, NH4NO3, yeast 
extract, peptone, beef extract on lipid, biomass, total chlorophyll, protein and carbohydrate content in 
Scenedesmsus dimorphus. Among carbon sources, glucose showed maximum biomass yield (1.98±0.005gL-1) 
and highest lipid content (32.7±0.01%) followed by fructose, sucrose and glycerol. Similarly, total 
carbohydrates and protein content was also found to be maximum in glucose 0.275±0.002 mgmL-1 and 
0.031±0.001 mgmL-1 respectively. While sodium nitrate supported maximum chlorophyll content 
(29.00±0.01 µgmL-1). Among various tested nitrogen sources, beef extract showed highest lipid production 
(30.28±0.05%), biomass yield (1.73±0.02 gL-1) in sodium nitrate and total carbohydrates (0.247±0.008) 
mgmL-1 in beef extract, followed by yeast extract and peptone. Highest chlorophyll content has been found 
in urea and maximum protein content in ammonium nitrate. 
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INTRODUCTION 

Being among one of the key biofuels, biodiesel plays a major role in diversifying the supply of world 
transportation fuels (Yuan et al., 2005; Hansen et al., 2006) . The sustainable and efficient production of biofuel 
can lead to reductions in greenhouse gas emissions, lowered climate change impact and increased security owing 
to the fulfilment of global energy demands (González-González et al., 2018). Traditional seed crops comparable 
to soyabean, rapeseed and palm oil are adopted extensively for biodiesel production. However, to satisfy the 
increasing demand of biodiesel, seeking lipid-rich biological materials other than traditional oilseed crops has 
attracted much attention (Shen et al., 2009). Microalgae are considered a potential source of biodiesel because of 
their relatively simple cellular structure, high lipid content and after the removal of the lipid fraction (Gouveia et 
al., 2018) the remaining residual biomass (mainly carbohydrates and proteins) can also be used for high value by-
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products (Pienkos and Darzins, 2009; Bajwa et al., 2017) with additional photosynthetic efficiency (Talebi et al., 
2011; González-González et al., 2018). Moreover, some microalgae can be cultivated in non-airable lands using 
non-potable water or even wastewater, thus reducing or avoiding competition with food/feed crops for agricultural 
land and freshwater (Chisti et al., 2007; Shen et al., 2008; Shuba and Kifle, 2018). Hundreds of microalgal strains 
capable of manufacturing high content of lipid are screened and their lipid production metabolisms have been 
characterized and reported (Sheehan et al., 1998). Many studies have shown that numerous cultivation conditions 
could increase lipid content in some microalgae equivalent to element deprivation, phosphate, nitrate, high 
intensity, nutrient media characteristics, low temperature, high salt concentration, and high iron concentration 
(Illman et al., 2000; Liu et al., 2008). Under these stress conditions, many microalgae respond by significantly 
increasing lipid content, commonly ranging from 30% to 60% of the dry cell weight. Among these factors, nitrogen 
is known to have a vigorous effect on the metabolism of lipids and fatty acids in several microalgae (Hsieh et al., 
2009; Liang et al., 2009). For biomass production and cellular lipid accumulation, heterotrophic and mixotrophic 
cultures have been proposed as feasible alternatives (Yu et al., 2009). In comparison to photoautotrophy, 
heterotrophic cultivation allows higher algal growth rate and enables microalgae to accumulate higher biomass and 
amounts of lipid using less time in the absence of light, which is critical for reducing the microalgal biomass 
production cost (Cheirsil et al., 2012). However, only a few microalgae species adapt to heterotrophic cultivation 
and most of them belong to the genus Chlorella (Isleten-Hosoglu et al., 2012). Heterotrophic growth of microalgae 
involves the utilization of organic compounds as sole carbon and energy sources. Heterotrophic and mixotrophic 
cultures of microalgae have been reported using different carbon sources, such as glucose, sucrose, glycerol and 
sugarcane molasses (Heredia-Arroyo et al., 2011). However, glucose is most commonly used for sustaining 
microalgae growing in the dark and was used as carbon source in mixotrophic culture of several microalgal species 
reaching high biomass and lipids productivity (Wan et al., 2011; Xiong et al., 2010; Dittamart et al., 2014).Often 
carbon and nitrogen are the most important nutrients contributing to the biomass production. Nitrogen in the 
form of nitrate, ammonia and urea are the most common nitrogen sources. Nitrogen is mostly supplied as nitrate 
and an increase in pH occurs when nitrate is supplied as the only nitrogen source (Prabakaran Ravindran, 2012) . 
Chlorella sp. M2 isolate was able to utilize several nitrogen sources including urea, ammonium carbonate, potassium 
nitrate, ammonium nitrate and sodium nitrate at concentrations ranged from half to 16 folds of recommended 
concentration in BBM medium (Amin et al., 2013). Urea as a nitrogen source enhanced Chlorella sp. M2 growth 
more than the other examined nitrogen sources at wide range of concentrations. Carbon and nitrogen source 
changes will greatly affect the biomass and lipid production of microalgae. Dittamart et al., cultured the Scenedesmus 
sp. AARL G022 under different organic carbon sources such as glucose, glycerol and sodium acetate and found 
glucose most suitable for biomass growth (Dittamart et al., 2014). Scenedesmus sp. cultured under three 
monosaccharides (fructose, maltose, glucose), three organic acids (acetate, propionate, butyrate) and one 
disaccharide (sucrose) were used to investigate the influence of carbon source on heterotrophic growth and lipid 
production in dark condition (Hong et al., 2013). The main objective of this work was to investigate the effect of 
carbon sources and nitrogen sources on total biomass (gL-1) and lipid yield % and other physio-biochemical 
parameters by the green microalgae Scenedesmus dimorphus.  

