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 Protein analysis has been completely transformed by the swift growth of bioinformatics, which has improved 
protein structure prediction, simulated interactions, and clarified functional interactions. To improve our 
knowledge of proteomics, this review carefully examines the application of diverse bioinformatics methods in 
protein analysis. We evaluate computational methods such as molecular dynamics simulations and machine 
learning algorithms critically, with an emphasis on their applicability to modeling protein-protein interactions 
and protein tertiary structure prediction. Our findings show that these methods are useful for predicting protein 
functions and interactions, which are important for drug discovery and development. We also talk about the 
important implications of these developments for our knowledge of complex biological systems and disease 
mechanisms at the molecular level. This review also provides insights into the existing and future potential of 
bioinformatics tools, emphasizing their vital role in revolutionizing protein analysis. We additionally offer future 
strategies to improve our knowledge and management of complex disorders, particularly highlighting the need 
for integrated, multi-scale approaches and additional research on underrepresented proteins. 

Keywords: bioinformatics, protein analysis, structure prediction, function relationship, molecular modeling, 
protein-protein interactions 

 

INTRODUCTION 

Bioinformatics is a broad field having applications in 
biological sciences, such as finding new vaccines and 
medications, enhancing the functionality of dietary proteins, 
and comprehending protein interactions. Bioinformatics is the 
study and use of computer algorithms to analyze biological 
data, such as genetic information, protein amino acid 
sequences, and protein structures. Given its broad definition, 

it is helpful to categorize bioinformatics; among the important 
approaches to comprehending protein analysis in genomics, 
the categories of bioinformatics, are comprehending protein 
structure, interaction modeling, and function relationships 
(Bolyen et al., 2018). 

The bioinformatics tools used in protein analysis employ 
various computer methods and algorithms to analyze proteins. 
They are necessary for the prediction of protein structure and 
for the creation of three-dimensional models. Additionally, 
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these technologies facilitate the modeling of protein-protein 
interactions, which aids in our understanding of complex 
biological processes (Xu et al., 2018b). By predicting and 
annotating functional sites, bioinformatics tools help clarify 
how protein structure and function relate. They combine many 
data sources, including genomics and proteomics, to explain 
protein analyses thoroughly. These tools are valuable in drug 
discovery, assisting in virtual screening and optimizing drug 
candidates. Overall, computational approaches for 
investigating protein structure, protein-protein interactions, 
and the complex interplay between structure and function are 
provided by bioinformatics tools (van Beusekom et al., 2018). 
The significance of bioinformatics in protein analysis lies in its 
ability to process, analyze, and interpret the vast amount of 
biological data associated with proteins. Here are some key 
points highlighting the significance of bioinformatics in 
protein analysis (Sun et al., 2018). Sequences, structures, and 
interaction networks connected to huge amounts of protein-
related data can be handled using tools and methods from the 
field of bioinformatics. It makes varied protein data from many 
sources organized, retrievable, storable, and integrated, 
making it available for analysis (Gao et al., 2019). 
Bioinformatics plays a critical role in predicting protein 
structures, which is essential for understanding protein 
function, interactions, and drug discovery. Even in the lack of 
actual structures, bioinformatics tools may create three-
dimensional models of proteins by employing computational 
techniques and algorithms (Lu et al., 2020). 

To fully understand intricate cellular processes, one must 
have a thorough understanding of protein-protein 
interactions. By assisting in the identification of protein 
complexes, binding sites, and interaction networks, 
bioinformatics tools make it easier to anticipate and simulate 
protein-protein interactions. This knowledge helps research 
biological processes and develop specialized treatments 
(Singh & Singh, 2021). Bioinformatics tools assist in the 
annotation and prediction of protein function. By analyzing 
protein sequence and structure, these tools can identify 
conserved domains, functional sites, and motifs. This 
knowledge provides insights into protein activity, enzymatic 
function, and involvement in specific biological processes. 

Bioinformatics tools mine and analyze protein-related data 
using computational algorithms and statistical techniques. 
These technologies analyze enormous datasets statistically, 
find patterns, and produce insightful results. This data-driven 
methodology aids in discovering novel links, comprehending 
protein evolution, and directing research that is hypothesis-
driven (Vignani et al., 2019). The procedures of drug discovery 
and design depend heavily on bioinformatics technologies. 
They support molecular dynamics simulations, ligand docking, 
and virtual screening, facilitating the identification and 
improvement of prospective drug candidates. Additionally, 
bioinformatics techniques aid in the analysis of the structure-
activity relationship and the prediction of how mutations 
would affect therapeutic efficacy (Zhang et al., 2018). 

Protein structure prediction is of paramount importance in 
the field of molecular biology and bioinformatics. The three-
dimensional structure of a protein is closely linked to its 
function. By predicting the structure, researchers can gain 
insights into how the protein carries out its specific biological 

activities, which is crucial for understanding cellular processes 
and disease mechanisms (Khalatbari et al., 2019). Protein 
structure prediction is a powerful tool that provides critical 
structural information necessary for understanding protein 
function. It offers valuable insights into the mechanisms 
underlying protein activity, interactions, and their 
involvement in various biological processes and disease states. 
The ability to predict protein structures is essential for 
advancing our knowledge of molecular biology and has 
numerous applications in biotechnology, medicine, and drug 
discovery. Protein structure prediction allows researchers to 
generate three-dimensional models of proteins, providing 
information about the arrangement of atoms, secondary 
structures, and active sites (AlQuraishi, 2020). This structural 
information is fundamental to understanding how a protein’s 
shape and spatial arrangement enable specific biochemical 
functions. The identification of active sites, functional 
domains, and binding pockets within a protein’s structure is 
aided by protein structure prediction. For the protein to 
function biologically, these areas are critical for mediating 
interactions with other molecules, such as substrates, 
cofactors, ligands, or other proteins (Kwon et al., 2020). 

The identification of active sites, functional domains, and 
binding pockets within a protein’s structure is aided by protein 
structure prediction. For the protein to function biologically, 
these areas are critical for mediating interactions with other 
molecules, such as substrates, cofactors, ligands, or other 
proteins (Volkov et al., 2022). Protein structure prediction is a 
crucial aspect of drug discovery. Understanding the structure 
of a target protein helps researchers identify potential drug-
binding sites and design molecules that can interact with the 
protein to regulate its activity. This information accelerates 
the drug development process. The protein’s three-
dimensional structure often determines the active site of 
enzymes, where catalytic reactions take place. Accurately 
predicting enzyme structures aids in comprehending the 
catalysis mechanism and guides efforts to improve enzyme 
efficiency or design novel enzymes for industrial applications. 
Different diseases can be caused by protein mutations 
(Kuhlman & Bradley, 2019). 

 Researchers can learn how structural alterations impact 
protein function and affect disease pathology by predicting the 
structures of both a protein’s normal and mutant variants. 
Proteins can be altered for certain purposes thanks to 
predictions about protein architecture. The creation of 
proteins with improved stability, altered binding affinities, or 
novel capabilities for biotechnological and medicinal 
applications is made possible by rational protein engineering, 
driven by structural data. The modeling of protein-protein 
interactions is aided by accurate protein structure prediction. 
Deciphering these interactions is essential for understanding 
physiological processes, signaling pathways, and the 
formation of multi-protein complexes (Chao & Byrd, 2018). 
Time- and money-consuming experimental techniques 
include X-ray crystallography and NMR spectroscopy. The 
process of experimental structure determination can be sped 
up and guided by the early models that protein structure 
prediction can offer. Functional annotation is needed due to 
the enormous amount of genomic data that sequencing 
projects have produced. To better understand the biological 
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functions of genes, protein structure prediction helps link 
gene sequences with possible functions (Zhang et al., 2019a). 
An effective method for guiding the investigation of protein 
interactions and disease causes is protein structure prediction, 
which also makes drug discovery and protein engineering 
easier. It is a crucial part of contemporary molecular biology 
and has wide-ranging effects on numerous scientific and 
medical disciplines (Chen et al., 2019). 

Many biological processes depend on protein-protein 
interactions, making precise protein complex prediction 
critical to comprehending these processes at the molecular 
level. The precision of predicted protein complexes can be 
increased by including knowledge of protein-protein 
interactions in the structure prediction process. To anticipate 
protein-protein interactions, docking methods are frequently 
utilized. Based on the structures of individual proteins, these 
algorithms forecast the three-dimensional structure of protein 
complexes. These docking algorithms can be guided by 
experimental data on known protein-protein interactions, 
boosting their dependability and lowering false positives. 
Many biological processes depend on protein-protein 
interactions, making precise protein complex prediction 
critical to comprehending these processes at the molecular 
level (Weng et al., 2020). The precision of predicted protein 
complexes can be increased by including knowledge of 
protein-protein interactions in the structure prediction 
process. The identification of important functional regions 
within the structure of a protein depends on the structure-
function relationship (Jiang et al., 2019). Active sites and 
binding pockets are examples of predicted functional sites that 
are important in catalysis, substrate binding, and chemical 
recognition. Understanding the mechanisms by which proteins 
carry out their many functions is made easier by accurately 
predicting protein structure with functional annotations. 
Understanding biological processes and disease pathways need 
this information (Masrati et al., 2021). 

This paper is of significant important because it explores 
in-depth how bioinformatics techniques can be used to 
improve our understanding of protein structures, interactions, 
and functions–areas critical for advances in pharmaceutical 
development and medical research. This paper is novel 
because it provides a thorough analysis of modern 
computational methods including molecular dynamics 
simulations and machine learning algorithms and shows how 
these methods can be used to more precisely predict complex 
protein behaviors (Vignani et al., 2019). This paper closes two 
gaps in the literature. Firstly, it offers a comprehensive 
overview of the various applications of bioinformatics tools 
now being used in the proteomics field, which has been fairly 
dispersed in earlier research (van Beusekom et al., 2018). This 
puts a unified viewpoint front and center, making it possible 
to comprehend the strengths and weaknesses of the 
approaches used today. Secondly, It discusses the requirement 
for more multi-scale and integrated methods in protein 
analysis. By drawing attention to this, it not only highlights a 
gap in the field’s existing understanding but also paves the way 
for further investigations that may produce more reliable and 
thorough models of protein behavior. This is especially crucial 
for the continuous attempts to create focused, efficient 

treatments and to comprehend diseases at the molecular level 
(Kuhlman & Bradley, 2019). 

MATERIAL & METHOD 

 Protein Structure Prediction Methods 

The interdisciplinary study topic of protein structure 
prediction has drawn interest from academics in many 
different fields, including biochemistry, medicine, physics, 
mathematics, and computer science. These researchers are 
working on the same structure prediction problem using a 
variety of research paradigms: biochemists and physicists 
study the laws governing protein folding; mathematicians, 
particularly statisticians, assume a probability distribution of 
protein structures given a target sequence and then determine 
the most likely structure; and computer scientists frame 
protein structure prediction as an optimization problem–
finding the best solution (Schönherr et al., 2018). Since the 
latter half of the 20th century, more academics from various 
disciplines have focused their research on bio-related topics. 
Protein is one of the most common and complex 
macromolecules in living things, which attracts a lot of 
attention. Proteins differ from one another principally in 
terms of the amino acids they contain, which often results in 
differences in their spatial shape and structure and, 
consequently, in the biological tasks that they may carry out in 
cells. The process by which a protein folds from its one-
dimensional sequence into a specific three-dimensional 
structure, however, is unknown (Kotowski et al., 2021). 
Contrary to the genetic code, which makes use of a triple-
nucleotide codon in the sequence of nucleic acid to specify a 
single amino acid in a protein sequence, the relationship 
between a protein’s sequence and its steric structure is known 
as the second genetic code. 

Protein structure prediction is a complex computational 
task that involves several methods and approaches. There are 
primarily two categories of methods used in protein structure 
prediction: template-based modeling (homology modeling or 
comparative modeling (CM)) and de novo modeling (ab initio 
modeling) (Yan et al., 2020). A basic assumption is that 
proteins with similar sequences fold into similar 3D structures. 
In HM, the 3D structure of the protein is built commencing 
from structural information of evolutionarily-related 
sequence(s), whereas the more general names Template Based 
Model or comparative model denote that a template protein is 
used but that the template is not necessarily of related history 
or function to the target (Yan et al., 2020). TBM entails several 
processes, including homolog (template) discovery, target 
alignment to the template, structure creation, refinement, and 
validation. The hybrid approaches include components from 
both groups for increased accuracy (Rives et al., 2019). 

Template-Based Modeling (Homology Modeling) 

The basis of homology modeling is the idea that proteins 
with related sequences frequently have related structures and 
activities. It begins by locating a well-known protein structure 
(template) with the target protein’s (query) strong sequence 
similarity. The sequences of the target protein and the 
template sequence are then aligned to establish analogous 
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locations. To create a 3D model of the target protein, the 
template protein’s coordinates are transferred to the target 
protein (Houkes & Zwart, 2019). For homology modeling, a 
variety of software programs like MODELLER, SWISS-MODEL, 
and Phyre2 are frequently used. The threading techniques that 
return a complete 3D description for the target and 
comparison modeling both fall under the category of 
techniques known as template-based modeling. This category 
of protein structure modeling depends on the noticeable 
similarity between at least one known structure and the 
majority of the modeled sequence. Comparative modeling 
describes those template-based modeling scenarios when a 
full atom model is constructed in addition to selecting the fold 
from a pool of potential templates (Mura et al., 2019). In 
actuality, it means that the other members of the family can be 
modeled based on their alignment to the known structure if 
the structure of at least one protein in the family has been 
identified by experiments. It is feasible because a slight 
modification to the protein’s 3D structure typically follows a 
little modification to the protein’s sequence. Additionally, it is 
made easier by the fact that proteins from the same family’s 
3D structures are more conserved than their amino-acid 
sequences (Kim & Chung, 2020). As a result, structural 
similarity can typically be assumed between two proteins if 
similarity can be found at the sequence level. The fact that 
proteins only adopt a relatively small number of distinct folds, 
as well as the intensive mapping of the universe of potential 
folds by global structural genomics studies, have led to an 
increase in the applicability of template-based modeling 
(Runthala & Chowdhury, 2019). 

