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 In the current investigation, a temperature sensitivity analysis of hard and softwood pyrolysis was conducted on 

an in silico platform. The selected samples were beech (hardwood), ailanthus (soft hardwood) and spruce 

(softwood). Upon the successful development of the model on ASPEN Plus v8.8, the results of the model prediction 

showed that the yield of bio-oil reduced with a rise in process temperature. Beech had the highest bio-oil yield of 
the feedstock investigated. At 350oC, oil yield was 36.72%, 35.13% and 32.89% for beech, ailanthus and spruce 

respectively. The syn-gas yield was 39.99%, 38.25% and 35.82% and bio-char yield was 45.44%, 47.58% and 50.77% 

for beech, ailanthus and spruce respectively (at 650oC). For the entirety of the temperature range studied, a gentle 

fall in char yield was observed for all feedstock type (though more significant at temperatures above 500oC). The 

model also predicted the yield of volatiles (bio-oil and syn-gas) to be higher for the hard and soft hardwood than 

for the softwood and this was vice versa for the char yield. 

Keywords: ASPEN Plus, Pyrolysis, Beech, Spruce, Ailanthus 
 

INTRODUCTION 

In a bid to combat climate change and foster energy and environmental sustainability, research interests in forest residues as 

a renewable energy source is on the rise (Abdelouahed et al., 2012; Hosseinpour et al., 2018). The utilisation of fossil fuels has 

resulted in two-thirds of the global anthropogenic CO2 emissions (Mohan et al., 2006) while the use of bio-fuels has significantly 

decreased the emission of green-house gases (Sharma et al., 2015). Many thermochemical processes can be used to recover energy 

from both natural and derived biomass amongst which are pyrolysis (Arregi et al., 2016; Kan et al., 2016), gasification (Block et al., 

2018; Gu et al., 2018), steam reforming (Santamaria et al., 2018; Valle et al., 2018), combustion (Emadi et al., 2017; Gani and Naruse, 

2007), hydrogenation and liquefaction (Goyal et al., 2008). Pyrolysis is considered as a popular and important technique for the 

thermochemical conversion of biomass (Adeniyi and Ighalo, 2020). Several research efforts have been channelled towards 

different aspects of the pyrolysis of wood. 

Process simulation are important because they can be used to study chemical processes on in silico (computer-based) (Dabiri 

Atashbeyk et al., 2018; Moradi et al., 2014) and mathematical (Khadem-Hamedani et al., 2015; Torabi et al., 2016) platforms. The 

modelling of thermochemical conversion processes can be used to achieve process optimisation (Darvishi et al., 2016). Several 

simulation models have been prepared for soft and hardwood pyrolysis but none has taken the approach used in the current paper 

whilst considering the biomass samples in question (Di Blasi, 2008; Sinha et al., 2000).  

Onarheim et al. (2014) simulated the fast pyrolysis of pinewood on ASPEN (Advanced System for Process Engineering) Plus. 

Peters et al. (2015) conducted a simulation and life cycle assessment of the fast pyrolysis of poplar wood also ASPEN Plus. Peters 

et al. (2013) prepared a predictive model of pinewood on ASPEN Plus using a kinetic approach. Biomass has three major polymeric 

constituents which are lignin, hemicellulose and cellulose (Qu et al., 2011). These constituents possess very different thermal 

behaviours (Asmadi et al., 2011; Collard and Blin, 2014). The nature (in terms of ratio) of the composition of these building-blocks 

in the wood feedstock will influence their overall behaviour in the pyrolytic system and the product distribution and yield.  

Using a variety of approaches that takes into cognisance this basis, this research team have examined the pyrolysis of banana 

residues (Adeniyi et al., 2019c; Ighalo and Adeniyi, 2019), sugarcane bagasse (Adeniyi et al., 2019a) and rice husk (Adeniyi et al., 

2019b, 2019e). Within the scope of the authors’ exhaustive search, an in silico study for the pyrolysis of Beech, Ailanthus and Spruce 

are unreported except for the recent paper by the research group (Adeniyi and Ighalo, 2019a). This is an important novelty of this 

paper. The study by Adeniyi and Ighalo (2019a) observed an optimum bio-oil yield of 62.8% for beech wood, 58.3% for Ailanthus 
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and 54.2% for spruce wood. However, the temperature sensitivity on the product distribution was not investigated. This is an 

important aspect of pyrolysis investigation as it determines the theoretical optimum ahead of experimental studies. The 

distinctive novelty of this paper is to determine the theoretical temperature optimum for the pyrolysis of beech, ailanthus and 

spruce. 

As a sequel to that investigation, this study utilised the validated ASPEN Plus model of Adeniyi et al. (2019e) to evaluate the 

temperature sensitivity of the three biomass feedstock. The samples selected were beech (hardwood), ailanthus (soft hardwood) 

and spruce (softwood). A key aspect of process systems engineering is investigating the effects of process variables on chemical 

process systems in both the real and in silico domains (Adeniyi and Ighalo, 2020) and this study helps in fulfilling part of this 

objective. Furthermore, this study is important as it can help gain true insight to the potentials of the feedstock for the production 

of bio-oil via the pyrolysis thermochemical conversion process free of extraneous factors and it comes at a time when research 

interest in such renewable energy technologies is on the rise. The reason for the choice of feedstock that is Beech wood is 

hardwood; Ailanthus wood is a soft hardwood while spruce is a softwood. This gives a good representative for each wood type. 

