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 This paper examined the impact of climate change through the carbon emissions channel on agricultural 
productivity in Nigeria. It adopted the transposed second-generation environmental Kuznets curve model, which 
defined growth (agricultural productivity) as a function of climate change. Data from world development 
indicators between 1960 and 2019 were utilized to examine the impact of climate change on agricultural 
productivity. The paper employed the bound test (ARDL) method. The result showed the existence of a long-run 
relationship between carbon emissions (proxy by CO2 emissions and CO2 intensity) and agricultural productivity 
(proxy by Agric.GDP, crop production index, and food production index) in Nigeria. The speed of adjustments is 
between 34% and 80%. Thus, a change in CO2 emissions and intensity affects Agric.GDP differently, but CO2 
emissions and intensity negatively impacted crop and food production in Nigeria. The result implies that carbon 
emissions and carbon intensity cause decline and generates a dampening threat to Nigeria’s agricultural 
productivity through physical risk channels. By extension, the study concludes that carbon emission causes 
climate vulnerability that affects agricultural yields, production, and productivity. Carbon emissions results in 
low agricultural productivity which in turn disrupt food security as well as distort the poverty reduction strategy 
in the country. This study, therefore, recommends an equitable implementation of carbon pricing, adoption of 
mitigation policies, promotion of effective and efficient environmental laws, and the implementation of an 
appropriate abatement policy that jointly optimizes environmental stability and growth targets of the sustainable 
development goals. 
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INTRODUCTION 

Agricultural productivity could be conceptualized through 
the productivity lenses defined in Hallegatte et al. (2018). The 
agricultural sector (productivity) plays a key role in supplying 
resources that meets man’s domestic and industrial needs. 
Agricultural productivity remains a significant channel for 
enhancing food security and zero-poverty targets (AGRA, 
2014; Alkire et al., 2014; Hoda et al., 2017; Munang & 
Andrews, 2014; Reddy, 2012). It is based on the foregoing 
imperatives that this study seeks to unravel the impact of 
climate change on agricultural productivity. However, one of 
the short-coming in the literature is that the direction of 
causation between agricultural productivity and climate 
change is unclear, arising from unbalanced and skewed 
geographical issues (Al-Amin et al., 2013; Nonan & 
Bedamatta, 2012). Also, the nexus between climate change and 
disaggregated agricultural sectors is still in the early stage and 

a subject of debate considering the policy’s inconclusiveness 
on what mitigation policy should be appropriate for the global 
economy. This is largely so because existing studies such as; 
the water-energy-food nexus in Asia-Pacific (Barnosky et al., 
2013), environmental security, climate change and 
competition for water, energy, and land (Godfray et al., 2010), 
and regional scale examination of climate change, water, 
energy, and food (Liu, 2014) and Sub-Saharan perspectives of 
climate change and agricultural nexus (Phiiri et al., 2016) 
informs the study of many gaps that need considerations 
especially as it patterns to the disaggregating agricultural 
sector. Other issues such as divergent geographical conditions, 
irregular environmental regulations, and unbalanced 
mitigation laws consistently provide the basis for further 
examination of issues.  

Agricultural productivity is at the center of the climate 
change debate because, scientific predictions have revealed 
that climatic phenomena such as tropical storms, floods, 
droughts, water security, typical cyclones, rising tide, warming 
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seas, coral bleaching, melting glaciers, heat waves, etc are 
increasing at an increasing as well as transmit physical risks 
that affect the structural and social dynamics of human 
development (Carvajal-Velez, 2007). The emerging trends in 
climatic changes show that flooding, rising temperature, and 
appreciable sea level in Africa is a threat to the long-term 
growth of the sector. These physical risks are a manifestation 
of the evolving concern on the long-term impact of 
greenhouse gas (GHG) emissions (IPCC, 2014). GHG emissions 
properties affect both the human and non-human components 
that make up the agricultural system (Tol, 2009). Eckstein et 
al. (2021) state that climate variability causes socio-economic 
consequences through the manifestations of extreme volatility 
in climate weather conditions. This weather volatility 
produces weather shocks (Devereux, 2007), generates climate 
change that boosts biotic stress such as insects (pests) and 
weed growth, creates a decline in soil beneficial microbes, and 
threaten pollinator (Shahzad et al., 2021).  

Severe environmental disruptions affect agricultural 
performance because climate change and agriculture have a 
causal link. The agricultural sector and global food insecurity 
therefore deeply correlate with climate instability (Saina et al., 
2013). For example, dynamic movement in the glacier called 
glacier melting and retreating have serious implications for 
the water content and water supply for irrigation and 
hydropower generation (Oerlemans, 2005).  

An evidential issue of rising sea temperature in oceans is 
coral bleaching. According to Reaser et al. (2000), coral 
bleaching is a water-damaging situation that potentially 
threatens the entire coral reefs which provide support 
mechanisms to the marine organism. Coastal ecosystem 
degradation e.g., wetlands and coral reefs have serious 
implications for the entire composition of the agriculture 
system and productivity. Also, in terms of flooding, Nordhaus 
(2006) asserts that the consequences of flooding affect 
national economies. European Academics' Science Advisory 
Council posits that the incidence of flooding has grown by 50% 
in the past decades and more still occurring at a rate four times 
higher than it was twenty years ago. Climate variability causes 
vulnerability in food security and generates agricultural losses 
due to flooding.  

There are predictions that the average global temperature 
will heat up from 0.9 oC to 1.5 oC by 2050 and could be higher 
based on the desertification indicator (Arora, 2019). Since 
global temperatures have risen substantially over the years, 
many environmental diseases caused by extreme weather e.g., 
cold spells and heat waves affect the attitude, topography, and 
cause environmental disturbance on yields, and portend 
serious threats to livestock.  

The implosive dangers due to the inestimable effect of 
climate change remain a major policy problem because it could 
cause development reversal through famine due to agricultural 
yield and food value chain disasters. Based on the annual 
report by Weather, Climate, and Catastrophe Insight, natural 
disaster costs to the global economy between 2016 and 2018 
increased from $200 billion per year to $225 billion per year. 
Similarly, the 2020 World Food Program report, Global 
Assessment of Land Degradation and Improvement, and United 
Nations Environment Program have jointly estimated that crop 
yield per hectare is significantly slower than the population 

growth, a quarter of the land area globally is degraded due to 
anthropogenic activities and climate change, and more than 
600 million hectares of farmland have become infertile due to 
drought and desertification, respectively.  

On the other hand, the agricultural sector through 
fertilizer utilization and fossil-fuel uses results in carbon 
emissions (sub-specie of GHGs) which aggravate global 
warming that stimulates climate change trends that generate 
climate variability. With an estimated world population of 9.7 
billion people per thousand by 2050, pressure on agricultural 
land to meet the growing demand for food production becomes 
a policy dilemma. Two paradoxes exist in the nexus 
surrounding carbon emission and climate change and on the 
other hand agricultural productivity and food security 
(supply). First, is the increasing impact of the anthropogenic 
manipulation of natural resources that eventually accentuates 
global warming. Due to the unexaggerated rising demand for 
food caused by the growing population, policymakers have 
proposed and utilized an unprecedented agrochemical 
practice, expansive water exploitation, and livestock 
generation. These practices have aggravated the GHG trends 
arising from over-exploitation (Arora, 2019).  