There are benefits and drawbacks to template-based 
techniques for structure prediction. Usually, high-quality 
models similar to medium-resolution NMR solution structures 
or low-resolution X-ray crystallography are produced through 
comparative protein structure modeling. However, only 
sequences that can be securely mapped to known structures 
can be used with these algorithms. At the moment, the 
likelihood of discovering similar proteins with a known 
structure for a sequence randomly selected from a genome 
varies between 30% and 80%, depending on the genome. A 
minimum of one domain that can be linked to at least one 
protein with a known structure exists in about 70% of all 
known sequences (Wang & Yang, 2019). The proportion of 
experimentally determined protein structures that have been 
stored in the protein data bank (PDB) is more than an order of 
magnitude greater. As we shall see, in actual template-based 
modeling, information from general statistical observations or 
molecular mechanical force fields, in the form of various force 
restrictions, is always included and is independent of the 
template. The most effective strategies are a result of better 
force fields and search algorithms (Jang et al., 2020). 

Steps Involved in Template-Based Modeling 

Template selection 

 Finding an appropriate template protein with the target 
protein’s considerable sequence similarity is the first step. The 
template should ideally span the entire length of the target 
protein and have a high sequence identity. A crucial phase in 
template-based modeling, sometimes referred to as homology 
modeling or comparative modeling, is template selection. 

Finding an appropriate template protein with a recognized 3D 
structure and a substantial amount of sequence similarity to 
the target protein (query) is required (Behl & Mishra, 2018). 
The selection of a suitable template has a significant impact 
on how well the homology modeling process goes (Peker et al., 
2019). A thorough explanation of the template-choosing 
procedure is provided below. 

1. Sequence database search: The sequence database 
search, such as BLAST (Basic Local Alignment Search Tool) 
or PSI-BLAST (Position-Specific Iterated BLAST), usually 
comes first in the template selection process. These 
algorithms compare the target protein’s amino acid 
sequence to sequences in freely accessible databases like 
UniProt and the Protein Data Bank (PDB) (Gebert et al., 
2019). 
2. Sequence identity threshold: When choosing a 
template, sequence identity is an important consideration. 
It is more likely that target and template proteins will share 
comparable structures and functions the higher their 
sequence similarity. A sequence identity of between 30% 
and 40% is typically regarded as adequate for homology 
modeling (Hao et al., 2018). 

3. Coverage and alignment quality: In addition to 
determining the sequence identity, it’s critical to evaluate 
the target and template sequences’ coverage and 
alignment quality. The target protein sequence should be 
covered by the alignment to the greatest extent possible, 
ideally with continuous lengths of aligned residues 
(Hiranuma et al., 2021). 
4. PDB template quality: The PDB template’s 3D 
structure must be of a high standard. Selecting a template 
with a high-resolution experimental structure and few 
mistakes or artifacts is essential. Assessing the caliber of 
the template structure can be done with the aid of 
structural validation programs like MolProbity or 
PROCHECK (Lensink et al., 2018). 
5. Biological relevance: The chosen template must be 
compatible with the target protein’s biology. Picking a 
template with the target’s function or domain architecture 
in mind is recommended. Selecting a template from the 
same family as the target protein can improve the 
homology model’s accuracy if the target protein is a 
member of that family of proteins (Salinas & Ranganathan, 
2018). 
6. Consistency with biological knowledge: The 
template choice should be in line with the functional 
annotations and current biological knowledge. An 
excellent basis for selection can be provided by 
experimental data pointing to a close link between the 
target protein and a particular template (Ban et al., 2019). 
When choosing a template for template-based modeling, it 

is important to carefully consider factors such as sequence 
identity, coverage, alignment quality, structural quality, 
biological significance, and congruence with known facts. The 
choice of a suitable template has a considerable impact on the 
precision and dependability of the homology model, making it 
an essential step in the entire protein structure prediction 
process (Jia & Jernigan, 2021). 
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Sequence alignment 

After the template has been chosen, an alignment of the 
target protein’s amino acid sequence with the template’s 
sequence is done. To ensure that related residues are aligned 
appropriately, the alignment determines analogous locations 
(also known as residues) in both sequences. A key component 
of template-based modeling, sometimes referred to as 
homology modeling or comparative modeling, is sequence 
alignment (Kondra et al., 2021). It entails matching the target 
protein’s (query’s) amino acid sequence with the sequence of 
a recognized template protein that exhibits a substantial 
degree of sequence similarity. To ensure that related residues 
are accurately matched, the alignment seeks to find equivalent 
places (also known as residues) in both sequences (Karasev et 
al., 2019). 

Here is a thorough description of how the sequence 
alignment procedure works. 

1. Database search for potential templates 
Finding possible template proteins with recognized 3D 

structures is the first step in the sequence alignment 
procedure. This search is often carried out against freely 
accessible databases like the Protein Data Bank (PDB) or 
UniProt using sequence comparison techniques like BLAST 
(Basic Local Alignment Search Tool) or PSI-BLAST (Position-
Specific Iterated BLAST) (Mohamed et al., 2018). 

2. Sequence identity calculation 
Calculating the degree of sequence similarity between each 

candidate template and the target protein comes next once 
potential templates have been discovered. The proportion of 
residues that are identical between the two sequences is 
measured as sequence identity. The likelihood of a protein’s 
structure and function being comparable depends on the 
degree of sequence identity (Marino & Dell’Orco, 2019). 

3. Multiple sequence alignments 
Multiple sequence alignments may be produced, 

depending on the quantity of available templates and the 
diversity of the target protein’s sequence. The sequences can 
be aligned using a variety of methods, including ClustalW, 
MUSCLE, or MAFFT (Yu et al., 2019). 

4. Gap penalty & scoring 

To align the residues between the target and template 
sequences, gaps (insertions or deletions) are inserted during 
sequence alignment. Each aligned pair of residues is given a 
score by the alignment algorithms using scoring matrices like 
the BLOSUM or PAM matrices. To ensure the best alignment 
of residues and reduce the number of gaps, gap penalties are 
used (Lin & Hsu, 2020). 

5. Consensus sequence & alignment 

The most prevalent amino acid is then assigned to each 
aligned location to create a consensus sequence. Building the 
homology model is guided by the consensus sequence (Chen et 
al., 2018). 

6. Evaluation & quality assessment 
Several measures, including sequence identity, alignment 

coverage, and alignment scores, are used to evaluate the 
quality of the sequence alignment. To produce an accurate 
homology model, a high-quality alignment is essential. 

Sequence alignment ensures the correlation between the 
target and template sequences, making it a vital step in 
template-based modeling. A precise alignment serves as the 
foundation for the remaining phases in creating the target 
protein’s 3D homology model (Huang et al., 2018). 

 Protein-protein interaction analysis 

The homology model can shed light on the interface of the 
interaction if the target protein is involved in protein-protein 
interactions. The model can be used to investigate protein-
protein interactions and direct experimental research on 
protein complexes by examining the surface residues and 
determining potential binding partners (Jin et al., 2020). By 
comparing its structure to those of known proteins with 
related functions, the homology model can help with 
functional annotations. If the modeling template has a 
function that has been identified, this knowledge can be 
translated to the target protein, offering useful functional 
insights.The homology model can be utilized to verify theories 
on the role or method of action of the target protein. The 
model can be used, for instance, to examine the structural 
background and putative functional significance of a particular 
residue that is thought to be essential for a biological activity 
(Jha & Saha, 2020). 

The homology model can be used for structure-based 
medication design and virtual screening. It is a useful tool for 
foretelling ligand-binding interactions, directing the design of 
new compounds, and evaluating the likelihood that ligands 
will become therapeutic candidates. 

When the target and template proteins share more than 
30% to 40% of their sequences, template-based modeling is 
especially useful. However, when the sequence similarity 
drops, the homology model’s accuracy declines, making it 
difficult for proteins with low sequence identity to match 
known structures. To predict protein structures under these 
circumstances, other techniques including de novo modeling 
and hybrid approaches are used (Lin et al., 2021). 

BIOINFORMATICS TOOLS FOR PROTEIN 
STRUCTURE PREDICTION  

Phyre2: Protein Homology/AnalogY Recognition Engine 

Phyre2 (Protein Homology/AnalogY Recognition Engine 2) 
is a popular web-based program for predicting and analyzing 
protein structure. The Söding Group at the University of 
Oxford created and maintains it. The Phyre2 server, which 
replaces the original Phyre server, provides more accuracy and 
more features (Nardo et al., 2018). 

Features & functionalities 

By finding related proteins in the Protein Data Bank (PDB) 
with known structures and building models using these 
templates, Phyre2 uses homology modeling to predict protein 
structures. It makes use of ab initio modeling to investigate 
alternative conformations and forecast stable structures when 
a suitable template is not readily available. Furthermore, 
Phyre2 recognizes protein folds, deduces structural and 
functional characteristics, provides functional annotations, 
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predicts domains, and offers tools for thorough structural 
investigation (Orbán-Németh et l., 2018; Zhou & Panaitiu, 
2020). 

Usage 

Using Phyre2 is typically straightforward through its web-
based interface: 

1. Submission of the sequence: Through the Phyre2 
website, users can submit an interesting protein 
sequence in FASTA format. 

2. Analysis and prediction: Phyre2 will examine the 
sequence and try to identify homologous templates, 
either by ab initio or homology modeling. The user is 
shown the best forecast or predictions. 

3. Visualization and analysis: Using the tools and 
features offered, the user can visualize and examine the 
predicted protein structures. 

Step in Using Phyre2 

1. Visit PHYRE2 website: Launch a web browser and go 
to PHYRE2 website. Visit (http://www.sbg.bio.ic.ac.uk/ 
phyre2/html/page.cgi?id=index) to access it (Figure 1). 

2. Create an account or log in (optional): If you are a 
first-time user, you might need to create an account. 
Although registration is not always necessary, it can be 
helpful for keeping track of your contributions and 
outcomes. Log in if you already have an account (see 
Figure 1). 

3. Submit your sequence: A sequence submission box 
can be found on the PHYRE2 homepage. There are 
several ways to submit your protein sequence (see 
Figure 2): 

a. Uploading a file: If you have your protein sequence 
in a file (FASTA format is advised), you may upload 
it from your computer by clicking the “choose file” 
button (see Figure 2). 

b. Pasting the sequence: In addition, you have the 
option of simply pasting your protein sequence into 
the available text box (see Figure 2). 

4. Select an analytical option: Options for doing various 
analyses can be found below the sequence submission 
box. Among these choices are: 

a. You can choose whether or not to receive secondary 
structure predictions. 

b. Solvent accessibility prediction: This option will 
forecast solvent accessibility. 

c. PHYRE2 can recognize domains in your protein. 

d. Make these options unique to your research 
requirements. Typically, leaving the default values 
is sufficient for typical structure prediction. 

5. Submit your job: Click the “submit job” button after 
uploading your sequence and choosing the appropriate 
analysis choices. Your request will begin to be 
processed by PHYRE2 (see Figure 2). 

6. Awaiting results: Depending on the intricacy of your 
request and the traffic on the system, the analysis may 
take a while to finish. An anticipated completion time 
will be given by PHYRE2. 

7. Obtain and examine results: After the study is 
finished, PHYRE2 will give you the findings, which will 
include anticipated 3D models of your protein and 
other pertinent data. 

8. Download results: You have the option to download 
the results for additional analysis and investigation. 
The predicted structures and other output files from 
PHYRE2 are normally available via download links. 

9. Examine & analyze findings: Carefully examine the 
anticipated protein structures and related information. 
In light of your research’s goals and objectives, 
interpret the results. 

Swiss-Model: Protein Structure Homology Modeling 
Server 

The Swiss Model Server is a tool created to make protein 
structure modeling and prediction easier. Researchers and 
scientists in the field of structural biology frequently utilize it; 
it is a component of the Swiss Institute of Bioinformatics (SIB). 
Based on amino acid sequences, the service uses cutting-edge 
computational methods to create three-dimensional models of 
protein structures (Mrozek et al., 2019). 

An automated system called SWISS-MODEL 
(http://swissmodel.expasy.org/) uses homology modeling 
techniques to model the 3D structure of a protein from its 
amino acid sequence. Since its establishment as the first 
completely automated server for protein structure homology 
modeling 20 years ago, SWISS-MODEL has been constantly 
expanded and enhanced. The server has an intuitive web 
interface that makes it possible for non-specialists to create 3D 
models of their chosen proteins using a standard web browser 

 
Figure 1. PHYRE homepage (login page) 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) 

 
Figure 2. Submission page (http://www.sbg.bio.ic.ac.uk/ 
phyre2/html/page.cgi?id=index) 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://swissmodel.expasy.org/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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without having to download or install any complicated 
molecular modeling software (Kandathil et al., 2022). SWISS-
MODEL receives more than 0.9 million requests for protein 
models each year, or almost one model per minute, making it 
one of the most frequently used structure modeling web 
servers in the world. Its functionality has recently been greatly 
expanded: SWISS-MODEL now models the oligomeric 
structures of the target proteins and incorporates evolutionary 
conserved ligands like metal ions or essential cofactors (Seidl 
et al., 2022). Users can now easily search for suitable templates 
using sensitive Hidden Markov Models (HMM) searches 
against the SWISS-MODEL Template Library (SMTL), analyze 
alternate templates and alignments, perform structural 
superposition and comparison, explore ligands and cofactors 
in templates, and compare the resulting models using mean 
force potential-based model quality estimation tools 
(Makigaki & Ishida, 2019). 