MATERIAL AND METHODS 

Isolation and Identification of Isolate 

Water samples were collected from Aulakhpur village, Muktsar, (India) and were inoculated in autoclaved BG11 
medium at 25±1°C below cool white fluorescent light until algal growth was detected and cultured on BG11 
medium enriched agar plates. Individual colonies were picked up and cultured in liquid BG11 medium. The 
streaking and inoculation procedures were repeated 3-4 times till pure cultures were obtained. The algal cells were 
observed under microscope for its morphological features and different cellular details. Purified algal species was 
identified with the help of algal identification guide on the basis of morphological features under the light 
microscope and more confirmed microalgal species with the assistance of Dr. R. Dhandapani, Department of 
Microbiology, Periyar University, Salem (Tamil Nadu). Purity of culture were maintained by regular sub culturing 
similarly microscopic observation under microscope. 

Culture Condition and Culture Medium with Nitrogen and Carbon Sources 

In autotrophic condition, algal cells in the stationary phase were inoculated into 250 ml Erlenmeyer flasks 
containing 100 ml BG11 medium, which had been adjusted pH 7 and autoclaved at 121°C for 30 min. The 
microalgae were cultured at 25±1°C using BOD incubator cum shaker at 120 rpm having florescence light of 
around 3000 lux. For heterotrophic culture, the selection of carbon sources to enhance the growth of algae was 
carried out directly in BG-11 media amended with 1% (w/v) of six various organic carbon sources (fructose, 
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glucose, fructose, sucrose sodium acetate, glycerol. The experiments was conducted in triplicate along with control 
parallel run in which no additional carbon sources were added. Beef extract, urea, peptone, ammonium nitrate, 
sodium nitrate, potassium nitrate and yeast extract were chosen as the nitrogen sources with the initial 
concentrations computed as the same nitrogen atom number of sodium nitrate. All the biochemical and 
physiological parameters such as total biomass, lipid, total chlorophyll, carbohydrates and protein were analyzed 
after a cultivation period of 12 days. 

Estimation of Cellular Components 

Bligh and Dyer Lipid Extraction Method 
Total lipids were extracted by mixing methanol-chloroform (2:1.5 v/v) with the algal samples using slightly 

modified version of Bligh and Dyer’s method (Bligh and Dyer, 1959). Algal biomass pellet was collected by 
centrifuging 50 mL of the algal culture at 5,000 rpm for 10 min. The supernatant was discarded and the algal 
biomass was incubated for 24 h at 25°C in a mixture of 2 mL methanol and 1.5 mL chloroform. The mixture was 
then vortexed for 2 min, followed by the addition of 1.5 mL of chloroform and agitation again for 1 min. The 
mixture was amended with 1.8 mL distilled water followed by 2 min of vigorous agitation. It was then centrifuged 
for 10 min at 2,000 rpm and a lower lipid layer was separated carefully using Eppendroff micropipettes in a clean 
previously dried (104°C) and preweighed 15-mL glass centrifuge tube. The chloroform phase was evaporated near 
to dryness in a water bath at 70°C, and the residue was dried further at 104°C for 30 min. Lipid content was 
described as percentage dcw (Bligh and Dyer, 1959). 

Estimation of Dry Biomass  
Dry cell biomass was measured as the cell density (dcw, gL-1) at OD 625 of an 11-day-old culture at dilutions 

ranging from 0.2 to 1.0. The dry biomass was calculated using the regression equation relationship given by Yount 
(Yount, 2006) , y = 0.1015x + 0.2071 , R² = 0.9456  

Extraction and Determination of Photosynthetic Pigment (Chlorophyll) 
A known volume of algal cultures was centrifuged at 5000 rpm for 10 min and rinsed twice with distilled water. 