Second, human activities on the farms affect the weather 
and temperature conditions that in turn damages human 
directly through the utility function and indirectly through 
productivity channels. Agriculture and food processing 
account for 19%-29% of global anthropogenic GHG emissions, 
emitting 9,800-16,900 megatons of carbon dioxide equivalent 
(Vermeulen et al., 2012). Also, stimulating mechanized 
farming and other measures to accelerate crop production 
produce radioactive effects and anthropogenic changes in 
atmospheric composition which in turn increase CO2 
concentration and GHG emissions (Milly et al., 2002). 
Scientifically, carbon emission spillover is observed through 
human activities on the farm. A notable effect of carbon 
emission is the carbon concentration that aggravates climate 
change problems. Thus, climate change causes climate 
vulnerability that disrupts the ecosystem and makes economic 
interactions susceptible to the (Hallegate et al., 2018; Hertel & 
Rosch, 2010) as well as dampen long-run food security. The 
concern on the nature of climate pattern which generates high 
temperature and flooding enthrones factors that affect food 
security as well as cause developmental trauma through 
increasing agricultural (food) prices, the aggregate decline in 
calories, crop losses, and water contaminations (Pacetti et al., 
2017). This scenario creates social tension, threatens social 
survival, impedes sustainability, and threatens climate change 
adaption (mitigation) strategies (Adger, 2006; Smit & Wandel, 
2006).  

In Figure 1, Sullivan and Byambaa (2013) showed a 
geographical climate vulnerability index. However, in Figure 
2 GermanWatch shows graphical representations of the global 
climate risk index between 2000 and 2019. Both Figure 1 and 
Figure 2 provide overwhelming problems for the global 
community.  

Climate change and the agricultural sector nexus have 
been extended in Hallegatte et al. (2018). Carbon emissions, 
climate change, and agricultural linkage cause associated 
damages in it goal 1 and goal 2 of the SDGs. One could recall 
that goal 1 of the UN’s 17 sustainable development goals 
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(SDGs) is zero poverty and goal 2 of the SDGs is to end hunger, 
achieve food security, improve nutrition, and promote 
sustainable agriculture. But climate change impedes SDGs 
such that higher climate variability leads to higher flooding, 
higher flooding leads to food insecurity, and food insecurity, 
in turn, and food insecurity causes instability that increases 
poverty incidences (De Silva & Kawaski, 2018). From the 
graphical representation, the African region has moved from 
the medium in 2000 (Sullivan and Byambaa, 2013) to the range 
of 21%-100% between 2000 and 2019 (GermanWatch, 2020). 

Given the precarious narrative of climate change presented 
above, climate change could limit food supply and disrupt the 
food system (food quality, food availability, and food value 
chain) with long-term implications for poverty reduction. 
Since, agriculture positively affects food supply it causes 
inestimable problems for global poverty reduction strategy 
(PSR) (Hallegatte et al., 2018).  

Policymakers in Sub-Saharan Africa are seriously 
concerned about zero poverty (goal 1) and zero hunger (goal 2) 
targets. Poverty and hunger targets are complex and self-
propagating with lack of employment (income) as the common 
denominator (Leichenko & Silva, 2014). World Bank (2021) 
posited that global extreme poverty rose in 2020 due to the 
COVID-19 pandemic. Extreme poverty hovers between 9.1% 
and 9.4% of the world’s population in 2020. According to 
Khoday and Ali (2018), one-third of the global population are 
poor or near-poor and faces consistent threats to survival.  

On the other hand, the progress to achieve zero-hunger 
2030 targets has come under heavy disruption, between 720 
million and 811 million individuals experienced hunger in 
2020. This is an addition of 118 million individuals to the 
numerical incidence experienced in 2019. UN (2021) showed 
that between 2019 and 2020, the prevalence of 
undernourishment moved from 8.4% in 2019 to 9.9% in 2020. 
The total number of undernourished is put at 768 million in 
2020. Sadly, the decomposition of these numbers showed that 
282 million live in Africa, 418 million reside in Asia, and 60 
million reside in Latin America. Thus, between 2019 and 2020, 
an additional 46 million, 57 million, and 14 million hungry 
people were added to the numbers in Africa, Asia, and the 
Caribbean, respectively. Statistically, 2.37 billion suffered food 
insufficiency in 2020. This number rose by an additional 320 
million within one year. This staggering data have also 

translated to a stunting growth scenario in affected 
economies. About 149.2 million, which is about 22.0% of 
children under the age of five years globally are affected by the 
disturbing global food system. Additionally, FAO (2021) 
forecasted that about 660 million people could face hunger in 
2030. The effect of changing climate hazards and other 
exposures connote that the world’s poverty rate could be about 
7% or more by 2030. About 132 million poor people globally 
dwell in areas with high flood risk.  

Climate variability leads to lower resilience for low-income 
countries in managing future shocks and diminished shared 
prosperity (Olsson et al., 2014, Skoufias, 2012; The Fifth 
Assessment Report, 2015). Thus, climate change can push 
between 68 million and 132 million into income-related 
poverty by 2030. On the whole, the forces of climate change 
continue to trigger cycles of higher income inequality, and 
lower social mobility, and disrupt labor productivity through 
low agricultural yield and sectoral downturns.  

FAO (2021, p. 1) attests that “the world is at a critical 
juncture.” World Bank (2021, p. 1) stipulates that “there are 
high tendencies that climate change, conflicts, and structural 
economic shocks, etc will constitute devastating cost as well as 
disrupt long-run economic trajectory if left untreated.” The 
reports by FAO (2021) and World Bank (2021) jointly 
incentivize the rationale to reconsider the climate change and 
agricultural nexus. Climate change via its climate vulnerability 
channels enforces its impact on poverty and hunger through 
agricultural and financial system channels.  

Scholars are deeply overwhelmed about the direction of 
causality, shock, long-run impact, and risks permeating the 
linkage between climate change, agricultural output, financial 
risk, and poverty (hunger). This is because of the existence of 
variations in the regional weather pattern and differences in 
topography. Due to policy inconsistencies inherent in 
estimating the impact of changing climate patterns on 
economic activities, this study would be limited to climate 
change and global agricultural productivity in Nigeria. 

The significance of this study is largely connected with the 
observable policy inconsistencies disrupting policy actions to 
de-trend the impact of climate change and the several 

 
Figure 1. Climate vulnerability index (Sullivan & Byambaa, 
2013)  

Figure 2. Global climate risk index (Eckstein et al., 2021) 
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limitations frustrating PSR and structural adjustments in 
economic patterns to boost economic activity.  

From previous studies, the disaggregated agricultural 
examination is under-reported in the carbon emission, climate 
change, and agricultural productivity nexus. Hence, this paper 
seeks to examine the impact of climate change on 
disaggregated agricultural productivity. This paper estimates 
the impact of carbon emission (a proxy for climate change) on 
agricultural productivity (proxy by agricultural contribution to 
GDP). Furthermore, it is against this backdrop this paper 
investigates the impact of climate change on crop production 
and food production in Nigeria. The motivating questions 
therefore becomes whether carbon emissions (climate change) 
impede agricultural growth in Nigeria (Africa). Does climate 
intensity affect AgricGDP? Specifically, what is the impact of 
carbon emission on agricultural contribution to GDP 
(AgricGDP), food production, and crop production?  