Swiss-Model Web Interface 

Input 

With SWISS-MODEL, model building can be started from a 
variety of beginning points: A protein amino acid sequence can 
be given in the simplest case either directly (raw one-letter 
sequence or FASTA format) or by referencing its UniProt 
accession code in which case SWISS-MODEL will 
automatically get the matching item from UniProt (Lu et al., 
2022). An alternative method for specifying a target-template 
sequence alignment is to use a multiple-sequence alignment 
that includes the target, the template, and eventually other 
homologous sequences. At this stage, the user can either start 
the completely automated modeling pipeline or start the 
template selection step, which allows them to manually 
choose particular templates (de Medeiros et al., 2020). 

1. The relationship of the discovered templates in the 
space of sequence similarity is displayed in an 
interactive chart. A filled red circle designates the 
target protein. Each template is represented as a blue 
circle, with a thick blue arc indicating target coverage 
(the target protein’s N-terminus begins at the top of the 
circle and wraps around clockwise to form the circle’s 
border). Evolutionarily related templates will group 
because the distance between them is proportional to 
the pairwise sequence similarity. 

2. Information unique to the template will be seen when 
you click on a circle. By hovering your mouse over a 
collection of templates, you may also see and choose a 
group of related templates. 

3. For a quick visual comparison of structural variations, 
the superposed structures of the chosen templates will 
be exhibited in 3D right away (Figure 3). 
(A) Coordinates, target-template alignment, modeling 

log, as well as quality evaluation data are all given 
for each model. Additionally supplied is 
information on the ligands, cofactors, and 
oligomeric structure. 

(B) By selecting the corresponding button (represented 
by the adjustable spanner icon), the target-template 
sequence alignment’s color scheme can be changed 
to a different one. The model’s structural 

representation updates at the same time as the 
model itself. 

(C) Model quality assessments assigned by QMEAN are 
originally used to color the models displayed in the 
interactive viewer. This enables quick 
differentiation between model regions with good 
modeling and those with bad modeling. The per-
reside plot (A) and global score (Z-score) in respect 
to a collection of high-resolution PDB structures (D) 
represent local estimations of the model quality 
based on the QMEAN scoring function (Figure 4). 

 
Figure 3. Templates selection and visualization 
(https://swissmodel.expasy.org/) 

 
Figure 4. Modelling results (https://swissmodel.expasy.org/) 

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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I-TASSER: Iterative Threading Assembly Refinement 

Workflow & principles of I-TASSER 

I-TASSER is a hierarchical system for structure-based 
function annotation and automated protein structure 
prediction. I-TASSER initially creates full-length atomic 
structural models from numerous threading alignments and 
iterative structural assembly simulations, followed by atomic-
level structure refinement, starting with the amino acid 
sequence of the target proteins (Xu et al., 2018a). Based on 
sequence and structure profile comparisons, the biological 
functions of the protein, including ligand-binding sites, the 
enzyme commission number, and gene ontology terms, are 
then inferred from databases of known protein functions 
(Zhou et al., 2019). Both an online server and a standalone 
version of I-TASSER are offered without charge. This section 
explains how to develop structure and function predictions 
using the I-TASSER protocol, how to interpret the predictions, 
and alternate methods for enhancing the quality of I-TASSER 
modeling for targets that are distantly homologous and multi-
domain proteins (Cheung & Yu, 2018). 

Steps in using I-Tasser server  

Please visit the website for the most current 
instructions.  

Figure 5 shows the homepage.  

Figure 6 shows account set-up page. 
Here’s a general outline of the steps: 
1. Access the I-TASSER server: Go to the I-TASSER 

website (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/) to access the server interface. Figure 7 

illustrates the submission form of I-TASSER with an 
example sequence. 

2. See Figure 7. 

3. Submit your protein sequence: Enter or paste the 
amino acid sequence of the protein you want to predict 
the structure for into the provided text box. 

4. Provide an optional email address: While not 
required, providing an email address can be useful to 
receive notifications when your job is completed and to 
access the results later. 

5. Submit your job: Click the “Submit” button to initiate 
the structure prediction process. Your sequence will be 
sent to the I-TASSER server for analysis. 

6. Wait for completion: The I-TASSER server will 
perform a series of tasks including threading, ab initio 
modeling, and model refinement to predict the 
protein’s structure. The time it takes for the prediction 
to complete can vary depending on the server’s 
workload and the complexity of the protein. 

7. Receive results: Once the prediction is complete, you 
will receive an email notification (if you provided an 
email address) with a link to access your results. 
Alternatively, you can also access your results by 
entering your job ID on the I-TASSER website. 

8. Analyze results: The results page will typically provide 
information about the predicted models, including 
their quality assessment scores, estimated accuracy, 
and more. You’ll be able to download the predicted 
models and related data for further analysis. 

9. Model selection and refinement: Analyze the 
predicted models and choose the one that appears to be 
the best representation of the protein’s structure. You 
can further refine the selected model using various 
molecular modeling tools if needed. 

I-Tasser protocol for protein structure & function prediction  

Several other publications have provided descriptions of 
the I-TASSER protocol’s specifics. I-TASSER, which begins 
with the amino acid sequence, first locates homologous 
structure templates (or super-secondary structural segments, 
if no homologous templates are available) from the PDB library 
using LOMETS, a meta-threading algorithm made up of 
numerous separate threading programs. The constantly 
aligned fragment structures removed from the LOMETS 

 
Figure 5. I-Tasser homepage (https://zhanggroup.org/I-
TASSER) 

 
Figure 6. Account setup page (https://zhanggroup.org/I-
TASSER) 

 
Figure 7. Submission form of I-TASSER with an example 
sequence (https://zhanggroup.org/I-TASSER/) 

https://zhanggroup.org/I-TASSER
https://zhanggroup.org/I-TASSER
https://zhanggroup.org/I-TASSER
https://zhanggroup.org/I-TASSER
https://zhanggroup.org/I-TASSER/
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templates and super-secondary structure segments are then 
put back together to create the topology of the full-length 
models, with the structures of the unaligned regions being 
built entirely from scratch by ab initio folding based on 
replica-exchange Monte Carlo simulations (Milanetti et al., 
2018). Through the clustering of the Monte Carlo simulation 
trajectory data, SPICKER determines the lowest-free-energy 
conformations. The structural models are refined through a 
second phase of structure reassembly starting from the 
SPICKER clusters, with full-atomic simulations using FG-MD 
and ModRefinerused to refine the low free-energy 
conformations (Tong et al., 2018) (Figure 8). 

Automated methods for protein structure analysis and 
prediction are available on the Robetta server 
(http://robetta.bakerlab.org). Sequences supplied to the server 
are parsed into putative domains for structure prediction, and 
then structural models are created using de novo structure 
prediction or comparative modeling techniques (Rodrigues et 
al., 2019). Using BLAST, PSI-BLAST, FFAS03, or 3D-Jury, if a 
confident match to a protein with a known structure is 
discovered, it is used as a template for comparative modeling. 
Structure predictions are created using the de novo Rosetta 
fragment insertion method if no match is discovered. For 
RosettaNMR de novo structure determination, experimental 
nuclear magnetic resonance (NMR) constraints data can also 
be given together with a query sequence. The prediction of the 
effects of mutations on protein-protein interactions utilizing 
computational interface alanine scanning is another capability 
that is already available. Soon, the service will also provide 
access to the protein-protein docking and Rosetta protein 
design technologies (Mao et al., 2019). 

The Baker Lab at the University of Washington created the 
renowned protein structure prediction pipeline known as 
Robetta. Robetta predicts protein structures from amino acid 
sequences using a variety of cutting-edge algorithms and 
methods. It has been frequently utilized to produce precise 3D 
models of proteins by structural biology researchers (Zhao et 
al., 2021a). The pipeline, its parts, and its applications are 
described in detail below. 

Robetta protein structure prediction pipeline 

1. Modeling with templates (homology modeling) 
a. Robetta starts by looking for proteins with 

comparable sequences to the target protein in the 
Protein Data Bank (PDB), a vast collection of 
experimentally verified protein structures. 

b. Robetta generates an initial model by aligning the 
target sequence to the template structure if suitable 
templates are discovered. 

c. After that, the pipeline uses molecular dynamics 
simulations to refine the model and optimize the 
shape of the structure. 

2. Folding from scratch 
a. Robetta uses ab initio folding techniques to 

estimate the protein’s structure from scratch if a 
suitable template is not provided. 

b. In order to find the protein’s lowest-energy 
conformation, ab initio approaches examine 
various protein backbone and side chain 
conformations. 

3. Prediction of side chain positions 
a. Robetta uses machine learning and energy-based 

techniques to anticipate, where the side chains will 
be located in the protein structure. 

b. A realistic protein structure can only be obtained 
with accurate side chain prediction. 

4. Model quality assessment: Using a variety of criteria, 
such as energy calculations, structural validation tools, 
and compatibility with the input sequence, the pipeline 
evaluates the quality of the created models. 

5. Model refinement: In order to maximize their overall 
geometry, energy, and clash-free interactions, the 
models created by Robetta are further refined. 

6. Loop modeling: Robetta makes use of specific 
algorithms to represent missing or ambiguous loops or 
portions of the protein structure. 

Applications & strengths of robetta 

Biochemistry and molecular biology’s prediction of protein 
structures is a key task with broad applications. Deciphering 
proteins’ relationships, roles, and functions in numerous 
biological processes requires an understanding of their three-
dimensional structures. In the area of protein structure 
prediction, Robetta is a prominent platform that stands out for 
its astounding precision and adaptability (Song et al., 2018). 
The uses of Robetta in biochemistry and biology are very 
broad. It is crucial for functional annotation, to start with. 
Robetta bridges the gap left by the lack of empirically 
established structures in many recently sequenced proteins by 
making precise structural predictions. These hypotheses 
provide a framework for annotating the functions of these 
proteins, illuminating their roles in both healthy cellular 
function and illness. Robetta is used extensively in the drug 
discovery process. Researchers can locate prospective 
therapeutic targets and create compounds that can interact 
with these targets according to the platform’s precise protein 
structure predictions (Wang et al., 2019). This is especially 
useful in the field of structure-based drug design, as effective 
therapies require knowledge of the characteristics and shape 
of a protein’s active site. Robetta excels due to its outstanding 
precision, durability, and adaptability. To increase its 
predictive potential, it makes use of a variety of cutting-edge 
computational techniques, such as ab initio modeling and 
homology modeling. This multifaceted strategy boosts the 
possibility of acquiring precise protein structures, especially in 
difficult situations like membrane proteins and proteins with 
multiple domains (Fukuda & Tomii, 2020). Robetta also keeps 

 
Figure 8. Protocol of I-Tasser (https://zhanggroup.org/I-
TASSER/) 

https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
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changing to include the most recent developments in 
structural biology and bioinformatics. Robetta is a trustworthy 
and current resource in the constantly developing field of 
protein structure prediction because of this dedication to 
improvement, which guarantees users have access to cutting-
edge prediction techniques. Its user-friendly interface also 
makes it accessible to scientists with different degrees of 
computational experience, promoting widespread use and 
inter-disciplinary cooperation in the scientific community 
(Zheng et al., 2019). 

As a result, Robetta stands out as a reliable and accurate 
platform for this use. Protein structure prediction is a crucial 
tool in biochemistry with many applications. Its uses in 
structural biology, drug development, and functional 
annotation, along with its accuracy, adaptability, and constant 
progress make it an essential tool for researchers trying to 
solve the puzzles of protein structure and function (Larke et 
al., 2021). 

Robetta’s merits lay in its ability to integrate numerous 
approaches, including homology modeling and ab initio 
folding, to build accurate protein structures. It is flexible and 
adaptable to a variety of protein targets because to the mix of 
template-based and de novo prediction techniques. The 
predictions’ accuracy can, however, differ based on variables 
like sequence similarity, template accessibility, and structural 
complexity, much like with all other methods for structure 
prediction (Wojtowicz et al., 2020). 

PROTEIN-PROTEIN INTERACTION 
MODELING 

Importance of Protein-Protein Interactions in Biological 
Processes 

The workhorses of biological systems, proteins perform a 
wide range of vital tasks for life. However, they rarely carry out 
their operations alone. Instead, proteins frequently participate 
in complex molecular dances of which protein-protein 
interactions (PPIs) are the most prevalent and important. 
Numerous biological processes are built upon these 
interactions, which are crucial to cell signaling, enzyme 
activity, and even the control of gene expression (Rigoldi et al., 
2018). For understanding the intricacy of life’s inner workings, 
it is essential to comprehend the relevance of PPIs. PPIs play 
an important part in cell signaling and communication. To 
adjust to shifting environment, cells must react to outside cues 
like as hormones or neurotransmitters. Proteins may send and 
receive these signals thanks to PPIs, which relays important 
information inside the cell. For instance, serotonin and other 
neurotransmitters in the nervous system attach to neuronal 
receptors to start a chain reaction of PPIs that eventually 
affects mood, behavior, and other physiological functions 
(Bergenholm et al., 2018). The catalysts that power the 
chemical reactions required for life are enzymes. Many 
enzymes are made up of several protein subunits, which 
require precise interactions to work properly. PPIs make sure 
that these subunits combine at the proper moment and in the 
right orientation, promoting reactions that would not 
otherwise be energetically advantageous. Among other 

processes, such as DNA replication, cellular respiration, and 
metabolic pathways, this coordinated activity of proteins in 
enzyme complexes is essential (Seath et al., 2021). 