The pellet was extracted twice with 95 % methanol, followed by centrifugation at 5000 rpm for 10 min. The 
contents of total chlorophyll in the supernatant were determined by UV-VIS spectroscopy. Chlorophyll content 
of the algae was estimated spectrophotometrically at 650 and 665 nm (Mackinney, 1941).The concentration of 
chlorophyll was calculated using the formula: 

Total chlorophyll (mgmL-1) = 2.55 × 10-2 E650 + 0.4 × 10-2 E665 × 103 

Extraction and Determination of Total Soluble Carbohydrates  
A known volume of algal cells were centrifuged, discharged supernatant. Algal biomass was hydrolyzed with 

2.5 N HCl for 3 hours in water bath. After complete hydrolysis, again centrifuged at 5000 rpm for 5 mins. Briefly 
0.5 ml of hydrolyzed algal sample mixed with distilled water to make a final volume 1 ml and added 4 ml of 
Anthrone reagent into homogenized mixture, incubated in boiling water bath for 10 min. Carbohydrate was 
determined at 625 nm by Anthrone reagent method (Dubois et al.,1956). Standard curve prepared by using graded 
conc. of glucose dilution ranging from 0.2 to 1. 

y = 0.636x + 0.0592, R² = 0.9987 

Total Protein Estimation  
1. Bovine serum albumin (BSA) stock solution (1mgmL-1),  
2. Analytical reagents: 

a) 50 ml of 2% sodium carbonate mixed with 50 ml of 0.1 N NaOH solution (0.4 gm in 100 ml distilled 
water. 

b) 10 ml of 1.56% copper sulphate solution mixed with 10 ml of 2.37% Sodium potassium tartarate 
solution.  

c) Prepared analytical reagents by mixing 2 ml of (b) with 100 ml of (a) 
3. Folin - Ciocalteau reagent solution (1N) dilute commercial reagent (2N) with an equal volume of water on 

the day of use (2 ml of commercial reagent + 2 ml distilled water). This solution is incubated at room 
temperature for 10 mins. 

Procedure  
10 ml of homogenized algal suspension was taken in 10 ml centrifuge tube and centrifuged at 5000 rpm for 5 

minutes. Discard the supernatant, added 0.1 N NaOH to the pellet and incubated in water bath at 60oC for 30 
minutes to hydrolyze the pellet and centrifuged again. Briefly taken 0.5 ml hydrolyzed sample, 0.5 mL of reagent 
(A) was added. The tubes were then heated in a boiling water bath for 10 min and cooled in running tap water. 
Subsequently, 2.5 mL of reagent (B) was added in each and the tubes were incubated at room temperature for 10 
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mins. After this, 0.5 mL of reagent (C) was added. The tubes were kept at room temperature for 15 mins. The 
intensity of blue colour was read as absorbance at 660 nm against appropriate blank. The protein content was 
estimated using a standard calibration curve prepared from bovine serum albumin and expressed in terms of 
mgmL-1. Protein concentration was calculated from the standard curve prepared with bovine serum albumin (BSA). 
y = 0.1097x - 0.0005, R² = 0.9989 (Lowry et al., 1951) 

Statistical Analysis 

Statistical comparison between the groups was done by multi factor one-way analysis of variance (ANOVA) 
and Duncan’s multiple-range test, using SPSS version 21.0. The p-values that were less than 0.05 were considered 
significant. 

RESULTS AND DISCUSSION 

In the present investigation, fresh water green microalga has been isolated from enriched mixed culture by 
standard isolation technique. Further cellular characteristics and morphological features of the isolate have 
demonstrated its close similarity with genus Scenedesmus dimorphus and also observed under fluorescent microscope 
for lipid detection (Figure 1 A, B). In Scenedesmus dimorphorus, neutral lipid or triglycerides appeared as yellow dots, 
whereas polar lipid and chlorophyll stained in red colour cells by Nile Red staining under fluorescent microscope 
with excitation wavelength at 420 nm and emission at 580-nm. Similar finding have been reported by many workers 
for lipid staining by using Nile Red dye for intracellular lipid identification (Cooksey et al., 1987; Matsunaga et al., 
2009; Elumalai et al., 2011; Abdo et al., 2014; Kirrolia, 2015; Kiran et al., 2016). 