This paper is divided into five sections namely, 
introduction, literature review, data and methodology, results 
and discussion, and conclusion and recommendation. 

LITERATURE REVIEW 

In a broad term, the intricate nexus underpinning climate 
change and agricultural productivity could be viewed from the 
following linkages. Firstly, climate change affects agricultural 
productivity through direct channels (e.g., unpredictable 
weather patterns, high temperatures, flooding) and indirect 
channels (e.g., physical risk on loans, financial shock: distort 
equilibrium interest rate). Secondly, low agricultural 
productivity yields affect climate change through direct 
channels (hunger, insecurity, and inequality) and indirect 
channels (deviant behavior towards mitigation and 
adaptation). Thirdly, agricultural productivity directly affects 
poverty incidence (e.g., low crop yield and low employment 
channels) and climate change (e.g., generation of carbon 
dioxide in the application of fertilizer and use of heavy-duty 
equipment). Fourthly, GHG emission control policy set limits 
on sectoral (agricultural) productivity by altering the energy 
mix (fossil-fuel use) that affect agricultural yields 
(employment of inputs) which causes a decline in agricultural 
yields which results in unemployment and low calorie (De Silva 
& Kawaski, 2018; Hertel & Rosch, 2010; Pacetti et al., 2017). 
Fifthly, transmission effects emanating from climate change to 
agricultural output can be deduced from the development 
reversal channels. Low agricultural productivity causes 
poverty, hunger, inequality, unemployment, and insecurity 
which threatens and disrupts economic activities due to cut-
back (shutdown) in agricultural-related economic activities 
(United Nations Department of Economic and Social Affairs, 
2016).  

Specifically, Hallegatte et al. (2018) identified prices, 
assets, productivity, and opportunities channels as 
permissible paths to measure climate change’s impact on 
poverty. According to Hallegatte et al. (2018) “the link between 
poverty and climate vulnerability goes two ways namely, 
climate change is one major driver of people’s vulnerability to 
climate-related shocks and stressors, and this vulnerability 
subjectively set people in poverty.” Moser (2008) suggests that 

health shocks are the prominent channels in why people fall 
into poverty. The assessment of shock waves using Hallegatte 
et al. (2016) perspective aligns with Krishna (2006) that 
poverty shocks are generated directly or indirectly from the 
environment and climate. One of the causes of climate-related 
shock that causes poverty is natural risks e.g., the drought that 
makes an investment in agribusiness risky and causes 
depletion of natural capital, fiscal shocks, and misallocation of 
funds (Elbers et al., 2007). On the other hand, Barbier and 
Hochard (2018) demonstrate that cities with poor biophysical 
settings or lack of market access have a lower elasticity of 
poverty reduction to growth. Thus, inclusive and robust 
economic growth is required to attain overall poverty 
reduction. Stern’s (2006) report complements the World 
Bank’s study of 2008 that focused on the potential impacts of 
climate variability on poverty and development. The linkage 
between climate variability and human development is 
captured in Carvajal-Velez (2007), IPCC (2015), United Nations 
Economic Commission for Africa (2010), and World Bank 
(2003).  

Theoretical Literature 

Analytically, the environmental Kuznets curve (EKC) is 
employed to estimate the relationship between pollution and 
income per capita. The leading critiques of the EKC have 
argued that the econometric framework of EKC is subjective 
(Arrow et al., 1995; Copeland & Taylor, 2004; Stern, 1998). 
Dasgupta (2002) argued that EKC is monotonic. There are two 
perspectives to this argument namely new toxics and race-to-
the-bottom scenarios. The new toxics scenario posits that EKC 
does not hold for new toxics e.g., carcinogenic chemicals, and 
carbon dioxide. On the other hand, the race to the bottom 
scenario asserts that EKC is inconsistent because of the 
outsourcing operation by developed countries in which they 
outsource dirty production to developing countries thereby 
making it increasingly difficult for emissions to be reduced. 
The revised EKC further argued that arising from inevitable 
technological changes, EKC shows a downward curve behavior 
shifting to the left (Stern, 2004). Stern (2004) contends that the 
proximate causes that define the EKC relationship are namely, 
the scale effect (expansion), the changes in economic structure 
or product mix, changes in the technological state, different 
industrial pollution, and changes in input mix.  

In a similar vein, scholars try to decompose pollution, a 
major issue in the EKCs. Selden and Song (1994) estimated 
EKCs using four-dimensional series namely SO2, NOx, SPM, 
and CO2. Shafik and Bandyopadhyay (1992) studied EKC from 
10 indicators. Grossman and Krueger (1991) estimated EKCs 
using SO2, dark matter (fine smoke), and suspended particles 
(SPM). In a related development, pollution was decomposed 
into local pollution and global pollution in the study of EKC 
(Lopez, 1994). According to Lopez (1994), local pollution is 
amenable to EKC rather than global pollution. Also, pollution 
generated from consumption rather than production was 
considered in a study such as McConnel (1997).  

Empirically, the EKC is conceptualized in the literature 
from two generations of analysis. Firstly, first-generation EKC 
(FGEKC) conceptualized a two-phased dimension: increasing 
and decreasing functional relationship between income 
inequality and economic development expansion over time 
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(Kuznets, 1955). Secondly, FGEKC estimated that income 
inequality first rises and then falls as economies develop. In 
the second generation, the concept of EKC (SGEKC) further 
hypothesized a two-dimensional relationship between 
pollution events and economic growth per capita (Grossman & 
Krueger, 1991; Shafik & Bandyopadhyay, 1992).  

The apparent difference between FGEKC and SGEKC is the 
attention placed on income inequality (FGEKC) and GDP per 
capita (SGEKC). The underpinning argument anchored in both 
FGEKC and SGEKC is that pollution is a sub-specie of 
development. Based on development realities, EKC argued 
that greater economic activity constitutes a task to 
environmental quality through technology-pollution 
channels. The SGEKC, therefore, views the scale effect as the 
core explanatory variable on the relationship between 
environmental pollution and income per capita. Within the 
SGEKC, two methodological frontiers exist that decomposed 
the two-dimensional EKC into a square-EKC model and a 
cubic-EKC model. The SGEKC model estimated a functional 
relationship between environmental pollution and quadratic 
(or cubic) GDP per capita.  

The apriori expectation for the quadratic GDP per capita 
and cubic GDP per capita is given as β2ρ2<0 and β3ρ3>0, where 
βiρi is parameter, GDP per capita, and i=2, 3, respectively. 
These signs connote a decreasing (economies of scale) and an 
increasing (diseconomies of scale) pattern in the relationship 
between environmental pollution and GDP per capita.  