PPIs are essential for the control of genes. For instance, 
proteins called transcription factors bind to particular DNA 
regions to regulate the production of genes. PPIs can modify 
their activity by joining forces with different proteins to create 
complexes. The timing and amount of gene expression are 
carefully regulated by this control, which affects cell destiny, 
differentiation, and responses to environmental signals (Li et 
al., 2018). PPIs make sure that these subunits combine at the 
proper moment and in the right orientation, promoting 
reactions that would not otherwise be energetically 
advantageous. Among other processes, such as DNA 
replication, cellular respiration, and metabolic pathways, this 
coordinated activity of proteins in enzyme complexes is 
essential (Ali et al., 2019). 

PPIs are essential for the control of genes. For instance, 
proteins called transcription factors bind to particular DNA 
regions to regulate the production of genes. PPIs can modify 
their activity by joining forces with different proteins to create 
complexes. The timing and amount of gene expression are 
carefully regulated by this control, which affects cell destiny, 
differentiation, and responses to environmental signals. 
Researchers are concentrating more on PPIs as prospective 
therapeutic targets since they understand how important they 
are to biological processes (Liu et al., 2020). Specific PPIs can 
be targeted by small compounds or biologics to be enhanced or 
disrupted, influencing important disease-related pathways. 
Especially for complicated disorders, where single-target 
interventions might not be sufficient, this method shows 
promise for the development of more precise and efficient 
treatments. The fundamental units of complexity in life are 
protein-protein interactions. From basic biological functions 
to complex disease mechanisms and medication development, 
their importance is broad. Our ability to unravel the intricacies 
of biological systems and create creative ways to deal with the 
health concerns of our time improves along with our grasp of 
PPIs, which is still being further understood (Gouthami et al., 
2022). As a result, the research of PPIs is at the cutting edge of 
contemporary biology, revealing the mysteries of life’s most 
complex dance. 

Various Approaches for Modeling Protein-Protein 
Interactions 

Docking 

Thus, the study of PPIs is at the cutting edge of modern 
biology, revealing the mysteries of life’s most complex 
choreographies.Nearly all biological processes are governed by 
protein-protein interactions (PPIs), which coordinate 
processes like signaling, enzyme catalysis, and structural 
stability (Frezza & Lavery, 2019). For the purpose of 
developing new drugs, understanding structural biology, and 
obtaining knowledge of the complex mechanisms governing 
cellular regulation, it is crucial to comprehend the molecular 
specifics of these interactions. The computational method of 
docking has become a potent tool for modeling PPIs. We shall 
examine numerous docking approaches in this article, shining 
light on their methodologies, uses, and importance in 
understanding PPIs (Miller et al., 2020). 
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I. Rigid body docking: The simplest type of protein-
protein interaction modeling is rigid body docking. 
It is assumed that during binding, proteins preserve 
their three-dimensional structures. In order to 
maximize the complimentary surface contacts 
between two proteins, this approach entails finding 
the best orientation and placement for one protein 
in relation to the other. When simulating 
interactions between clearly characterized protein 
domains, rigid body docking is very helpful since it 
can provide important details about potential 
binding locations and orientations (Siebenmorgen 
& Zacharias, 2020). 

II. Flexible docking: Flexible docking recognises that 
proteins can undergo conformational changes 
following binding, in contrast to rigid body docking. 
This method enables small modifications to the 
protein structures to enhance binding affinity. 
Flexible docking techniques, such induced-fit and 
conformational ensemble docking, enable a more 
accurate representation of PPIs by taking into 
consideration the dynamic nature of proteins. This 
is especially important when researching 
interactions involving proteins that are inherently 
disordered or proteins that undergo significant 
conformational changes upon binding (De Paris et 
al., 2018). 

III. Energy-based docking: The goal of energy-based 
docking methods is to determine the protein 
complexes’ binding free energies. These techniques 
use scoring functions and force fields from 
molecular mechanics to determine the strength of 
the connection. They consider a number of 
variables, such as solvation energies, electrostatic 
interactions, and van der Waals forces. When 
assessing possible protein complexes and 
forecasting the stability of PPIs, energy-based 
docking offers a quantitative evaluation of the 
binding affinity (De Paris et al., 2018). 

IV. Data-driven docking: Data-driven docking 
methods increase the precision of PPI models by 
utilizing experimental data from techniques like 
NMR spectroscopy, cryo-electron microscopy, or 
chemical cross-linking. The protein-protein 
interaction predictions are improved by including 
experimental limitations into the docking process. 
This method is especially useful for researching 
complicated and fleeting relationships that are 
difficult to model merely from structural data (Cava 
& Castiglioni, 2020). 

V. Machine learning in docking: Recent 
developments in machine learning have also 
influenced docking techniques. Large datasets of 
well-known PPIs can be used to train machine 
learning algorithms that predict binding affinities, 
discover interaction hotspots, and speed up 
docking. The effectiveness and precision of docking 
simulations could be considerably improved by 
using these strategies (Bekker et al., 2020). 

Applications & significance 

In many scientific domains, docking is crucial. By 
foreseeing the interactions of tiny compounds with the target 
proteins, virtual screening employing docking can reveal 
prospective drug candidates in the drug discovery process. 
Docking is a technique used in structural biology to reveal the 
structural underpinnings of protein interactions and reveal 
disease processes. Additionally, docking is essential in systems 
biology for comprehending regulatory networks and signaling 
cascades (Cetin et al., 2020). The versatile and essential 
technology of docking is used to model protein-protein 
interactions. Rigid body docking, data-driven, and machine 
learning-based solutions are just a few of its numerous ways 
that provide a range of methods to meet the varied difficulties 
faced by PPIs. Docking is at the forefront of computational 
biology as our understanding of molecular interactions 
advances, offering useful insights into the intricate world of 
protein-protein interactions (Souza et al., 2021). 

Molecular dynamics simulations 

The fundamental building block of biological processes, 
protein-protein interactions (PPIs) control cellular activities, 
signaling networks, and structural stability. In order to fully 
understand the intricacies of life, it is essential to comprehend 
the dynamics of these interactions at the molecular level. A 
potent tool for modeling PPIs has emerged: molecular 
dynamics (MD) simulations, a computer method with physics 
and chemistry roots (Cezar et al., 2020). The many methods 
used in molecular dynamics simulations are examined in this 
article, along with their techniques, uses, and importance for 
understanding protein-protein interactions. 

I. Atomistic molecular dynamics simulations: 
Atomistic MD simulations try to mimic how certain 
atoms and molecules behave throughout time. They 
compute the forces between atoms using classical 
force fields and rely on Newton’s equations of 
motion. Atomistic MD offers a thorough perspective 
of the dynamic behavior of interacting proteins in 
the setting of PPIs. During binding events, proteins 
can be observed to move, interact, and alter 
conformation, providing information about the 
binding mechanisms and energy matrices (Harada, 
2018). 

II. Coarse-grained molecular dynamics 
simulations: The depiction of molecules is made 
easier by coarse-grained (CG) MD simulations, 
which combine many atoms into a single 
interaction site. Longer simulation timescales are 
possible as a result of the decreased computational 
complexity. While giving up some atomic-level 
information, CG MD can capture the crucial aspects 
of binding events in PPI research. Large protein 
complexes, protein folding, and the dynamics of 
inherently disordered proteins can all be studied 
using this method (Zhang et al., 2019b). 

III. Enhanced sampling techniques: The timing 
restrictions of MD simulations, which can be a 
substantial difficulty in analyzing rare or complex 
PPI events, are intended to be solved through 
enhanced sampling strategies. Metadynamics, 
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replica exchange, and accelerated MD are some 
methods that make it easier to explore 
conformational space. Researchers can discover 
transient binding states and kinetic pathways that 
could be missed in conventional MD simulations by 
focusing the simulations on certain regions of 
interest (Truong & Li, 2018). 

IV. Quantum mechanics/molecular mechanics 
(QM/MM) simulations: QM/MM simulations 
combine classical MD for the majority of the system 
with quantum mechanical calculations for a small 
region of interest (often the active site). This 
method enables realistic modeling of chemical 
processes and the electronic structure of reactants 
and products, which is particularly useful when 
researching enzymatic PPIs (Watanabe et al., 2020). 

V. Free energy calculations: Calculations of free 
energy are intended to measure the energetics and 
binding affinity of PPIs. MD simulations are used to 
determine the free energy differences between 
bound and unbound states in techniques like 
umbrella sampling and thermodynamic integration. 
These calculations offer information on the kinetics 
and thermodynamics of PPIs, which is essential for 
developing new drugs and comprehending how 
biological processes work (Senior et al., 2020). 

Applications & significance 

MD simulations have a wide range of applications in the 
study of PPIs. They provide atomistic insights into binding 
mechanisms, binding pathways, and the role of water 
molecules in PPIs. MD simulations also help elucidate the 
structural dynamics of protein complexes, uncover transient 
intermediate states, and inform mutagenesis experiments. 
Furthermore, they play a pivotal role in drug discovery by 
predicting binding affinities, identifying potential drug 
candidates, and aiding in the rational design of novel 
therapeutics (Fang et al., 2019). Molecular dynamics 
simulations have revolutionized our ability to model and 
understand protein-protein interactions at the atomic level. 
The various approaches within MD, from atomistic to coarse-
grained simulations, enhanced sampling techniques, QM/MM 
simulations, and free energy calculations, offer a diverse 
toolkit for studying PPIs across different timescales and levels 
of detail. As computational resources and methodologies 
continue to advance, MD simulations remain at the forefront 
of computational biology, enabling researchers to unravel the 
intricacies of protein-protein interactions and their role in the 
molecular machinery of life (Sejdiu & Tieleman, 2021). 

Notable Software & Databases for Studying Protein-
Protein Interactions 

Access to specialist software tools and databases that offer 
a plethora of knowledge about protein interactions, structures, 
functions, and more is necessary for studying protein-protein 
interactions (PPIs) (Gemovic et al., 2019). Here are some 
significant programs and datasets that are frequently 
employed in the PPI research field: 

1. STRING 
Database: The STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins) database contains details on both 

known and anticipated PPIs. It is extensive and widely utilized. 
To generate protein interaction networks for a variety of 
animals, it incorporates data from several sources, such as 
experimental evidence, co-expression, and text mining 
(Crosara et al., 2018). 

2. BioGRID 

Database: A curated collection of PPIs can be found in the 
Biological General Repository for Interaction Datasets 
(BioGRID). It includes interactions from both small-scale 
research and high-throughput trials. PPI data for different 
species can be searched for and retrieved using BioGRID’s 
user-friendly interface (Zhao et al., 2021b). 

3. Interologous interaction database (I2D) 

Database: The PPIs that are conserved across species 
(interologs) are the topic of the specialist database I2D. It 
offers a user-friendly framework for examining preserved 
interactions and incorporates data from various PPI datasets 
(Nguyen et al., 2021). 

4. Cytoscape 

Software: Popular open-source software program 
Cytoscape is used to visualize and examine complicated 
networks, including PPI networks. In order to analyze 
networks, visualize them, and integrate them with different 
data sources, it offers a large variety of plugins and tools 
(Defoort et al., 2019). 

5. STRING-DB 
Software: The desktop version of the STRING database, 

STRING-DB, enables users to carry out comprehensive 
analysis of PPI networks on their own computers. It offers 
further customization options and sophisticated network 
analysis features (Sakhaee & Wilson, 2021). 

6. Biological network gene ontology (BiNGO): 

Plugin: A Cytoscape plugin called BiNGO was created 
specifically for PPI network analysis. Insights into the 
functional context of protein interactions are provided by 
helping to discover overrepresented Gene Ontology terms in a 
network (Yerneni et al., 2018). 

7. MINT (Molecular INTeraction Database) 

Database: MINT is a repository of PPIs with experimental 
support. It focuses on the interactions of proteins from Homo 
sapiens and gives comprehensive details on the experimental 
techniques used to find interactions (Bajpai et al., 2019). 

For researchers looking into protein-protein interactions, 
this ecosystem of software tools and databases is very strong. 
They include a wide range of tools and features, such as the 
ability to explore functional annotations, visualize interaction 
networks, and support the identification of new PPIs. The tools 
and resources that best meet the interests and goals of each 
individual researcher are available for selection (Yim et al., 
2018). 