METHODOLOGY 

Much details of the underlying thermodynamics theories, simulation component list and accompanying are process 

integration and description steps are exactly same as discussed elsewhere (Adeniyi et al., 2019e). However, the information on the 

proximate and ultimate analysis of the biomass is needed to model the feedstock in the simulation. These are presented in Table 

1. PR-BM (known as Peng-Robinson with Boston-Mathias alpha function equation of state) was implemented as the global 

calculation method for the process simulation. The method is accurate and is an improvement of the Peng-Robinson equation 

because there is an alpha function. The alpha function is a temperature-dependent parameter that improves the correlation for 

the vapour pressure of pure components at very high temperatures. It is suitable for pyrolysis because the process involves 

relatively high temperatures. It and has been utilised in previous studies (Adeniyi et al., 2019c; Ighalo and Adeniyi, 2020) where 

pyrolysis simulation was done on ASPEN plus. The overall component list consisted of acetic acid, ethylene glycol, ethanol, phenol, 

water, propanol, acetaldehyde, acetone, formaldehyde, propionic acid, xylan, methyl acetate, pyrrole, ethyl formate, carbon 

graphite, propionic acid, formic acid, methanol, hydrogen sulphide, carbon monoxide, methane, ethane and hydrogen and silicon 

oxide as listed in Adeniyi et al. (2019e). 

The model on ASPEN Plus v8.8 can be described as a sequential-modular one. The concept of sequencing means that the order 

of performance of a task is designated in such a way as to assure the best possible use of available inputs (Licker, 2003). It is 

sequential in the sense that the output values of a module serve as the input values to the next module in the sequence (a block-

by-block computation approach). The process flow diagram utilised in a previous study was implemented (Adeniyi et al., 2019e). 

This is shown in Figure 1. The current simulation is one that runs based on the minimisation of Gibbs free energy thermodynamic 

calculation method (Adeniyi and Ighalo, 2019b; Adeniyi et al., 2019f). The results obtained are discussed in the foregoing section. 

The model takes into cognisance the differences in the in cellulose, hemicellulose and lignin content of the biomass and the 

approach is described in Adeniyi et al. (2019e). Furthermore, several assumptions were implemented in the process simulation. 

the particle sizes of the feedstock were not considered in the simulation. All the moisture content of the biomass feedstock was 

considered as either the water content in the liquid product or as water vapour traces in the initially evolved gaseous product. The 

char was considered to be composed of a solid stream alone. The process flow sheet and simulation assumptions are the same as 

those discussed elsewhere (Adeniyi et al., 2019e). The temperature range selected for the study was between 350oC and 650oC 

because this is the region of the disintegration of biomass constituents (Collard and Blin, 2014). 

Table 1. Composition Analysis of Beech, Ailanthus and Spruce wood samples (Adeniyi and Ighalo, 2019a; Demirbaş, 1997) 
 Beech wood Ailanthus wood Spruce wood 

Proximate analysis (wt%) 

Fixed Carbon 24.6 24.8 28.3 

Volatile Matter 74 73.5 70.2 

Ash 0.4 1.7 1.5 

Moisture 7.4 8.1 7.6 

Ultimate/Elemental analysis (wt% moisture-free) 

Carbon 49.5 49.5 51.9 

Hydrogen 6.2 6.2 6.1 

Sulphur - - - 

Oxygen 41.2 41 40.9 

Nitrogen 0.4 0.3 0.3 

Ash 1.4 1.7 1.5 

Chemical analysis (wt%) 

Cellulose 45.8 46.7 50.8 

Hemicelluloses 31.8 26.6 21.2 

Lignin 21.9 26.2 27.5 

Ash 0.4 0.5 0.5 
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RESULTS AND DISCUSSION 

The simulation was successfully run on ASPEN Plus v8.8 and there were no errors in computation. This informs that the process 

integration was done accurately. The temperature sensitivity of different product species was examined. Beech wood is 

hardwood; Ailanthus wood is a soft hardwood while spruce is a softwood (Adeniyi and Ighalo, 2019a). In the discussion approach, 

the comparison of the three considered wood types are evaluated as the utilised modelling approach (Adeniyi et al., 2019e) takes 

into cognisance the differences in cellulose, hemicellulose and lignin content of the biomass. In describing the product streams, 

their composition is consistent with those of real systems. The bio-oil stream was composed of alcohols, aldehydes, organic acids 

and pyrolytic water. The gaseous product stream was composed of methane, hydrogen, carbon monoxide and some water vapour 

while the bio-char stream was composed of carbon and silicon oxide ash. 