Theoretically, the behavior of the relationship between 
climate change (environmental pollution) as a function of 
quadratic GDP per capita (β2ρ<02) is found to be an inverted U-
shaped i.e., based on the quadratic school of thought. Various 
degrees of EKC exist in the literature. The cubic school of 
thought (β3ρ3>0) viewed the functional relationship between 
environmental pollution and cubic GDP per capita as an N-
shaped (Grossman & Krueger, 1991). Panayotou’s (1993) 
finding is consistent with the inverted U-shaped of the SGEKC. 
Panayotou (1993) argued that higher levels of development, 
coupled with investment and enforcement of environmental 
regulations result in levelling-off and the gradual decline of 
environmental degradation. The implication of the inverted U-
shaped is that in the infant stage of economic growth, 
degradation, and pollution increase, and after a certain period 
high-income levels of economic growth leads to 
environmental improvement (Stern, 2004). 

Empirical Literature 

Early studies on climate change on productivity are 
traceable to Cline (1992), Fankhauser (1995), Nordhaus (1991), 
Titus (1992), and Tol (2002). Studies on how weather (climate 
change) retards economic development have evolved from per 
capita income and temperature studies (Nordhaus, 2006) to 
biodiversity and ecosystem (Champ et al., 2003) to 
institutional response (Easterly & Levine, 2003) to question 
about annual growth rate (Fankhauser & Tol, 2005) to 
induced-conflict due to scarcity (Salehyan, 2008; Zhang et al., 
2007) to trade and development (Hubler, 2016). Climate 
change and poverty are inextricably intertwined (McCarthy, 
2020) and flow intertemporally (Hallegatte et al., 2016). 
Climate change aggravates poverty through direct channels 
e.g., high temperatures, extreme rainfall, and natural disasters 

(Aragie, 2013), indirect channels e.g., transitory-demand and 
supply shocks, and immediate channels e.g., financial shock 
and agricultural price shock, and the feedback consequences of 
poverty impede environment quality.  

The general impact of climate change on agricultural 
productivity can be deduced from the fact that the different 
patterns of rainfall cause variability in the flood. The 
evaluation utilized a comprehensive hydrologic and hydraulic 
model (Hettiarachchi et al., 2018). Also, the forecast of 
rainfall-driven flood risk, principally accounted for by climate 
change is captured in Kundzewicz et al. (2013). The result of 
the study is consistent with the IPCC SREX assessment. The 
study showed distinguished two major floodings such as flash 
flooding and urban flooding are caused by climate change, but 
the nature of rainfall is connected to the detailed nature, 
magnitude, or frequency of climate change. Vermeulen et al. 
(2012) found a bi-causality between food systems and climate 
change. The core drivers in this bi-causality are the prevailing 
social conditions.  

Schreider et al. (2000) in a study titled “climate change 
impacts on urban flooding” explained that GCMs’ slab model 
showed that between 2030 and 2070 climate change might 
cause less significant urban flood damage. On the contrary, the 
stochastic weather generator technique found that the higher 
the CO2 concentration the higher the damage. Also, the study 
utilized the hydrological model to estimate the CO2 and flood 
relationship. The study found that doubling CO2 conditions 
cause a positive impact on flooding though the result varies 
from place to place. 

Milly et al. (2002) identified radioactive anthropogenic 
climate change and flood risk causality through the 
intensification of the global water cycle. The study concludes 
that the flood trend is continuously based on the climate 
change impact using both stream flow measurement and 
numerical simulations of the anthropogenic climate changes. 
Flood affects daily calorie consumption by approximately 60 
kcal. Flood brings about an increase in the deficiency level of 
iron, vitamin A, and vitamins C by 11%, 12%, and 27%, 
respectively. The risk of exposure to natural disasters leads to 
a decline in income by 3%, drives 3% of the household to 
poverty, and causes significantly lower diet quality and 
quantity with difficult consumption coping strategies 
(Oskorouchi & Sousa-Poza, 2021). Dorward and Kydd (2002) 
posit that erratic rainfall lowers the productivity of rural 
economies through a decline in returns on investment, 
distortions of investment by increasing investment hazard, 
and discouraging investment due to the risk-averse nature of 
investors. 

Experiences of global warming caused by climate change 
portend a threat to poverty reduction strategies through the 
associated economic agents’ exposure to shocks, uncertainty, 
and risks. More troubling is the depleting global dimension of 
climate change. Smith et al. (2021) link the climate-poverty 
nexus through conflicts by their impact on retarding political, 
economic, and social conditions. Therefore, climate-conflict 
linkage creates a pervasive and stimulant nexus that cause 
poverty. Scholars are unanimous on the noticeable causality 
existing between consequences of climate variability-global 
warming and flooding-food insecurity. The dimension of this 
logic underpinning this causality exposes the climate-flood 
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risk-poverty causality to further studies based on the emerging 
reality of climate change (GHG emission) incidences.  

The emerging trends show that flooding, rising 
temperature, and appreciable sea level are perceptibly related 
to the impact of GHG emissions. GHG emissions properties 
affect both the human and non-human components that make 
up the agricultural system (Tol, 2009). This is because 
exposure, susceptibility, and management of climate hazards 
depend on the prevailing structural inequalities governing the 
societal arrangement (World Economic and Social Survey, 
2016). Economists have linked carbon emission control policy 
to causing poverty because of the significant impact carbon 
emission control policy has on the global energy mix used for 
generating power for the industries that contribute to GDP. So, 
at the end thereof, a carbon emission reversal policy on the 
energy mix transmits productivity shocks that affect poverty 
reduction strategies and widen inequality gaps through GDP 
and FDI inflow. This implies that carbon emission policy 
causes productivity shock and income shock that worsen 
poverty (Hallegatte et al., 2016) and inequality indices (Islam 
& Winkel, 2017).  

On the other hand, high poverty and inequality threaten 
mitigation and adaptation (Hallegate et al., 2018) that could 
seamlessly lead to climate vulnerability reversal (Geoff et al., 
2008). The task of reducing climate change and poverty jointly 
is at the center of development discourse. Two important 
poverty reduction strategies adopted by low-income countries 
are by improving and accelerating inclusiveness. The negative 
link between poverty and carbon emission control policy 
explains the analytical framework for this study. Carbon 
emissions and incomes differ between high-income countries 
and low-income countries in terms of industrial contribution 
to GDP. Carbon per person and per ecological emission is 
driven by income concentration, with the concentration of 
income potentially being a threat to mitigation, compliance, 
adaptation, and enforcement (Caron & Fally, 2018). The 
literature shows an increasing functional relationship between 
emission and income inequality through differential exposure 
and vulnerability. However, the net increase in emissions 
remains in contention in the literature arising from rising 
emission-rising income in a developed country and rising 
emission-lowering income in developing countries as well as 
defined by poor people’s emissions higher than the decrease of 
consumption by rich people. The empirical link shows that 
emissions increase more slowly than income in most 
developed and middle-income countries.  

According to Guterres (2021), “climate shocks and the 
COVID-19 pandemic are increasing threat to humanity.” The 
compounding forces of COVID-19 crisis, conflict, and climate 
variability e.g., GHG emission CO2concentration proxy by 
flooding and temperature impact negatively on poverty 
reduction strategy (World Bank, 2020). By this reality, the 
socio-economic consequences of climate hazards typify that 
the dimension of climate variability manifests in many ways 
through increased volatility of extreme weather events 
(Eckstein et al., 2021). Devereux (2007) posits that extreme 
weather event produces weather shock that triggers a 
sequence of entitlement failure. The new realm of global food 
insecurity caused by factors not limited to climate variability 

(Saina et al., 2013) calls for action to avoid developmental 
reversal due to climate hazards.  