FUNCTIONAL ANNOTATION METHODS 
AND DATABASES 

1. UniProt: One of the largest and most popular protein 
databases is the Universal Protein Resource (UniProt). 
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It offers a substantial database of protein sequences, 
functional annotations, and details on the structure 
and domains of proteins. The three primary parts of 
UniProt are UniProtKB, which provides curated protein 
sequences, UniRef, which provides clustered groupings 
of related sequences, and UniParc, which provides 
historical protein archive data. For researchers looking 
to investigate the links between proteins’ functional 
properties, it acts as a fundamental resource (Davis et 
al., 2018). Website: https://www.uniprot.org/ 

2. InterPro: In order to anticipate protein domains, 
families, and functional locations, InterPro is an 
integrated resource that incorporates data from many 
sources. By utilizing data from Pfam, PROSITE, 
PRINTS, SMART, and other sources, it provides an in-
depth understanding of how proteins operate. For 
scientists looking to gain a comprehensive grasp of how 
proteins interact functionally, InterPro is particularly 
useful (Zhang et al., 2020). Website: 
https://www.ebi.ac.uk/interpro/ 

3. Gene ontology (GO): A structured vocabulary for 
characterizing the functions of genes and proteins is 
offered by the Gene Ontology (GO) project. GO divides 
protein classification into three categories: cellular 
component, biological process, and molecular 
function. Each item in the ontology has a connection to 
a gene or protein, allowing researchers to 
systematically annotate and research the functions of 
proteins (Stacey et al., 2018). Website: 
http://geneontology.org/ 

4. KEGG (Kyoto Encyclopedia of Genes and Genomes): 
KEGG is a vast database that combines data from the 
genetic, chemical, and functional domains. It offers 
network diagrams, pathway maps, and functional 
annotations for proteins and genes. Researchers can 
investigate how proteins interact with other molecules 
in the setting of biological systems and pathways. 
Website: https://www.genome.jp/kegg/ 

MACHINE LEARNING TECHNIQUES FOR 
PREDICTIVE MODELING IN 
BIOINFORMATICS 

In the discipline of bioinformatics, machine learning 
algorithms have become potent predictive modeling tools, 
providing a way to glean valuable insights from complicated 
biological data. Application of machine learning techniques 
has greatly improved bioinformatics, which entails the 
computational study of biological data. For tasks like 
anticipating protein shapes, locating disease indicators, and 
comprehending gene control, these methods are especially 
beneficial (Kumari et al., 2015). We will examine various 
machine learning techniques used in bioinformatics predictive 
modeling during this session. Sequence analysis is one of the 
main uses of machine learning in bioinformatics. Large 
datasets of DNA, RNA, or protein sequences can be used to 
train machine learning algorithms to discover patterns, 
motifs, and functional elements. Sequence-based classifiers, 

for instance, may foretell if a given DNA sequence contains a 
specific regulatory region or encodes a specific protein. These 
models can be used to annotate unidentified sequences 
because they rely on features retrieved from the sequences, 
like nucleotide or amino acid composition (Sartor et al., 2019). 

Machine learning methods are extremely helpful for 
structural bioinformatics, especially when predicting protein 
structures. Protein 3D structures can be predicted with 
astonishing accuracy using techniques like AlphaFold. These 
models increase our understanding of protein function, 
relationships, and drug development by fusing deep learning 
with knowledge from existing protein structures. Functional 
annotation also heavily relies on machine learning. Machine 
learning algorithms can classify genes according to their 
functions in biological processes or disease pathways by 
examining gene expression data. As a result, potential 
therapeutic targets or illness biomarkers can be found. 
Furthermore, machine learning may combine many data 
sources, including genomic, transcriptomic, and proteomic 
data, to offer a comprehensive understanding of gene function 
(Li et al., 2020). 

Another area, where machine learning excels is the 
prediction of protein-protein interactions. Comprehension 
cellular processes and signaling pathways requires a 
comprehension of these connections. To anticipate probable 
protein interactions, machine learning models can be trained 
on experimental data or features obtained from protein 
sequences and structures (Mucaki et al., 2019). This knowledge 
is crucial for dissecting intricate biological networks. Machine 
learning expedites the identification of potential drug 
candidates in the context of drug research. Machine learning 
methods are used in virtual screening to give high binding 
affinity molecules the highest priority. Virtual screening is the 
computational screening of compounds against therapeutic 
targets. This can result in the identification of new medicines 
and cuts down on the time and expense of trial screening 
(Ballard et al., 2021). 

Additionally, tailored medicine benefits greatly from 
machine learning. Predictive models can assist in customizing 
treatment strategies by examining specific patient data, 
including genomes and clinical records. For instance, machine 
learning can forecast a patient’s reaction to a particular cancer 
drug, assisting in treatment planning and enhancing results 
(Zhao et al., 2020). However, there are still issues with the use 
of machine learning in bioinformatics. Among the concerns 
that require careful study are those relating to data quality, 
model interpretability, and ethical dilemmas. The 
development of strong machine learning methods that can 
manage big data is a current research horizon as biological 
data continues to expand in scope and complexity. 

Future Directions 

Applications of bioinformatics in protein analysis are 
expected to grow increasingly complex and extensive as the 
field develops further. Combining machine learning (ML) and 
artificial intelligence (AI) methods with conventional 
bioinformatics instruments is one exciting avenue. The 
accuracy of protein structure prediction models may be greatly 
improved by this hybrid strategy, particularly for proteins that 
are inherently disordered and difficult to predict using existing 

https://www.uniprot.org/
https://www.ebi.ac.uk/interpro/
http://geneontology.org/
https://www.genome.jp/kegg/
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techniques. Moreover, the creation of more sophisticated 
protein-protein interaction modeling algorithms may shed 
light on the complex webs of biological functions and reveal 
new targets for treatment. 

Future research should focus on integrating multi-omics 
data into bioinformatics analyses, which is another crucial 
area. Through the utilization of data from genomics, 
proteomics, metabolomics, and transcriptomics, scientists can 
acquire a comprehensive comprehension of protein functions 
and interactions in relation to whole biological systems. The 
development of precision medicine techniques and our 
understanding of complex diseases may both benefit from this 
multi-omics approach. 

Finally, it is imperative that more diverse and 
underrepresented organisms be included in the bioinformatics 
toolkit. Investigating the proteomes of non-model organisms 
can reveal special proteins with unusual roles, providing fresh 
perspectives on evolutionary biology as well as possible uses 
in biotechnology and medicine. The future of bioinformatics in 
protein analysis holds the promise of solving the molecular 
puzzles of life and expanding the boundaries of science and 
medicine as computing power and data storage capacities keep 
rising. 

CONCLUSIONS 

Bioinformatics tools have become crucial resources in the 
field of protein analysis, spanning the prediction of protein 
structures, modeling of complex interactions, and clarification 
of function linkages. Our comprehension of proteins has 
reached previously unheard-of levels because to these 
technologies, which were created through the collaboration of 
biology, computer science, and mathematics. Structural 
biology has been transformed by the development of 
breakthroughs like AlphaFold, which demonstrate the 
extraordinary accuracy with which protein structures can be 
predicted. Such developments not only shed light on the 
complex protein architecture but also open up new avenues for 
the development of innovative therapies and the search for 
new drugs. Bioinformatics techniques have been important in 
deciphering the intricate network of cellular processes in the 
context of protein-protein interaction modeling. These 
models help identify new therapeutic targets and clarify illness 
processes by offering essential insights into the principles 
governing biological systems. Bioinformatics has also 
significantly improved the prediction and understanding of 
protein function connections. Bioinformatics tools enable 
researchers to maneuver the challenging terrain of genomics 
and proteomics, whether it be annotating newly sequenced 
proteins or figuring out their functions within biological 
contexts. The field of bioinformatics is still developing and 
broadening its frontiers as we stand at the nexus of biology and 
computational science. These techniques continue to be at the 
cutting edge of scientific advancement with the introduction 
of customized medicine, the acceleration of drug 
development, and the quest for greater understanding of the 
molecular foundation of life. Bioinformatics will continue to 
support academics and biochemists in the next years, assisting 
us in gaining a deeper comprehension of proteins and their 

roles. It is a journey characterized by creativity, teamwork, and 
a steadfast dedication to expanding our understanding of the 
complex world of proteins, one byte of data at a time. 

Author contributions: TTO & CDG-O: contributed to writing 
sections on protein structure prediction methods & 
bioinformatics tools in protein analysis as well as to literature 
research, data collecting, & analysis; ICO, ADA, & FIO: 
contributed to data analysis & writing sections of machine 
learning techniques for predictive modeling in bioinformatics; 
JVO & EOI: aided in development & data analysis for 
bioinformatics algorithms for predicting protein structure; DOA, 
CEA, NM-AO: contributed to writing & data analysis of modeling 
of protein-protein interactions; & FOO, EOO, & ODU: 
contributed to writing sections of functional annotation methods 
and databases. All co-authors agree with the results and 
conclusions. 
Funding: No funding source is reported for this study. 
Acknowledgments: The authors would like to tahnk Department 
of Biochemistry at Ladoke Akintola University of Technology for 
their support. 
Ethical statement: The authors stated that ethics committee 
approval was not required for the work, therefore it was exempted. 
The study involves data collection using online resources 
involving information freely available in the public domain that 
does not collect or store identifiable data. All related laws, rules, 
and regulations required for the study's implementation have been 
followed. The authors further stated that the article is the original 
study of the authors, and it has not been published elsewhere. 
Declaration of interest: No conflict of interest is declared by the 
authors. 
Data sharing statement: Data supporting the findings and 
conclusions are available upon request from corresponding 
author. 

REFERENCES 

Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R., & 
Dömling, A. (2019). Stapled peptides inhibitors: A new 
window for target drug discovery. Computational and 
Structural Biotechnology Journal, 17, 263-281. 
https://doi.org/10.1016/j.csbj.2019.01.012  

AlQuraishi, M. (2020). A watershed moment for protein 
structure prediction. Nature, 577(7792), 627-628. 
https://doi.org/10.1038/d41586-019-03951-0  

Bajpai, A. K., Davuluri, S., Tiwary, K., Narayanan, S., Oguru, S., 
Basavaraju, K., Dayalan, D., Thirumurugan, K., & Acharya, 
K. K. (2019). How helpful are the protein-protein 
interaction databases and which ones? bioRxiv. 
https://doi.org/10.1101/566372  

Ballard, Z., Brown, C., Madni, A. M., & Ozcan, A. (2021). 
Machine learning and computation-enabled intelligent 
sensor design. Nature Machine Intelligence, 3(7), 556-565. 
https://doi.org/10.1038/s42256-021-00360-9  

Ban, X., Lahiri, P., Dhoble, A. S., Li, D., Gu, Z., Li, C., Cheng, L., 
Hong, Y., Li, Z., & Kaustubh, B. (2019). Evolutionary 
stability of salt bridges hints its contribution to stability of 
proteins. Computational and Structural Biotechnology 
Journal, 17, 895-903. https://doi.org/10.1016/j.csbj.2019. 
06.022  

https://doi.org/10.1016/j.csbj.2019.01.012
https://doi.org/10.1038/d41586-019-03951-0
https://doi.org/10.1101/566372
https://doi.org/10.1038/s42256-021-00360-9
https://doi.org/10.1016/j.csbj.2019.06.022
https://doi.org/10.1016/j.csbj.2019.06.022


 Ogunjobi et al. / European Journal of Sustainable Development Research, 9(3), em0298 15 / 19 

 

Behl, A., & Mishra, P. (2018). Three-dimensional structure of 
Plasmodium falciparum knob associated heat shock 
protein 40 predicted by homology modeling method. The 
Pharma Innovation Journal, 7, 202-205. 

Bekker, G.-J., Araki, M., Oshima, K., Okuno, Y., & Kamiya, N. 
(2020). Exhaustive search of the configurational space of 
heat-shock protein 90 with its inhibitor by multicanonical 
molecular dynamics based dynamic docking. Journal of 
Computational Chemistry, 41(17), 1606-1615. 
https://doi.org/10.1002/jcc.26203  

Bergenholm, D., Liu, G., Holland, P., & Nielsen, J. (2018). 
Reconstruction of a global transcriptional regulatory 
network for control of lipid metabolism in yeast by using 
chromatin immunoprecipitation with lambda exonuclease 
digestion. mSystems, 3(4). https://doi.org/10.1128/ 
msystems.00215-17  

Bolyen, E., Ram Rideout, J., Chase, J., Anders Pitman, T., 
Shiffer, A., Mercurio, W., Dillon, M. R., & Caporaso,J. G. 
(2018). An introduction to applied bioinformatics: A free, 
open, and interactive text. Journal of Open Source 
Education, 1(5), 27. https://doi.org/10.21105/jose.00027  

Cava, C, & Castiglioni, I. (2020). Integration of molecular 
docking and in vitro studies: A powerful approach for drug 
discovery in breast cancer. Applied Sciences, 10(19), 6981. 
https://doi.org/10.3390/app10196981  

Cetin, B., Song, G. J., & O’Leary, S. E. (2020). Heterogeneous 
dynamics of protein-RNA interactions across 
transcriptome-derived messenger RNA populations. 
Journal of the American Chemical Society, 142(51), 21249-
21253. https://doi.org/10.1021/jacs.0c09841  

Cezar, H. M., Canuto, S., & Coutinho, K. (2020). DICE: A Monte 
Carlo code for molecular simulation including the 
configurational bias Monte Carlo method. Journal of 
Chemical Information and Modeling, 60(7), 3472-3788. 
https://doi.org/10.1021/acs.jcim.0c00077  

Chao, F.-A., & Byrd, R. A. (2018). Protein dynamics revealed by 
NMR relaxation methods. Emerging Topics in Life Sciences, 
2(1), 93-105. https://doi.org/10.1042/etls20170139  

Chen, K.-H., Wang, T.-F., & Hu, Y.-J. (2019). Protein-protein 
interaction prediction using a hybrid feature 
representation and a stacked generalization scheme. BMC 
Bioinformatics, 20(1). https://doi.org/10.1186/s12859-019-
2907-1  

Chen, M., Lin, X., Lu, W., Schafer, N. P., Onuchic, J. N., & 
Wolynes, P. G. (2018). Template-guided protein structure 
prediction and refinement using optimized folding 
landscape force fields. Journal of Chemical Theory and 
Computation, 14(11), 6102-6116. https://doi.org/10.1021/ 
acs.jctc.8b00683  