In the present study, effect of various nitrogen and carbon sources were investigated on total lipid content, 
biomass, chlorophyll, cellular protein and carbohydrate contents. Scenedesmus sp. was grown in BG-11 for 14 days 
and source of nitrogen sodium nitrate is replaced by KNO3, urea, peptone, beef, ammonium nitrate with parallel 
running control. 

The effect of different carbon sources on biomass (g L-1), lipid (% dcw ), total chlorophyll (µg mL-1), protein 
(mgmL-1) and total carbohydrate mgmL-1 of Scenedesmus sp. is shown in Table 1 and Figure 2. Biomass yield was 
found to be significantly higher (P≤0.05) when Scenedesmus sp. cultured with glucose amended BG-11 media , 
followed by sucrose. Glucose and fructose is easily taken up by microbial cells, disaccharides like sucrose or lactose 
must be first hydrolyzed to monosaccharides or must have specific transport system before entering microbial cells 
as advocated by Perez-Garcia et al., 2011. Lipid content was also found to be significant higher (P≤0.05) in glucose 
followed fructose as shown in Table 1, Figure 2. According to Ren et al., (2013) maximum biomass yield and lipid 
production have been reported in new lipid rich microalgae Scenedesmus sp. strain R-16 and observed that glucose 
was found to be efficient carbon source for maximum biomass yield (3.46 g L-1) lipid content (43%) and specific 
growth rate (0.819 d-1). Sharma et al., (2015) observed that among organic carbon sources, the maximum lipid 
content (13.22% and lipid yield 189.94 mgL-1, biomass yield 1.43±0.075gL-1 and lipid productivity 86.04±3.2 mgL-

1d-1 were found in case of glucose, followed by glycerol and sucrose. The present results are also supported by 
Griffiths et al., (1960) and observed that higher growth rate has found in glucose among various sugars such as 
organic acids, phosphate of sugars and monohydric alcohols. Present results are in agreement with the finding of 
Kirrolia et al., 2013.They reported a biomass yield 1.66 gL-1 and lipid content 16.52±0.25 at 1% glucose 
concentration supplementation for Chlorella species (Kirrolia et al., 2013).This difference might be due to the 
species difference. 

  
Figure 1. (A) Light microscope image of Scenedesmus dimorphus (100 x) with immersion oil (B) Nile red fluorescence 
of representative microalgal cells (100x) 
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According to Dittamart et al., (2014), Scenedesmus sp. AARL G022 under different organic carbon sources such 
as glucose, glycerol and sodium acetate and found glucose most suitable for biomass growth. Hong et al., (2013) 
reported that Scenedesmus sp. cultured under three monosaccharides (fructose, maltose, glucose), three organic acids 
(acetate, propionate, butyrate) and one disaccharide (sucrose) were used to investigate the influence of carbon 
source on heterotrophic growth and lipid production in dark condition and found glucose most suitable for lipid 
production.Interestingly, Scenedesmus sp. showed significant (P≤0.05) total chlorophyll production (Table 1, Figure 
2 C). While significant (P≤0.05) results of total protein and carbohydrates were reported in glucose as compared 
with other carbon sources (Table 1, Figure 2 D, E). Nitrogen is an important constituent of cell protein and 
protoplasm needed for algal growth and it affects the productivity of microalgae. Microalgae are capable of utilizing 
various dissolved forms of inorganic and organic nitrogenous sources. An essential criterion for mass production 
of microalgae varies from species to species; it is based on the selection and utilization of a suitable nitrogen source 
(Tape et al., 2006). In addition, Scenedesmus sp. can utilize both inorganic and organic nitrogen sources for growth 
and lipid accumulation but organic nitrogen sources has much significant effects for lipid production in 
comparison with inorganic nitrogen source. Among various nitrogen sources, Scenedesmus sp. showed significant 
(P≤0.05) biomass yield for sodium nitrate and lipid % dcw for beef extract. (Table 2, Figure 3). Maximum lipid 
content achieved i.e. 30.28 % when Scenedemus sp. cultured with media having beef extract as a nitrogen source 
followed by yeast extract and peptone. It might be reason for inefficient utilization of beef extract could result in 
the N-starvation of algal cells which induced higher total lipid content of algae (Wan et al., 2012). Moreover, growth 

Table 1. Effect of carbon sources on physio-chemical components of Scenedesmus dimorphus 
Carbon Sources Total lipid 