Also, another dimension of poverty is hunger. Hunger’s 
resistance to policy sequencing targeted at rationalizing global 
resources is the most profound moral contradiction of our age 
(Cohen, 1995). Guterres (2021) contends that over 30 million 
people are ‘just one step away from a declaration of famine. 
Bucher (2021) people are being starved. Beasley (2021) the 
head of the World Food Program (2020, 2021) estimates over 
16 million people in Yemen are now plagued with crisis levels 
of hunger. In 2020, one in nine people were estimated to be 
hungry or undernourished while 149 million children under 
the age of five years are still affected by stunting globally 
(Global Nutrition Report, 2020). At the end of 2020, over 88 
million people suffered acute hunger due to unpredictable 
dynamism. Between 2018 and 2019, the incidence of 
undernourished people due to food insecurity grew by 10 
million, and there are nearly 60 million more undernourished 
people now in 2014. Much more, over 690 million people still 
go hungry which is 8.9 percent of people globally. UN report 
identified conflict as a major driver of hunger (Action Against 
Hunger, 2020). Conflict is to a large extent influenced by 
climate variability (Burrrows & Kinney, 2016; Smith et al., 
2021). Conflict (insecurity) e.g., Boko Haram affects 
agricultural productivity by causing desertion of farmland. 
Flooding, therefore, becomes a threat to the achievement of 
SDGs to end poverty (Del Ninno et al., 2003). The 
consequences of flooding affect national economies 
(Nordhaus, 2006) and labor market (Mueller & Quisumbing, 
2011), which drives upward the trend of poverty (Del Silva & 
Kawasaki, 2018). Another paradox aside from the climate 
change-poverty causality is the revelation that agriculture and 
food processing account for 19%-29% of global anthropogenic 
GHG emissions, emitting 9,800-16,900 megatons of carbon 
dioxide equivalent (Vermeulen et al., 2012). Thus, the policy 
impact to stimulate mechanized farming and other measures 
to reduce poverty produce radioactive effects and 
anthropogenic changes in atmospheric composition which in 
turn increases CO2 concentration and GHG emission (Milly et 
al., 2002).  

Climate variability causes vulnerability in food security 
and generates agricultural losses due to flooding. This scenario 
creates social tension, threatens social survival, impedes 
sustainability, and threatens climate change adaption 
(mitigation) strategies (Adger, 2006; Smit & Wandel, 2006). In 
terms of hampering adaptation, the inestimable food 
insecurity-poverty-generated phenomenon crashes socio-
economic policy on inclusiveness (D’Souza & Jolliffe, 2012, 
2013) as more and more people become economically 
disadvantaged due to the vulnerability of climate variability 
(Oskorouchi & Sousa-Posa, 2021). Climate variability 
increases flooding and hence poverty. Scholars have become 
aggressive in the questions on the causal link existing between 
climate diffusion and poverty. One of its kind is the food 
insecurity (shortages) caused by the change in statistical 
properties of weather events and flooding.  
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DATA AND METHODOLOGY 

Data sourced from World Development Indicators was 
employed for this study. This study adopts a quasi-
experimental research design. ARDL method was utilized to 
account for time-varying impacts of climate variability (proxy 
by CO2 emission and CO2 intensity) on Agricultural GDP 
(AgricGDP), food production index (FOODPI), and crop 
production index (CROPI) in Nigeria. From the literature, 
poverty is linked with climate variability through drought, 
flood, extreme temperature index, desertification, etc., which 
causes a decline in crop yield as well as causes investment risk 
in the agribusiness outlook. Hence, employment falls and 
inflation grew which cripples’ income and standard of living 
thereby leading to poverty. 

Model Specification 

Based line model is obtained from the EKC model. For 
clarity, EKC is therefore decomposed into FGEKC (first 
generation EKC) and SGEKC (second generation EKC). 

The FGEKC is given, as follows: 
Inequality=f (economic development)                                         (1) 

However, the SGEKC states that  
Pollution=f (quadratic or cubic GDP per capita)                      (2) 
The standard SGEKC regression conceptualized by 

Grossman and Krueger (1995) is given, as follows: 

(
𝐸

𝑃
)

𝑖𝑡
= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝐼𝑛 (

𝐺𝐷𝑃

𝑃
)

𝑖𝑡
+ 𝛽2𝐼𝑛 (

𝐺𝐷𝑃

𝑃
)

𝑖𝑡

2
+ 𝜀𝑖𝑡                (3) 

where E is emission, P is population, GDP is gross domestic 
product, In indicates natural logarithm, and 𝛼𝑖 , 𝛾𝑡  represent 
intercept parameters, which vary across countries or region i 
and years t. The prevailing assumption is that emissions per 
capita may differ over countries at any particular income level 
(Stern, 2004). The turning point where emissions or 
concentration are at maximum is given, as follows: 

𝜏 = 𝑒𝑥𝑝 (
−𝛽1

2𝛽2
)                                                                                    (4) 

Based on the warning issued by UN Secretary-General 
Antonio Guterres (2020), this study undertook modifications 
in the baseline model EKC by transposing the SGEKC i.e., 
interchanging the LHS and RHS function in the SGEKC. The 
modified SGEKC does not consider the quadratic changes in 
the regressors. This is because, only one type of growth (GDP) 
i.e., agricultural contribution to GDP (Agric. GDP) is 
considered in this study. Hence, 

Agric.Producitivty = f (Carbon emissions)                                    (5) 

where agricultural productivity is proxy by Agric.GDP, as 
follows: 

𝐴𝑔𝑟𝑖𝑐. 𝐺𝐷𝑃𝑡 = 𝑓 (𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡,𝜇𝑡
)                                              (6) 

where CO2 Emissions and intensity is proxy by carbon 
emissions: 

𝐴𝑔𝑟𝑖𝑐. 𝐺𝐷𝑃𝑡 = 𝑓 (𝐶𝑂2𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑡,𝜇𝑡
)                                              (7) 

𝐴𝑔𝑟𝑖𝑐. 𝐺𝐷𝑃𝑡 = α1 + β2𝐶𝑂2𝐸𝑀𝑡 + β3𝐹𝐶𝑃𝐿𝑡 + β4𝑇𝐿𝐹𝑡 +

β5𝑅𝐼𝑁𝑇𝑡 + β6𝐼𝑁𝐹𝑡 + β7𝑃𝑀𝐶𝐿𝑡 + β8𝐴𝑉𝐷𝑃𝑊𝑡 + 𝜇𝑡                (8) 
𝐴𝑔𝑟𝑖𝑐. 𝐺𝐷𝑃𝑡 = α1 + β2𝐶𝑂2𝐼𝑁𝑇𝑡 + β3𝐹𝐶𝑃𝐿𝑡 + β4𝑇𝐿𝐹𝑡 +

β5𝑅𝐼𝑁𝑇𝑡 + β6𝐼𝑁𝐹𝑡 + β7𝑃𝑀𝐶𝐿𝑡 + β8𝐴𝑉𝐷𝑃𝑊𝑡 + 𝜇𝑡                   (9) 