Cheung, N. J., & Yu, W. (2018). De novo protein structure 
prediction using ultra-fast molecular dynamics simulation. 
PLoS ONE, 13(11), e0205819. https://doi.org/10.1371/ 
journal.pone.0205819  

Crosara, K. T. B., Moffa, E. B., Xiao, Y., & Siqueira, W. L. (2018). 
Merging in-silico and in vitro salivary protein complex 
partners using the STRING database: A tutorial. Journal of 
Proteomics, 171, 87-94. https://doi.org/10.1016/j.jprot. 
2017.08.002  

Davis, R. G., Park, H.-M., Kim, K., Greer, J. B., Fellers, R. T., 
LeDuc, R. D., Romanova, E. V., Rubakhin, S. S., Zombeck, J. 
A., Wu, C., Yau, P. M., Gao, P., van Nispen, A. J., Patrie, S. 
M., Thomas, P. M., Sweedler, J. V., Rhodes, J. S., & Kelleher, 
N. L. (2018). Top-down proteomics enables comparative 
analysis of brain proteoforms between mouse strains. 
Analytical Chemistry, 90(6), 3802-3810. https://doi.org/10. 
1021/acs.analchem.7b04108  

de Medeiros, A. D., Capobiango, N. P., da Silva, J. M., da Silva, 
L. J., da Silva, C. B., & dos Santos Dias, D. C. F. (2020). 
Interactive machine learning for soybean seed and seedling 
quality classification. Scientific Report, 10(1). 
https://doi.org/10.1038/s41598-020-68273-y  

De Paris, R., Vahl Quevedo, C., Ruiz, D. D., Gargano, F., de 
Souza, O. N. (2018). A selective method for optimizing 
ensemble docking-based experiments on an InhA Fully-
Flexible receptor model. BMC Bioinformatics, 19(1). 
https://doi.org/10.1186/s12859-018-2222-2  

Defoort, J., Van de Peer, Y., & Carretero-Paulet, L. (2019). The 
evolution of gene duplicates in angiosperms and the 
impact of protein-protein interactions and the mechanism 
of duplication. Genome Biology and Evolution. 
https://doi.org/10.1093/gbe/evz156  

Fang, G., Annis, I. E., Elston-Lafata, J., & Cykert, S. (2019). 
Applying machine learning to predict real-world individual 
treatment effects: Insights from a virtual patient cohort. 
Journal of the American Medical Informatics Association, 
26(10), 977-988. https://doi.org/10.1093/jamia/ocz036  

Frezza, E., & Lavery, R. (2019). Internal coordinate normal 
mode analysis: A strategy to predict protein 
conformational transitions. The Journal of Physical 
Chemistry B, 123(6), 1294-1301. https://doi.org/10.1021/ 
acs.jpcb.8b11913  

Fukuda, H., & Tomii, K. (2020). DeepECA: An end-to-end 
learning framework for protein contact prediction from a 
multiple sequence alignment. BMC Bioinformatics, 21(1). 
https://doi.org/10.1186/s12859-019-3190-x  

Gao, M., Zhou, H., & Skolnick, J. (2019). DESTINI: A deep-
learning approach to contact-driven protein structure 
prediction. Scientific Reports, 9, 3514. https://doi.org/10. 
1038/s41598-019-40314-1  

Gebert, D., Jehn, J., & Rosenkranz, D. (2019). Widespread 
selection for extremely high and low levels of secondary 
structure in coding sequences across all domains of life. 
Open Biology, 9(5). https://doi.org/10.1098/rsob.190020  

Gemovic, B., Sumonja, N., Davidovic, R., Perovic, V., & 
Veljkovic, N. (2019). Mapping of protein-protein 
interactions: Web-based resources for revealing 
interactomes. Current Medicinal Chemistry, 26(21), 3890-
3891. https://doi.org/10.2174/09298673256661802141137 
04  

https://doi.org/10.1002/jcc.26203
https://doi.org/10.1128/msystems.00215-17
https://doi.org/10.1128/msystems.00215-17
https://doi.org/10.21105/jose.00027
https://doi.org/10.3390/app10196981
https://doi.org/10.1021/jacs.0c09841
https://doi.org/10.1021/acs.jcim.0c00077
https://doi.org/10.1042/etls20170139
https://doi.org/10.1186/s12859-019-2907-1
https://doi.org/10.1186/s12859-019-2907-1
https://doi.org/10.1021/acs.jctc.8b00683
https://doi.org/10.1021/acs.jctc.8b00683
https://doi.org/10.1371/journal.pone.0205819
https://doi.org/10.1371/journal.pone.0205819
https://doi.org/10.1016/j.jprot.2017.08.002
https://doi.org/10.1016/j.jprot.2017.08.002
https://doi.org/10.1021/acs.analchem.7b04108
https://doi.org/10.1021/acs.analchem.7b04108
https://doi.org/10.1038/s41598-020-68273-y
https://doi.org/10.1186/s12859-018-2222-2
https://doi.org/10.1093/gbe/evz156
https://doi.org/10.1093/jamia/ocz036
https://doi.org/10.1021/acs.jpcb.8b11913
https://doi.org/10.1021/acs.jpcb.8b11913
https://doi.org/10.1186/s12859-019-3190-x
https://doi.org/10.1038/s41598-019-40314-1
https://doi.org/10.1038/s41598-019-40314-1
https://doi.org/10.1098/rsob.190020
https://doi.org/10.2174/0929867325666180214113704
https://doi.org/10.2174/0929867325666180214113704


16 / 19 Ogunjobi et al. / European Journal of Sustainable Development Research, 9(3), em0298 

 

Gouthami, K, Veeraraghavan, V, Rahdar, A, Bilal, M, Shah, A, 
Rai, V., Gurumurthy, D. M., Ferreira, L. F. R., Amrico-
Pinheiro, J. H. P., Murari, S. K., Kalia, S., & Mulla, S. I. 
(2022). WITHDRAWN: Molecular docking used as an 
advanced tool to determine novel compounds on emerging 
infectious diseases: A systematic review. Progress in 
Biophysics and Molecular Biology. https://doi.org/10.1016/ 
j.pbiomolbio.2022.10.001  

Hao, W., Wang, Y., & Liang, W. (2018). Slice-based building 
facade reconstruction from 3D point clouds. International 
Journal of Remote Sensing, 39(20), 6587-6606. 
https://doi.org/10.1080/01431161.2018.1463113  

Harada, R. (2018). Simple, yet efficient conformational 
sampling methods for reproducing/predicting biologically 
rare events of proteins. Bulletin of the Chemical Society of 
Japan, 91(9), 1436-1450. https://doi.org/10.1246/bcsj. 
20180170  

Hiranuma, N., Park, H., Baek, M., Anishchenko, I., Dauparas, 
J., & Baker, D. (2021). Improved protein structure 
refinement guided by deep learning based accuracy 
estimation. Nature Communications, 12(1). https://doi.org/ 
10.1038/s41467-021-21511-x  

Houkes, W., & Zwart, S. D. (2019). Transfer and templates in 
scientific modelling. Studies in History and Philosophy of 
Science, 77, 93-100. https://doi.org/10.1016/j.shpsa.2017. 
11.003  

Huang, L.-C, Ross, K. E., Baffi, T. R., Drabkin, H., Kochut, K. J., 
Ruan, Z., D’Eustachio, P., McSkimming, D., Arighi, C., 
Chen, C., Natale, D. A., Smith, C., Gaudet, P., Newton, A. 
C., Wu, C., & Kannan, N. (2018). Integrative annotation 
and knowledge discovery of kinase post-translational 
modifications and cancer-associated mutations through 
federated protein ontologies and resources. Scientific 
Reports, 8, 6518. https://doi.org/10.1038/s41598-018-
24457-1  

Jang, W. D., Lee, S. M., Kim, H. U., & Lee, S. Y. (2020). 
Systematic and comparative evaluation of software 
programs for template-based modeling of protein 
structures. Biotechnology Journal, 15(6). https://doi.org/10. 
1002/biot.201900343  

Jha, K., & Saha, S. (2020). Amalgamation of 3D structure and 
sequence information for protein-protein interaction 
prediction. Scientific Reports, 10(1). https://doi.org/10. 
1038/s41598-020-75467-x  

Jia, K., & Jernigan, R. L. (2021). New amino acid substitution 
matrix brings sequence alignments into agreement with 
structure matches. Proteins, 89(6), 671-682. https://doi.org 
/10.1002/prot.26050  

Jiang, M., Li, Z., Bian, Y., & Wei, Z. (2019). A novel protein 
descriptor for the prediction of drug binding sites. BMC 
Bioinformatics, 20(1). https://doi.org/10.1186/s12859-019-
3058-0  

Jin, S., Chen, M., Chen, X., Bueno, C., Lu, W., Schafer, N. P., 
Lin, X., Onuchic, J. N., & Wolynes, P. G. (2020). Protein 
structure prediction in CASP13 using AWSEM-suite. 
Journal of Chemical Theory and Computation, 16(6), 3977-
3988. https://doi.org/10.1021/acs.jctc.0c00188  

Kandathil, S. M., Greener, J. G., Lau, A. M., & Jones, D. T. 
(2022). Ultrafast end-to-end protein structure prediction 
enables high-throughput exploration of uncharacterized 
proteins. PNAS, 119(4). https://doi.org/10.1073/pnas. 
2113348119  

Karasev, D., Sobolev, B., Lagunin, A., Filimonov, D., & 
Poroikov, V. (2019). Prediction of protein–ligand 
interaction based on the positional similarity scores 
derived from amino acid sequences. International Journal of 
Molecular Sciences, 21(1), 24. https://doi.org/10.3390/ijms 
21010024  

Khalatbari, L., Kangavari, M. R., Hosseini, S., Yin, H., & 
Cheung, N.-M. (2019). MCP: A multi-component learning 
machine to predict protein secondary structure. Computers 
in Biology and Medicine, 110, 144-155. https://doi.org/10. 
1016/j.compbiomed.2019.04.040  

Kim, J.-Y., & Chung, H. S. (2020). Disordered proteins follow 
diverse transition paths as they fold and bind to a partner. 
Science, 368(6496), 1253-1257. https://doi.org/10.1126/ 
science.aba3854  

Kondra, S., Sarkar, T., Raghavan, V., & Xu, W. (2021). 
Development of a TSR-based method for protein 3-D 
structural comparison with its applications to protein 
classification and motif discovery. Frontiers in Chemistry, 8. 
https://doi.org/10.3389/fchem.2020.602291  

Kotowski, K., Smolarczyk, T., Roterman-Konieczna, I., & 
Stapor, K. (2021). ProteinUnet–An efficient alternative to 
SPIDER3-single for sequence-based prediction of protein 
secondary structures. Journal of Computational Chemistry, 
42(1), 50-59. https://doi.org/10.1002/jcc.26432  

Kuhlman, B., & Bradley, P. (2019). Advances in protein 
structure prediction and design. Nature Reviews Molecular 
Cell Biology, 20(11), 681-697. https://doi.org/10.1038/ 
s41580-019-0163-x  

Kumari, P., Nath, A., & Chaube, R. Identification of human 
drug targets using machine-learning algorithms. 
Computers in Biology and Medicine, 56, 175-181. 
https://doi.org/10.1016/j.compbiomed.2014.11.008  

Kwon, Y., Shin, W.-H., Ko, J., & Lee, J. (2020). AK-score: 
Accurate protein-ligand binding affinity prediction using 
an ensemble of 3D-convolutional neural networks. 
International Journal of Molecular Sciences, 21(22), 8424. 
https://doi.org/10.3390/ijms21228424  

Larke, M. S. C., Schwessinger, R., Nojima, T., Telenius, J., 
Beagrie, R. A., Downes, D. J., Oudelaar, M., Truch, J., 
Graham, B., Bender, M. A., Proudfoot, N. J., Higgs, D. R., & 
Hughes, J. R. (2021). Enhancers predominantly regulate 
gene expression during differentiation via transcription 
initiation. Molecular Cell, 81(5), 983-997.e7. https://doi.org 
/10.1016/j.molcel.2021.01.002  

Lensink, M. F., Velankar, S., Baek, M., Heo, L., Seok, C., & 
Wodak, S. J. (2018). The challenge of modeling protein 
assemblies: the CASP12-CAPRI experiment. Proteins, 
86(S1), 257-273. https://doi.org/10.1002/prot.25419  