(% dcw) 
Total biomass 

(gL-1) 
Total chlorophyll 

(µgmL-1) 
Total carbohydrates 

(mgmL-1) 
Total protein 

(mgmL-1) 
Control 18.29±0.02f 1.09±0.03f 29.00±0.01a 0.110±0.003f 0.015±0.005f 
Glucose  32.7±0.01a 1.98±0.005a 17.67±0.02f 0.275±0.002a 0.031±0.001a 
Sucrose 28.52±0.03b 1.56±0.01c 18.95±0.03e 0.198±0.001c 0.022±0.003c 
Fructose 23.78±0.02d 1.78±0.003b 23.83±0.04c 0.121±0.004b 0.018±0.005d 
Sodium acetate 20.95±0.04e 1.20±0.02e 20.45±0.02d 0.145±0.002e 0.016±0.006e 
Glycerol 27.32±0.01c 1.34±0.003d 26.52±0.01b 0.159±0.005d 0.024±0.004b 
 a, b, c, d, e Means with unlike superscript in the column differ significantly (P≤0.05) 

 
Figure 2. Effect of carbon sources on (a) lipid yield (b) biomass yield (c) total chlorophyll (d) carbohydrates (e) 
protein 
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data suggest that nitrogen source preference might vary between the algal species (Xiong et al., 2008; Shen et al., 
2010). In present study, it has been found that urea has led to significant chlorophyll production in comparison 
with other nitrogen source (Table 2, Figure 3,C). Pandian and Ravindran (2012) have found that Chlorococcum 
treated with different nitrogen sources showed maximum amount of chlorophyll content in 0.02% of urea (Pandian 
and David, 2012). Urea seems to be the most effective nitrogen source for providing the alga with sufficient carbon 
and at the same time nitrogen comparable to a nitrate source (El-shayed et al., 2011). Agwa and his co-worker 
stated that urea is found most appropriate nitrogen source for overall growth of Chlorella vulgaris (Agwa and Abu, 
2016). Significant carbohydrates (P≤0.05) concentration have been found in beef extract. It is also reported that 
certain concentration of urea could stimulate the accumulation of photosynthetic pigments and intensify 
photosynthesis in Elodea densa (Maleva et al., 2015). However the protein concentration was found to be significant 
(P≤0.05) in yeast extract as comparison was made with other nitrogen source. 

 

CONCLUSION 

Both the nitrogen and carbon source had substantial effect on lipid productivity, biomass yield and physico-
biochemical composition of Scenedesmus dimorphus. Among various carbon sources, organic carbon sources have 
much significant effects. Glucose had led to maximum lipid content 32.7% and biomass yield 1.98 gL-1. Scenedesmus 
sp. showed significant total chlorophyll content for sodium nitrate followed by sodium acetate and least for glucose. 
Among various tested nitrogen sources, beef extract showed significantly enhanced lipid production i.e. 30.28%, 

Table 2. Effect of nitrogen sources on physio-chemical components of Scenedesmus dimorphus 
Nitrogen Sources Total Lipid 

(% dcw) 
Total Biomass 

(gL-1) 
Total Chlorophyll 

(µgmL-1) 
Total Carbohydrate 

(mgmL-1) 
Total Protein 

(mgmL-1) 
Control (NaNO3) 21.40±0.06g 1.73±0.02a 17.36±0.03f 0.128±0.006g 0.018±0.003g 
Urea 26.91±0.04c 1.51±0.05b 24.96±0.01a 0.195±0.003c 0.025±0.001b 
KNO3 20.68±0.02f 1.34±0.01c 21.32±0.04c 0.203±0.001b 0.019±0.007f 
NH4NO3 23.32±0.01e 1.49±0.02b 19.67±0.02d 0.167±0.005e 0.035±0.003a 
Yeast Extract  27.23±0.02b 1.21±0.04d 22.26±0.01b 0.143±0.004f 0.021±0.009d 
Peptone  25.67±0.04d 1.12±0.05e 18.90±0.05e 0.174±0.006d 0.023±0.005c 
Beef Extract 30.28±0.05a 1.03±0.07f 19.94±0.02d 0.247±0.008a 0.020±0.004e 
a, b, c, d, e, f, g Means with unlike superscript in the column differ significantly (P≤0.05) 

 
Figure 3. Effect of nitrogen sources on (a) lipid yield (b) biomass yield (c) total chlorophyll (d) carbohydrates (e) 
protein 



 European Journal of Sustainable Development Research, 2(4), 43 

© 2018 by Author/s  7 / 9 

while biomass yield have been found maximum in sodium nitrate. In the case of total chlorophyll urea showed 
much significant effects. However, highest carbohydrate content in Scenedesmus sp. has been reported with beef 
extract and maximum cellular protein content in ammonium nitrate. Therefore beef extract and glucose has much 
significant effects on lipid content and biomass yield.Hence heterotrophic cultivation can be suitable alternative 
for maximum biomass and lipid production. 
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