𝐹𝑜𝑜𝑑𝑃𝐼𝑡 = α1 + β2𝐶𝑂2𝐼𝑁𝑇𝑡 + β3𝐼𝑁𝐹𝐿𝐴𝑡 + β4𝐴𝑉𝐷𝑃𝑊𝑡 +
β5𝐹𝐸𝑅𝑇𝐶𝑂𝑁𝑆𝑡 + β6𝑃𝑂𝑃𝑡 + β7𝐸𝑀𝑃𝐿𝐴𝐺𝑅𝑡 +

β8𝐴𝑅𝐴𝐵𝐿𝐴𝑁𝐷𝑡 + 𝜇𝑡                                                                    (10) 
𝐶𝑟𝑜𝑝𝑃𝐼𝑡 = α1 + β2𝐶𝑂2𝐼𝑁𝑇𝑡 + β3𝐼𝑁𝐹𝐿𝐴𝑡 + β4𝐴𝑉𝐷𝑃𝑊𝑡 +

β5𝐹𝐸𝑅𝑇𝐶𝑂𝑁𝑆𝑡 + +β6𝐸𝑀𝑃𝐿𝐴𝐺𝑅𝑡 + β7𝐴𝑅𝐴𝐵𝐿𝐴𝑁𝐷𝑡 + 𝜇𝑡  (11) 
where Agric.GDP is agriculture contribution to GDP, CROPPI 
is crop production index, FOODPI is food production index, 
CO2EM is CO2 emissions<0, CO2INT is CO2 intensity<0, FCPL is 
fertilizer consumption per land>0, TLF is total labor force>0, 
RINT is real interest<0, INF is inflation>0, PMCLis permanent 
crop land>0, AVDPW is agricultural value added per worker>0, 
FERTCONS is fertilizer consumption>0, EMPLAGR is 
employment in agriculture>0, ARABLAND is arable land>0, αi 
is constant, and 𝜇𝑖𝑡is stochastic term, t=1, 2, … (Appendix A). 

RESULTS AND DISCUSSION 

Table 1 shows the regression results for model 8-11. From 
model 8, there is a long relationship between CO2 emission, 
CO2 intensity, FOODPI, CROPPI, and Agric.GDP in Nigeria. 
The value of the F-test is greater than the upper and lower 
bound tests. The result implies that climatic effects could 
disrupt agricultural production and in turn, agricultural 
mechanizations could spur climate change stress. The co-
integration between CO2 emission and Agric.GDP is 62.09% 
and the impact of CO2 emission is infinitesimally positive and 
significant at 5%.  

The result shows that a 1% change in inflation and real 
interest significantly impact Agric.GDP by 19.3% and 18.2%, 
respectively. But the result shows that fertilizer consumption 
per land and permanent cropland negatively impact 
Agric.GDP. Thus, a one percent change in fertilizer 
consumption per land and permanent cropland, Agric.GDP by 
14.1% and 351%, respectively. There are mixed findings on the 
impact of carbon emissions and carbon intensity on 
Agric.GDP. But the manifestation of the negative impact of 
carbon emissions on crop and food production index shows the 
effect of climate change on agricultural productivity. The 
result could be due to the deteriorating effect of insecurity and 
activities of oil spillage on agricultural land.  

In model 9, CO2 intensity has a negative and non-
significant impact on Agric.GDP. The speed of adjustment 
between CO2 intensity is 34.4% and there is an existence of a 
long-run relationship that implies that CO2 intensity and 
emission could produce long-run vulnerability in the long-run 
for the agricultural sector. Unlike in model 8, in model 10, CO2 
emission has a significant and long-run negative impact on the 
food production index with an 85% speed of adjustment. Also, 
model 11, shows that CO2 emission has a long-run negative 
and significant impact on crop production index with a 51% 
speed of adjustment. Except for model 8, model 10, and model 
11, the result showed the impact of CO2 emission on Agric.GDP 
conforms to economic interpretation. This implies that CO2 
emissions impede agricultural productivity.  

CO2 emissions (a proxy for carbon emissions) through their 
direct impact on unpredictable rainfall, drought, and flood, 
distort agricultural productivity which cripples poverty 
reduction strategies through employment channels, and 
inflicts more hunger by causing food deterioration and famine. 
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In the North-East, the direct link between climate change and 
the declining water volume in Lake Chad, thus, throw-up 
famine, hunger, and poverty due to the impact of drying Lake 
Chad on the agricultural lifecycle.  

Nigeria’s 33.3% unemployment rate could be indirectly 
linked to CO2 emission impact on agricultural productivity 
which consistently and persistently disrupts the supply chain 
and crop yield that creates low employability in the sector. The 
result confirms previous studies e.g., Devereux (2007) and 
Dorward and Kydd (2002) that climate change has a disruptive 
impact on agriculture which in turn complicate and distort 
poverty reduction strategies. The negative relationship 
between climate change and agricultural productivity implies 
that the higher the climate change variability to lower the 
agricultural yields. Hence, lower agricultural yields thereby 
lead to a decline in employment and income which in turn 
cause poverty reduction risk. Also, the implications of this 
connote that economic interaction faces serious disruption as 
carbon emissions has continuously been emitted into space. 
Thus, the interplay of economic variables that enable 
economic growth, therefore, the potential of the economy to 
achieve SDGs goal 1 and goal 2 tends to be susceptible. 

CONCLUSION AND RECOMMENDATION 

This study is premised on the nexus between carbon 
emissions and agricultural productivity. The term productivity 
is defined based on Hallegatte et al. (2018). Therefore, there is 
a long-run linkage between carbon emissions and the intensity 
of agricultural productivity in Eq. (8-11). The study finds 
indirectly that poverty and food shortage (insecurity) is 
probable in the long run. Climate change caused by 
irredeemable and irreversible carbon emissions generates 
physical risks that disrupt agricultural-related activities.  

From the results in Table 1, carbon emissions produce a 
long-run threat to agricultural-related economic activities in 

Nigeria which in turn affect food security and zero-hunger and 
poverty targets. That is, carbon emission causes climate 
change which generates climate vulnerability in the ecosystem 
and creates biotic stresses that increase pests and cause a 
decline in soil fertility (Shahzad et al., 2021). Climate 
vulnerability includes and is not limited to the unpredicted 
properties of weather events, flooding, and health-related 
issues that have been found to affect poverty by lowering 
productivity and GDP per capita through depressed crop yields 
link to rising sea levels, heat waves, super storms, and 
transitory risks. Also, through transitory risks the mitigation 
of emissions leads to a decline in firms engaged in agricultural 
value chain activities that in turn bring about negative growth 
hence poverty.  