Li, C., Cesbron, F., Oehler, M., Brunner, M., & Höfer, T. (2018). 
Frequency modulation of transcriptional bursting enables 
sensitive and rapid gene regulation. Cell Systems, 6(4), 409-
423.e11. https://doi.org/10.1016/j.cels.2018.01.012  

https://doi.org/10.1016/j.pbiomolbio.2022.10.001
https://doi.org/10.1016/j.pbiomolbio.2022.10.001
https://doi.org/10.1080/01431161.2018.1463113
https://doi.org/10.1246/bcsj.20180170
https://doi.org/10.1246/bcsj.20180170
https://doi.org/10.1038/s41467-021-21511-x
https://doi.org/10.1038/s41467-021-21511-x
https://doi.org/10.1016/j.shpsa.2017.11.003
https://doi.org/10.1016/j.shpsa.2017.11.003
https://doi.org/10.1038/s41598-018-24457-1
https://doi.org/10.1038/s41598-018-24457-1
https://doi.org/10.1002/biot.201900343
https://doi.org/10.1002/biot.201900343
https://doi.org/10.1038/s41598-020-75467-x
https://doi.org/10.1038/s41598-020-75467-x
https://doi.org/10.1002/prot.26050
https://doi.org/10.1002/prot.26050
https://doi.org/10.1186/s12859-019-3058-0
https://doi.org/10.1186/s12859-019-3058-0
https://doi.org/10.1021/acs.jctc.0c00188
https://doi.org/10.1073/pnas.2113348119
https://doi.org/10.1073/pnas.2113348119
https://doi.org/10.3390/ijms21010024
https://doi.org/10.3390/ijms21010024
https://doi.org/10.1016/j.compbiomed.2019.04.040
https://doi.org/10.1016/j.compbiomed.2019.04.040
https://doi.org/10.1126/science.aba3854
https://doi.org/10.1126/science.aba3854
https://doi.org/10.3389/fchem.2020.602291
https://doi.org/10.1002/jcc.26432
https://doi.org/10.1038/s41580-019-0163-x
https://doi.org/10.1038/s41580-019-0163-x
https://doi.org/10.1016/j.compbiomed.2014.11.008
https://doi.org/10.3390/ijms21228424
https://doi.org/10.1016/j.molcel.2021.01.002
https://doi.org/10.1016/j.molcel.2021.01.002
https://doi.org/10.1002/prot.25419
https://doi.org/10.1016/j.cels.2018.01.012


 Ogunjobi et al. / European Journal of Sustainable Development Research, 9(3), em0298 17 / 19 

 

Li, Z., Huang, Q., Chen, X., Wang, Y., Li, J., Xie, Y., Dai, Z., & 
Zou, X. (2020). Identification of drug-disease associations 
using information on molecular structures and clinical 
symptoms via deep convolutional neural network. Frontiers 
in Chemistry, 7. https://doi.org/10.3389/fchem.2019.00924  

Lin, H.-N., & Hsu, W.-L. (2020). GSAlign: An efficient 
sequence alignment tool for intra-species genomes. BMC 
Genomics, 21(1). https://doi.org/10.1186/s12864-020-
6569-1  

Lin, T.-T., Yang, L.-Y., Lu, I.-H., Cheng, W.-C., Hsu, Z.-R., 
Chen, S.-H., & Lin, C.-Y. (2021). AI4AMP: An antimicrobial 
peptide predictor using physicochemical property-based 
encoding method and deep learning. mSystems, 6(6). 
https://doi.org/10.1128/msystems.00299-21  

Liu, Z., Miller, D., Li, F., Liu, X., & Levy, S. F. (2020). A large 
accessory protein interactome is rewired across 
environments. Elife, 9. https://doi.org/10.7554/elife.62365  

Lu, J., Chen, D., Wang, G., Kiritsis, D., & Torngren, M. (2022). 
Model-based systems engineering tool-chain for 
automated parameter value selection. IEEE Transactions on 
Systems, Man, and Cybernetics, 52(4), 2333-2347. 
https://doi.org/10.1109/tsmc.2020.3048821  

Lu, W., Bueno, C., Schafer, NP., Moller, J., Jin, S., Chen, X., 
Chen, M., Gu, X., de Pablo, J. J., & Wolynes, P. G. (2020). 
OpenAWSEM with Open3SPN2: A fast, flexible, and 
accessible framework for large-scale coarse-grained 
biomolecular simulations. bioRxiv. https://doi.org/10.1101/ 
2020.09.07.285759  

Makigaki, S, & Ishida, T. (2019). Sequence alignment using 
machine learning for accurate template-based protein 
structure prediction. bioRxiv. https://doi.org/10.1101/ 
711945  

Mao, W., Ding, W., Xing, Y., & Gong, H. (2019). 
AmoebaContact and GDFold as a pipeline for rapid de novo 
protein structure prediction. Nature Machine Intelligence, 
2(1), 25-33. https://doi.org/10.1038/s42256-019-0130-4  

Marino, V., & Dell’Orco, D. (2019). Evolutionary-conserved 
allosteric properties of three neuronal calcium sensor 
proteins. Frontiers in Molecular Neuroscience, 12. 
https://doi.org/10.3389/fnmol.2019.00050  

Masrati, G., Landau, M., Ben-Tal, N., Lupas, A., Kosloff, M., & 
Kosinski J. (2021). Integrative structural biology in the era 
of accurate structure prediction. Journal of Molecular 
Biology, 433(20), 167127. https://doi.org/10.1016/j.jmb. 
2021.167127  

Milanetti, E., Trandafir, A. G., Alba, J., Raimondo, D., & 
D’Abramo, M. (2018). Efficient and accurate modeling of 
conformational transitions in proteins: The case of c-src 
kinase. The Journal of Physical Chemistry B, 122(38), 8853-
8860. https://doi.org/10.1021/acs.jpcb.8b07155  

Miller, E, Murphy, R, Sindhikara, D, Borrelli, K, Grisewood, M, 
Ranalli, F, Dixon, S., Jerome, S., Boyles, N., Day, T., 
Ghanakota, P., Mondal, S., Rafi, S. B., Troast, D. M., Abel, 
R., & Friesner, R. (2020). A reliable and accurate solution 
to the induced fit docking problem for protein-ligand 
binding. ChemRxiv. https://doi.org/10.26434/chemrxiv. 
11983845.v1  

Mohamed, E. M., Mousa, H. M., & Keshk, A. E. (2018). 
Comparative analysis of multiple sequence alignment 
tools. International Journal of Computer Science and 
Information Technologies, 10(8), 24-30. https://doi.org/10. 
5815/ijitcs.2018.08.04  

Mrozek, D., Suwała, M., & Małysiak-Mrozek, B. (2019). High-
throughput and scalable protein function identification 
with Hadoop and Map-only pattern of the MapReduce 
processing model. Knowledge and Information Systems, 
60(1), 145-178. https://doi.org/10.1007/s10115-018-1245-
3  

Mucaki, E. J., Zhao, J. Z. L., Lizotte, D. J., & Rogan, P. K. (2019). 
Predicting responses to platin chemotherapy agents with 
biochemically-inspired machine learning. Signal 
Transduction and Targeted Therapy, 4(1). https://doi.org/ 
10.1038/s41392-018-0034-5  

Mura, C., Veretnik, S., & Bourne, P. E. (2019). The Urfold: 
Structural similarity just above the superfold level? Protein 
Science, 28(12), 2119-2126. https://doi.org/10.1002/pro. 
3742  

Nardo, A. E., Añón, M. C., & Parisi, G. (2018). Large-scale 
mapping of bioactive peptides in structural and sequence 
space. PLoS ONE, 13(1), e0191063. https://doi.org/10. 
1371/journal.pone.0191063  

Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J. P., 
& Davidson, S. (2021). Single nucleus transcriptomic 
analysis of human dorsal root ganglion neurons. bioRxiv. 
https://doi.org/10.1101/2021.07.02.450845  

Orbán-Németh, Z., Beveridge, R., Hollenstein, D. M., Rampler, 
E., Stranzl, T., Hudecz, O., Doblmann, J., Schlögwlhofer, P., 
& Mechtler, K. (2018). Structural prediction of protein 
models using distance restraints derived from cross-
linking mass spectrometry data. Nature Protocols, 13(3), 
478-494. https://doi.org/10.1038/nprot.2017.146  

Peker, N., Garcia-Croes, S., Dijkhuizen, B., Wiersma, H. H., van 
Zanten, E., Wisselink, G., Friedrich, A. W., Kooistra-Smid, 
M., Sinha, B., Rossen, J. W. A., & Couto, N. (2019). A 
comparison of three different bioinformatics analyses of 
the 16S-23S rRNA encoding region for bacterial 
identification. Frontiers in Microbiology, 10. https://doi.org 
/10.3389/fmicb.2019.00620  

Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., & Gautieri A. 
(2018). Review: Engineering of thermostable enzymes for 
industrial applications. APL Bioengineering, 2(1). 
https://doi.org/10.1063/1.4997367  

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., 
Ott, M., Zitnick, C. L., Ma, J., & Fergus, R. (2019). Biological 
structure and function emerge from scaling unsupervised 
learning to 250 million protein sequences. bioRxiv. 
https://doi.org/10.1101/622803  

Rodrigues, C. H. M., Myung, Y., Pires, D. E. V., & Ascher, D. B. 
(2019). mCSM-PPI2: predicting the effects of mutations on 
protein-protein interactions. Nucleic Acids Research, 
47(W1), W338-W344. https://doi.org/10.1093/nar/gkz383  

https://doi.org/10.3389/fchem.2019.00924
https://doi.org/10.1186/s12864-020-6569-1
https://doi.org/10.1186/s12864-020-6569-1
https://doi.org/10.1128/msystems.00299-21
https://doi.org/10.7554/elife.62365
https://doi.org/10.1109/tsmc.2020.3048821
https://doi.org/10.1101/2020.09.07.285759
https://doi.org/10.1101/2020.09.07.285759
https://doi.org/10.1101/711945
https://doi.org/10.1101/711945
https://doi.org/10.1038/s42256-019-0130-4
https://doi.org/10.3389/fnmol.2019.00050
https://doi.org/10.1016/j.jmb.2021.167127
https://doi.org/10.1016/j.jmb.2021.167127
https://doi.org/10.1021/acs.jpcb.8b07155
https://doi.org/10.26434/chemrxiv.11983845.v1
https://doi.org/10.26434/chemrxiv.11983845.v1
https://doi.org/10.5815/ijitcs.2018.08.04
https://doi.org/10.5815/ijitcs.2018.08.04
https://doi.org/10.1007/s10115-018-1245-3
https://doi.org/10.1007/s10115-018-1245-3
https://doi.org/10.1038/s41392-018-0034-5
https://doi.org/10.1038/s41392-018-0034-5
https://doi.org/10.1002/pro.3742
https://doi.org/10.1002/pro.3742
https://doi.org/10.1371/journal.pone.0191063
https://doi.org/10.1371/journal.pone.0191063
https://doi.org/10.1101/2021.07.02.450845
https://doi.org/10.1038/nprot.2017.146
https://doi.org/10.3389/fmicb.2019.00620
https://doi.org/10.3389/fmicb.2019.00620
https://doi.org/10.1063/1.4997367
https://doi.org/10.1101/622803
https://doi.org/10.1093/nar/gkz383


18 / 19 Ogunjobi et al. / European Journal of Sustainable Development Research, 9(3), em0298 

 

Runthala, A., & Chowdhury, S. (2019). Refined template 
selection and combination algorithm significantly 
improves template-based modeling accuracy. Journal of 
Bioinformatics and Computational Biology,17(02), 1950006. 
https://doi.org/10.1142/s0219720019500069  

Sakhaee, N., & Wilson, M. C. (2021). Information extraction 
framework to build legislation network. Artificial 
Intelligence and Law, 29(1), 35-58. https://doi.org/10. 
1007/s10506-020-09263-3  

Salinas, V. H., & Ranganathan, R. (2018). Coevolution-based 
inference of amino acid interactions underlying protein 
function. Elife, 7. https://doi.org/10.7554/elife.34300  

Sartor, R. C., Noshay, J., Springer, N. M., & Briggs, S. P. (2019). 
Identification of the expressome by machine learning on 
omics data. PNAS, 116(36), 18119-18125. https://doi.org/ 
10.1073/pnas.1813645116  

Schönherr, R., Rudolph, J. M., & Redecke, L. (2018). Protein 
crystallization in living cells. Journal of Biological 
Chemistry, 399(7), 751-772. https://doi.org/10.1515/hsz-
2018-0158  

Seath, C. P., Trowbridge, A. D., Muir, T. W., & MacMillan, D. 
W. C. (2021). Reactive intermediates for interactome 
mapping. Chemical Society Review, 50(5), 2911-2926. 
https://doi.org/10.1039/d0cs01366h  

Seidl, P., Renz, P., Dyubankova, N., Neves, P., Verhoeven, J., 
Wegner, J. K., Segler, M., Hochreiter, S., & Klambauer, G. 
(2022). Improving few- and zero-shot reaction template 
prediction using modern Hopfield networks. Journal of 
Chemical Information and Modeling, 62(9), 2111-2120. 
https://doi.org/10.1021/acs.jcim.1c01065  

Sejdiu, B. I., & Tieleman, D. P. (2021). ProLint: A web-based 
framework for the automated data analysis and 
visualization of lipid–protein interactions. Nucleic Acids 
Research, 49(W1), W544-W550. https://doi.org/10.1093/ 
nar/gkab409  

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., 
Green, T., Qin, C., Zidek, A., Nelson, A. W. R., Bridgland, 
A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., 
Kohli, P., Jones, D. T., Silver, D., Kavukcuoglu, K., & 
Hassabis, D. (2020). Improved protein structure prediction 
using potentials from deep learning. Nature, 577(7792), 
706-710. https://doi.org/10.1038/s41586-019-1923-7  

Siebenmorgen, T., & Zacharias, M. (2020). Efficient 
refinement and free energy scoring of predicted protein-
protein complexes using replica exchange with repulsive 
scaling. Journal of Chemical Information and Modeling, 
60(11), 5552-5562. https://doi.org/10.1021/acs.jcim. 
0c00853  

Singh, P., & Singh, N. (2021). Role of data mining techniques 
in bioinformatics. International Journal of Applied Research 
in Bioinformatics, 11(1), 51-60. https://doi.org/10.4018/ 
ijarb.2021010106  

Song, J., Li, F., Takemoto, K., Haffari, G., Akutsu, T., Chou, K.-
C, & Webb, G. I. (2018). PREvaIL, an integrative approach 
for inferring catalytic residues using sequence, structural, 
and network features in a machine-learning framework. 
Journal of Theoretical Biology, 443, 125-137. https://doi.org/ 
10.1016/j.jtbi.2018.01.023  