Bio-oil Yield 

Figure 2 shows the sensitivity of bio-oil yield to temperature for the pyrolysis of Beech, Ailanthus and Spruce. It can be 

observed from the figure that the yield of bio-oil reduces gradually from 350oC to about 450oC and drops drastically beyond that 

point. This is typical of pyrolysis systems as the increase in temperature leads to the more intense thermal cracking and breakdown 

of the compounds in the reactor which leads to a lesser proportion of oil-range liquid-phase compounds. Below 350oC is 

 

Figure 1. Process flow diagram for the pyrolysis simulation (Adeniyi et al., 2019e) 

 

Figure 2. Temperature sensitivity of wood pyrolysis oil yield 
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characterised by free radical formation, water elimination and depolymerisation (Jahirul et al., 2012), while between 350oC and 

450oC is characterised by the breaking of the glycosidic linkages of the tar fraction while above 450oC is characterised by a 

combination of all above processes. It can also be observed that the oil prediction is higher for beech (hardwood) than for ailanthus 

(soft hardwood) and then the least is spruce (softwood). The differences are however greater at the lower temperature range. At 

350oC, oil yield was 36.72%, 35.13% and 32.89% for beech, ailanthus and spruce respectively while at 650oC, oil yield was 14.55%, 

14.17% and 13.39% for the three biomasses respectively. The temperature effect on oil yield is similar to those observed in other 

studies albeit for banana residues (Ighalo and Adeniyi, 2019), switchgrass (Ighalo and Adeniyi, 2020), and poultry litter (Adeniyi et 

al., 2019d). Though oil yield was observed to be higher for hardwood than for the others the difference is not quite large. The 

maximum difference in yield (about 5%) was achieved at the optimum temperature with greater similarity in value being observed 

at lower oil yield. 

Syn-gas Yield 

Figure 3 shows the sensitivity syn-gas yield to temperature for the pyrolysis of Beech, Ailanthus and Spruce. A gradual rise in 

the gas yield was initially observed between 350oC and 450oC and then it becomes drastic beyond that point. As explained in the 

earlier section, the more intense thermal breakdown and cracking of the compounds in the reactor at higher temperatures lead 

to a greater portion of lighter gaseous-phase chemical species. There is not much difference in the gas yield between the wood 

samples at low temperatures but the at 650oC, the gas yield was 39.99%, 38.25% and 35.82% for beech (hardwood), ailanthus (soft 

hardwood) and spruce (softwood) respectively. The yield of volatiles (bio-oil and syn-gas) is higher for the hard and soft hardwood 

than for the softwood. The temperature effect on gas yield is in agreement with the observations in other studies albeit for banana 

residues (Ighalo and Adeniyi, 2019), switchgrass (Ighalo and Adeniyi, 2020), and poultry litter (Adeniyi et al., 2019d). 

Bio-char Yield 

Figure 4 shows the temperature sensitivity of char yield for Beech, Ailanthus and Spruce. For the entirety of the temperature 

range studied, a gentle fall in char yield is observed for a wood species (though more significant at temperatures above 500oC). At 

higher temperatures, the formation of the carbonyl compounds (such as acrolein, glyoxal and acetaldehyde) do occur (Jahirul et 

al., 2012) which leads to the drop in char yield. It can also be observed from the figure that the yield of char from spruce (softwood) 

is higher than for ailanthus (soft hardwood) and beech (hardwood). This is the direct opposite of the observed trend for the fluid 

products but is expected as all yields must sum up to 100%. At 650oC for example, the char yield was 45.44%, 47.58% and 50.77% 

for beech (hardwood), ailanthus (soft hardwood) and spruce (softwood) respectively. The temperature effect on char yield is 

similar to those observed in other studies albeit for banana residues (Ighalo and Adeniyi 2019), switchgrass (Ighalo and Adeniyi, 

2020), and poultry litter (Adeniyi et al., 2019d). 

 

Figure 3. Temperature sensitivity of wood pyrolysis gas yield 



 Ighalo and Adeniyi / EUROPEAN J SUSTAINAB DEV, 4(4), em0137 5 / 7 

CONCLUSION 

Upon the successful development of the model on ASPEN Plus v8.8, the analysis of temperature sensitivity of different product 

species in the pyrolysis of beech (hardwood), ailanthus (soft hardwood) and spruce (softwood) was examined. It was observed 

that oil yield fell with temperature with the Beech having the highest yield over the domain of the temperature range studied. At 

350oC, oil yield was 36.72%, 35.13% and 32.89% for beech, ailanthus and spruce respectively while at 650oC, oil yield was 14.55%, 

14.17% and 13.39% for the three biomasses respectively. A gradual rise in the gas yield was initially observed between 350oC and 

450oC and then it becomes drastic beyond that point. At 650oC, the gas yield was 39.99%, 38.25% and 35.82% for beech 

(hardwood), ailanthus (soft hardwood) and spruce (softwood) respectively. For the entirety of the temperature range studied, a 

gentle fall in char yield is observed for a wood species (though more significant at temperatures above 500oC). At 650oC for 

example, the char yield was 45.44%, 47.58% and 50.77% for beech, ailanthus and spruce respectively. It was observed that the 

yield of volatiles (bio-oil and syn-gas) is higher for the hard and soft hardwood than for the softwood and this is vice versa for the 

char yield. This study has helped gain some insight into the process systems engineering of hard and softwood pyrolysis systems. 
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