The overarching problem is that firms in the agricultural 
sector are affected by the externality effect of carbon 
emissions (CO2 and pollution) and GHG emissions (global 
warming) that first cause climate change which disrupts crop 
yield as well as causes an inevitable transfer of earned income 
from investment on assets to CO2-health-related diseases. And 
cause low investment in the sector cause low productivity. 
These two issues thereby cause a decline in the income-
earning channel of the economic agents which disrupts the 
acquisition of new assets, new hiring, and hence poverty. The 
government should adopt strategies that will progressively 
reduce GHGs emissions and set GHGs codes and standards for 
industrial and household activities. Secondly, externality 
cause low investment arising from risks and hazards in the 
sector. Low investment tends to affect productivity. 
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Table 1. Regression results for model 8-11 
 AGRIC.GDP AGRIC.GDP FOODPI CROPPI 

CO2_EMISSIONS 0.000109 (0.0035)  -0.000445 (0.0091) -0.000307 (0.0032) 
CO2_INTENSITY  -4.252292 (0.4257)   
FERTCONSPERLAND -0.141517 (0.0064) -0.073640 (0.2642)   
TLABOFORCE 2.59E-06 (0.0006) 2.33E-06 (0.0000)   
REALINTR_ 0.181539 (0.0008) 0.243086 (0.0000)   
INFLA 0.192971 (0.0007) 0.159270 (0.0000) -0.030082 (0.1818) -0.123854 (0.0018) 
PERMANENT_CROPLAND -3.510377 (0.0060) -6.580449 (0.0007)   
AGRVADPERWORKER 0.013327 (0.0005) 0.015291 (0.0000) -0.001526 (0.4731) -0.004652 (0.3700) 
FERTILIZERCONS   0.006298 (0.0173) 0.001077 (0.5274) 
POPLA   -4.46E-05 (0.0536)  
EMPLOYAGRIC   7.705042 (0.0364) 12.64157 (0.0001) 
ARABLE_LAND   0.412030 (0.3132) 2.199790 (0.0004) 
R-squared 0.999961 0.988754 0.999986 0.999423 
Adjusted R-squared 0.999516 0.975259 0.999888 0.998462 
F-statistic-Prob (F-statistic) 2246.820 (0.0004) 73.26830 (0.0000) 10214.84 (0.00009) 1039.841 (0.0000) 
CointEq (-1) -0.620985 (0.0001) -0.343589 (0.0000) -0.859938 (0.0001) -0.512220 (0.0000) 
Jarque-Bera 0.53226 (0.7663) 1.33780 (0.5122) 1.45843 (0.48228) 0.538007 (0.76414) 
Breusch-Godfrey serial correlation LM test 0.3155 0.1655 0.0533 0.0778 
Heteroskedasticity test: Breusch-Pagan-Godfrey 0.4351 0.2298 0.9324 0.2772 
Ramsey RESET test 0.3327 0.2387 0.1799 0.8841 
Note. Source: Computed by the authors from EViews 9 
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APPENDIX A 

Model 1 

 

  
  