Souza, P. C. T., Limongelli, V., Wu, S., Marrink, S. J., & 
Monticelli, L. (2021). Perspectives on high-throughput 
ligand/protein docking with Martini MD simulations. 
Frontiers in Molecular Biosciences, 8. https://doi.org/10. 
3389/fmolb.2021.657222  

Stacey, R. G., Skinnider, M. A., Chik, J. H. L., & Foster, L. J. 
(2018). Context-specific interactions in literature-curated 
protein interaction databases. BMC Genomics, 19(1). 
https://doi.org/10.1186/s12864-018-5139-2  

Sun, P., Tan, X., Guo, S., Zhang, J., Sun, B., Du, N., Wang, H., 
& Sun, H. (2018). Protein function prediction using 
function associations in protein–protein interaction 
network. IEEE Access, 6, 30892-30902. https://doi.org/10. 
1109/access.2018.2806478  

Tong, Q., Xue, L., Lv, J., Wang, Y., & Ma, Y. (2018). 
Accelerating CALYPSO structure prediction by data-driven 
learning of a potential energy surface. Faraday Discuss, 
211, 31-43. https://doi.org/10.1039/c8fd00055g  

Truong, D. T., & Li, M. S. (2018). Probing the binding affinity 
by jarzynski’s nonequilibrium binding free energy and 
rupture time. The Journal of Physical Chemistry B, 122(17), 
4693-4699. https://doi.org/10.1021/acs.jpcb.8b02137  

van Beusekom, B., Joosten, K., Hekkelman, M. L., Joosten, R. 
P., &Perrakis, A. (2018). Homology-based loop modeling 
yields more complete crystallographic protein structures. 
IUCrJ, 5(5), 585-594. https://doi.org/10.1107/ 
s2052252518010552  

Vignani, R., Liò, P., & Scali, M. (2019). How to integrate wet 
lab and bioinformatics procedures for wine DNA admixture 
analysis and compositional profiling: Case studies and 
perspectives. PLoS ONE, 14(2), e0211962. https://doi.org/ 
10.1371/journal.pone.0211962  

Volkov, M., Turk, J.-A., Drizard, N., Martin, N., Hoffmann, B., 
Gaston-Mathé, Y., & Rognan, D. (2022). On the frustration 
to predict binding affinities from protein–ligand structures 
with deep neural networks. Journal of Medicinal Chemistry, 
65(11), 7946-7958. https://doi.org/10.1021/acs.jmedchem. 
2c00487  

Wang, H., & Yang, W. (2019). Toward building protein force 
fields by residue-based systematic molecular 
fragmentation and neural network. Journal of Chemical 
Theory and Computation, 15(2), 1409-1417. https://doi.org/ 
10.1021/acs.jctc.8b00895  

Wang, T., Qiao, Y., Ding, W., Mao, W., Zhou, Y., & Gong, H. 
(2019). Improved fragment sampling for ab initio protein 
structure prediction using deep neural networks. Nature 
Machine Intelligence, 1(8), 347-355. https://doi.org/10.1038 
/s42256-019-0075-7  

Watanabe, G., Eimura, H., Abbott, N. L., & Kato T. (2020). 
Biomolecular binding at aqueous interfaces of Langmuir 
monolayers of bioconjugated amphiphilic mesogenic 
molecules: A molecular dynamics study. Langmuir, 36(41), 
12281-12287. 
https://doi.org/10.1021/acs.langmuir.0c02191  

https://doi.org/10.1142/s0219720019500069
https://doi.org/10.1007/s10506-020-09263-3
https://doi.org/10.1007/s10506-020-09263-3
https://doi.org/10.7554/elife.34300
https://doi.org/10.1073/pnas.1813645116
https://doi.org/10.1073/pnas.1813645116
https://doi.org/10.1515/hsz-2018-0158
https://doi.org/10.1515/hsz-2018-0158
https://doi.org/10.1039/d0cs01366h
https://doi.org/10.1021/acs.jcim.1c01065
https://doi.org/10.1093/nar/gkab409
https://doi.org/10.1093/nar/gkab409
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1021/acs.jcim.0c00853
https://doi.org/10.1021/acs.jcim.0c00853
https://doi.org/10.4018/ijarb.2021010106
https://doi.org/10.4018/ijarb.2021010106
https://doi.org/10.1016/j.jtbi.2018.01.023
https://doi.org/10.1016/j.jtbi.2018.01.023
https://doi.org/10.3389/fmolb.2021.657222
https://doi.org/10.3389/fmolb.2021.657222
https://doi.org/10.1186/s12864-018-5139-2
https://doi.org/10.1109/access.2018.2806478
https://doi.org/10.1109/access.2018.2806478
https://doi.org/10.1039/c8fd00055g
https://doi.org/10.1021/acs.jpcb.8b02137
https://doi.org/10.1107/s2052252518010552
https://doi.org/10.1107/s2052252518010552
https://doi.org/10.1371/journal.pone.0211962
https://doi.org/10.1371/journal.pone.0211962
https://doi.org/10.1021/acs.jmedchem.2c00487
https://doi.org/10.1021/acs.jmedchem.2c00487
https://doi.org/10.1021/acs.jctc.8b00895
https://doi.org/10.1021/acs.jctc.8b00895
https://doi.org/10.1038/s42256-019-0075-7
https://doi.org/10.1038/s42256-019-0075-7
https://doi.org/10.1021/acs.langmuir.0c02191


 Ogunjobi et al. / European Journal of Sustainable Development Research, 9(3), em0298 19 / 19 

 

Weng, G., Gao, J., Wang, Z., Wang, E., Hu, X., Yao, X., Cao, D., 
& Hou, T. (2020). Comprehensive evaluation of fourteen 
docking programs on protein–peptide complexes. Journal 
of Chemical Theory and Computation, 16(6), 3959-3969. 
https://doi.org/10.1021/acs.jctc.9b01208  

Wojtowicz, W. M., Vielmetter, J., Fernandes, R. A., Siepe, D. H., 
Eastman, C. L., Chisholm, G. B., Cox, S., Klock, H., 
Anderson, P. W., Rue, S. M., Miller, J. J., Glaser, S. M., 
Bragstad, M. L., Vance, J., Lam, A. W., Lesley, S. A., Zinn, 
K., & Garcia, K. C. (2020). A human IgSF cell-surface 
interactome reveals a complex network of protein-protein 
interactions. Cell, 182(4), 1027-1043.e17. https://doi.org/ 
10.1016/j.cell.2020.07.025  

Xu, X., Yan, C., & Zou, X. (2018a). MDockPeP: An ab-initio 
protein-peptide docking server. Journal of Computational 
Chemistry, 39(28), 2409-2413. https://doi.org/10.1002/jcc. 
25555  

Xu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., 
Chen, F., Lai, L., & Pei, J. (2018b). CavityPlus: A web server 
for protein cavity detection with pharmacophore 
modelling, allosteric site identification and covalent ligand 
binding ability prediction. Nucleic Acids Research, 46(W1), 
W374-W379. https://doi.org/10.1093/nar/gky380  

Yan, L., Sun, W., Lu, Z., & Fan, L. (2020). Metagenomic next-
generation sequencing (mNGS) in cerebrospinal fluid for 
rapid diagnosis of Tuberculosis meningitis in HIV-negative 
population. International Journal of Infectious Diseases, 
96,270-275. https://doi.org/10.1016/j.ijid.2020.04.048  

Yerneni, S., Khan, I. K., Wei, Q., & Kihara, D. (2018). IAS: 
Interaction specific GO term associations for predicting 
protein-protein interaction networks. IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, 
15(4), 1247-1258. https://doi.org/10.1109/tcbb.2015. 
2476809  

Yim, S., Yu, H., Jang, D., & Lee, D. (2018). Annotating 
activation/inhibition relationships to protein-protein 
interactions using gene ontology relations. BMC Systems 
Biology, 12(S1). https://doi.org/10.1186/s12918-018-0535-
4  

Yu, C.-H., Qin, Z., Martin-Martinez, F. J., & Buehler, M. J. 
(2019). A self-consistent sonification method to translate 
amino acid sequences into musical compositions and 
application in protein design using artificial intelligence. 
ACS Nano, 13(7), 7471-7482. https://doi.org/10.1021/ 
acsnano.9b02180  

Zhang, C., Zheng, W., Freddolino, P. L., & Zhang, Y. (2018). 
MetaGO: Predicting gene ontology of non-homologous 
proteins through low-resolution protein structure 
prediction and protein-protein network mapping. Journal 
of Molecular Biology, 430(15), 2256-265. https://doi.org/10. 
1016/j.jmb.2018.03.004  

Zhang, M. M., Beno, B. R., Huang, R. Y.-C., Adhikari, J., 
Deyanova, E. G., Li, J., Chen, G., & gross, M. L. (2019a). An 
integrated approach for determining a protein–protein 
binding interface in solution and an evaluation of 
hydrogen–deuterium exchange kinetics for adjudicating 
candidate docking models. Analytical Chemistry, 91(24), 
15709-15017. 
https://doi.org/10.1021/acs.analchem.9b03879  

Zhang, P., Shen, L., & Yang, W. (2019b). Solvation free energy 
calculations with quantum mechanics/molecular 
mechanics and machine learning models. The Journal of 
Physical Chemistry B, 123(4), 901-908. https://doi.org/10. 
1021/acs.jpcb.8b11905  

Zhang, Y., Aryee, A. N. A., & Simpson, B. K. (2020). Current 
role of in silico approaches for food enzymes. Current 
Opinion in Food Science, 31, 63-70. https://doi.org/10.1016/ 
j.cofs.2019.11.003  

Zhao, B., Katuwawala, A., Oldfield, C. J., Dunker, A. K., Faraggi, 
E., Gsponer, J., Kloczkowski, A., Malhis, N., Mirdita, M., 
Obradovic, Z., Söding, J., Steinegger, M., Zhou, Y., & 
Kurgan, L. (2021a). DescribePROT: Database of amino 
acid-level protein structure and function predictions. 
Nucleic Acids Research, 49(D1), D298-D308. https://doi.org 
/10.1093/nar/gkaa931  

Zhao, L., Ciallella, H. L., Aleksunes, L. M., Zhu, H. (2020). 
Advancing computer-aided drug discovery (CADD) by big 
data and data-driven machine learning modeling. Drug 
Discovery Today, 25(9), 1624-1638. https://doi.org/10.1016/ 
j.drudis.2020.07.005  

Zhao, T., Liu, J., Zeng, X., Wang, W., Li, S., Zang, T., Peng, J., 
& Yang, Y. (2021b). Prediction and collection of protein-
metabolite interactions. Briefings in Bioinformatics, 22(5). 
https://doi.org/10.1093/bib/bbab014  

Zheng, W., Wuyun, Q., Li, Y., Mortuza, S. M., Zhang, C., Pearce, 
R., Ruan, J., & Zhang, Y. (2019). Detecting distant-
homology protein structures by aligning deep neural-
network based contact maps. PLOS Computational Biology, 
15(10), e1007411. https://doi.org/10.1371/journal.pcbi. 
1007411  

Zhou, J., Panaitiu, A. E., & Grigoryan, G. (2020). A general-
purpose protein design framework based on mining 
sequence–structure relationships in known protein 
structures. PNAS, 17(2), 1059-1068. https://doi.org/10. 
1073/pnas.1908723117  

Zhou, P., Wang, J., Wang, M., Hou, J., Lu, J. R., & Xu, H. (2019). 
Amino acid conformations control the morphological and 
chiral features of the self-assembled peptide 
nanostructures: Young investigators perspective. Journal of 
Colloid and Interface Science, 548, 244-254. https://doi.org 
/10.1016/j.jcis.2019.04.019  

 

https://doi.org/10.1021/acs.jctc.9b01208
https://doi.org/10.1016/j.cell.2020.07.025
https://doi.org/10.1016/j.cell.2020.07.025
https://doi.org/10.1002/jcc.25555
https://doi.org/10.1002/jcc.25555
https://doi.org/10.1093/nar/gky380
https://doi.org/10.1016/j.ijid.2020.04.048
https://doi.org/10.1109/tcbb.2015.2476809
https://doi.org/10.1109/tcbb.2015.2476809
https://doi.org/10.1186/s12918-018-0535-4
https://doi.org/10.1186/s12918-018-0535-4
https://doi.org/10.1021/acsnano.9b02180
https://doi.org/10.1021/acsnano.9b02180
https://doi.org/10.1016/j.jmb.2018.03.004
https://doi.org/10.1016/j.jmb.2018.03.004
https://doi.org/10.1021/acs.analchem.9b03879
https://doi.org/10.1021/acs.jpcb.8b11905
https://doi.org/10.1021/acs.jpcb.8b11905
https://doi.org/10.1016/j.cofs.2019.11.003
https://doi.org/10.1016/j.cofs.2019.11.003
https://doi.org/10.1093/nar/gkaa931
https://doi.org/10.1093/nar/gkaa931
https://doi.org/10.1016/j.drudis.2020.07.005
https://doi.org/10.1016/j.drudis.2020.07.005
https://doi.org/10.1093/bib/bbab014
https://doi.org/10.1371/journal.pcbi.1007411
https://doi.org/10.1371/journal.pcbi.1007411
https://doi.org/10.1073/pnas.1908723117
https://doi.org/10.1073/pnas.1908723117
https://doi.org/10.1016/j.jcis.2019.04.019
https://doi.org/10.1016/j.jcis.2019.04.019