Table A1. 
Dependent variable: AGRICGDP   
Method: ARDL    
Date: 03/26/22 Time: 13:37   
Sample (adjusted): 1993 2018   
Included observations: 26 after adjustments  
Maximum dependent lags: 2 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (2 lags, automatic): CO2_EMISSION 
FERTCONSPERLAND TLABOFORCE REALINTR_ INFLA 
PERMANENT_CROPLAND AGRVADPERWORKER  
Fixed regressors: C   
Number of models evaluated: 4,374  
Selected Model: ARDL (2, 2, 2, 2, 2, 2, 2, 2)  
Variable Coefficient Standard error t-Statistic Prob.* 
AGRICGDP (-1) 0.122929 0.042330 2.904092 0.1009 
AGRICGDP (-2) 0.256086 0.031570 8.111753 0.0149 
CO2_EMISSION 0.000109 6.45E-06 16.88435 0.0035 
CO2_EMISSION (-1) 9.39E-05 7.72E-06 12.16427 0.0067 
CO2_EMISSION (-2) 9.34E-05 5.56E-06 16.79976 0.0035 
FERTCONSPERLAND -0.141517 0.011400 -12.41420 0.0064 
FERTCONSPERLAND (-1) -0.126891 0.011785 -10.76678 0.0085 
FERTCONSPERLAND (-2) -0.398836 0.025084 -15.90022 0.0039 
TLABOFORCE 2.59E-06 6.48E-08 40.02323 0.0006 
TLABOFORCE (-1) 6.29E-07 1.50E-07 4.203296 0.0522 
TLABOFORCE (-2) -2.06E-06 1.21E-07 -17.10785 0.0034 
REALINTR_ 0.181539 0.004984 36.42493 0.0008 
REALINTR_ (-1) 0.113014 0.011385 9.926871 0.0100 
REALINTR_ (-2) -0.053084 0.006568 -8.081838 0.0150 
INFLA 0.192971 0.004992 38.65630 0.0007 
INFLA (-1) 0.098368 0.008979 10.95516 0.0082 
INFLA (-2) -0.029573 0.004431 -6.674539 0.0217 
PERMANENT_CROPLAND -3.510377 0.272256 -12.89368 0.0060 
PERMANENT_CROPLAND (-1) -2.582966 0.466668 -5.534916 0.0311 
PERMANENT_CROPLAND (-2) 0.487154 0.382032 1.275167 0.3303 
AGRVADPERWORKER 0.013327 0.000297 44.83236 0.0005 
AGRVADPERWORKER (-1) -0.007610 0.000708 -10.74692 0.0085 
AGRVADPERWORKER (-2) -0.012721 0.000808 -15.74764 0.0040 
C -14.80878 2.030246 -7.294083 0.0183 
R-squared 0.999961 Mean dependent var 24.82605 
Adjusted R-squared 0.999516 S.D. dependent var 3.956536 
S.E. of regression 0.087022 Akaike info criterion -2.764109 
Sum squared resid 0.015146 Schwarz criterion -1.602789 
Log likelihood 59.93341 Hannan-Quinn criter. -2.429691 
F-statistic 2246.820 Durbin-Watson stat 3.094835 
Prob (F-statistic) 0.000445    
*Note. p-values and any subsequent tests do not account for model selection. 
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Table A2. 
ARDL Error Correction Regression  
Dependent Variable: D (AGRICGDP)  
Selected Model: ARDL (2, 2, 2, 2, 2, 2, 2, 2)  
Case 2: Restricted constant and no trend  
Date: 03/26/22 Time: 13:39   
Sample: 1960 2020   
Included observations: 26   
ECM regression 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
D (AGRICGDP (-1)) -0.256086 0.010324 -24.80544 0.0016 
D (CO2_EMISSION) 0.000109 1.73E-06 63.00476 0.0003 
D (CO2_ EMISSION (-1)) -9.34E-05 1.92E-06 -48.62530 0.0004 
D (FERTCONSPERLAND) -0.141517 0.002946 -48.04334 0.0004 
D (FERTCONSPERLAND (-1)) 0.398836 0.004836 82.47287 0.0001 
D (TLABOFORCE) 2.59E-06 1.62E-08 160.5668 0.0000 
D (TLABOFORCE (-1)) 2.06E-06 3.94E-08 52.34308 0.0004 
D (REALINTR_) 0.181539 0.001342 135.2589 0.0001 
D (REALINTR_ (-1)) 0.053084 0.001792 29.63091 0.0011 
D (INFLA) 0.192971 0.001045 184.6506 0.0000 
D (INFLA (-1)) 0.029573 0.001255 23.56773 0.0018 
D (PERMANENT_CROPLAND) -3.510377 0.081651 -42.99222 0.0005 
D (PERMANENT_CROPLAND (-1)) -0.487154 0.080370 -6.061393 0.0262 
D (AGRVADPERWORKER) 0.013327 5.34E-05 249.4968 0.0000 
D (AGRVADPERWORKER (-1)) 0.012721 0.000305 41.68778 0.0006 
CointEq (-1)* -0.620985 0.006030 -102.9741 0.0001 
R-squared 0.999946 Mean dependent var 0.033947 
Adjusted R-squared 0.999864 S.D. dependent var 3.339598 
S.E. of regression 0.038917 Akaike info criterion -3.379493 
Sum squared resid 0.015146 Schwarz criterion -2.605280 
Log likelihood 59.93341 Hannan-Quinn criter. -3.156548 
Durbin-Watson stat 3.094835    
*p-value incompatible with t-bounds distribution 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
F-statistic 235.6369 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 
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Table A3. 
ARDL Long Run Form and Bounds Test  
Dependent Variable: D (AGRICGDP)  
Selected Model: ARDL (2, 2, 2, 2, 2, 2, 2, 2)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 13:39   
Sample: 1960 2020   
Included observations: 26   
Conditional Error Correction Regression 
Variable Coefficient Standard error t-Statistic Prob. 
C -14.80878 2.030246 -7.294083 0.0183 
AGRICGDP (-1)* -0.620985 0.021734 -28.57213 0.0012 
CO2_EMISSION (-1) 0.000296 1.28E-05 23.14348 0.0019 
FERTCONSPERLAND (-1) -0.667243 0.039167 -17.03595 0.0034 
TLABOFORCE (-1) 1.16E-06 6.49E-08 17.89132 0.0031 
REALINTR_ (-1) 0.241469 0.012551 19.23874 0.0027 
INFLA (-1) 0.261765 0.008084 32.37902 0.0010 
PERMANENT_CROPLAND (-1) -5.606188 0.376338 -14.89669 0.0045 
AGRVADPERWORKER (-1) -0.007003 0.000267 -26.25974 0.0014 
D (AGRICGDP (-1)) -0.256086 0.031570 -8.111753 0.0149 
D (CO2_EMISSION) 0.000109 6.45E-06 16.88435 0.0035 
D (CO2_EMISSION (-1)) -9.34E-05 5.56E-06 -16.79976 0.0035 
D (FERTCONSPERLAND) -0.141517 0.011400 -12.41420 0.0064 
D (FERTCONSPERLAND (-1)) 0.398836 0.025084 15.90022 0.0039 
D (TLABOFORCE) 2.59E-06 6.48E-08 40.02323 0.0006 
D (TLABOFORCE (-1)) 2.06E-06 1.21E-07 17.10785 0.0034 
D (REALINTR_) 0.181539 0.004984 36.42493 0.0008 
D (REALINTR_ (-1)) 0.053084 0.006568 8.081838 0.0150 
D (INFLA) 0.192971 0.004992 38.65630 0.0007 
D (INFLA (-1)) 0.029573 0.004431 6.674539 0.0217 
D (PERMANENT_CROPLAND) -3.510377 0.272256 -12.89368 0.0060 
D (PERMANENT_CROPLAND (-1)) -0.487154 0.382032 -1.275167 0.3303 
D (AGRVADPERWORKER) 0.013327 0.000297 44.83236 0.0005 
D (AGRVADPERWORKER (-1)) 0.012721 0.000808 15.74764 0.0040 
* p-value incompatible with t-Bounds distribution. 
Levels Equation 
Case 2: Restricted Constant and No Trend 
Variable Coefficient Standard error t-Statistic Prob. 
CO2_EMISSION 0.000477 2.86E-05 16.67564 0.0036 
FERTCONSPERLAND -1.074491 0.069853 -15.38226 0.0042 
TLABOFORCE 1.87E-06 1.43E-07 13.02860 0.0058 
REALINTR_ 0.388849 0.019052 20.41024 0.0024 
INFLA 0.421533 0.015483 27.22535 0.0013 
PERMANENT_CROPLAND -9.027901 0.781882 -11.54638 0.0074 
AGRVADPERWORKER -0.011277 0.000618 -18.26230 0.0030 
C -23.84726 3.659644 -6.516277 0.0227 
EC = AGRICGDP - (0.0005*CO2_EMISSION-1.0745*FERTCONSPERLAND+0.0000*TLABOFORCE + 0.3888*REALINTR_ + 0.4215*INFLA-9.0279 
*PERMANENT_CROPLAND-0.0113*AGRVADPERWORKER-23.8473) 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
   Asymptotic: n=1,000  
F-statistic 235.6369 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 
Actual sample size 26  Finite sample: n=35  
  10% 2.196 3.37 
  5% 2.597 3.907 
  1% 3.599 5.23 
   Finite sample: n=30  
  10% 2.277 3.498 
  5% 2.73 4.163 
  1% 3.864 5.694 
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Table A4. 
Breusch-Godfrey Serial Correlation LM Test:  

F-statistic 3.421185 Prob. F (1,1) 0.3155 
Obs*R-squared 20.11922 Prob. Chi-Square (1) 0.0000 

Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 03/26/22  Time: 13:40   
Sample: 1993 2018   
Included observations: 26   
Presample missing value lagged residuals set to zero. 
Variable Coefficient Standard error t-Statistic Prob. 
AGRICGDP (-1) -0.000585 0.028472 -0.020561 0.9869 
AGRICGDP (-2) 0.005735 0.021458 0.267244 0.8338 
CO2_EMISSION -1.57E-06 4.42E-06 -0.355472 0.7826 
CO2_EMISSION (-1) 6.90E-06 6.39E-06 1.079211 0.4758 
CO2_EMISSION (-2) 2.60E-06 3.99E-06 0.650061 0.6330 
FERTCONSPERLAND 0.008326 0.008891 0.936461 0.5209 
FERTCONSPERLAND (-1) -0.001922 0.007994 -0.240413 0.8498 
FERTCONSPERLAND (-2) -0.006538 0.017237 -0.379299 0.7692 
TLABOFORCE 3.02E-08 4.66E-08 0.649072 0.6335 
TLABOFORCE (-1) -3.66E-08 1.03E-07 -0.356625 0.7819 
TLABOFORCE (-2) 4.66E-08 8.49E-08 0.549096 0.6803 
REALINTR_ -0.002784 0.003674 -0.757581 0.5873 
REALINTR_ (-1) -0.000800 0.007669 -0.104335 0.9338 
REALINTR_ (-2) 0.000125 0.004418 0.028310 0.9820 
INFLA 0.000744 0.003381 0.219915 0.8622 
INFLA (-1) -0.000610 0.006048 -0.100864 0.9360 
INFLA (-2) 0.001617 0.003106 0.520572 0.6944 
PERMANENT_CROPLAND 0.148309 0.199900 0.741916 0.5936 
PERMANENT_CROPLAND (-1) -0.047304 0.314913 -0.150212 0.9051 
PERMANENT_CROPLAND (-2) -0.179817 0.274724 -0.654538 0.6310 
AGRVADPERWORKER 1.90E-05 0.000200 0.095012 0.9397 
AGRVADPERWORKER (-1) -0.000101 0.000479 -0.209686 0.8684 
AGRVADPERWORKER (-2) -0.000103 0.000546 -0.189341 0.8809 
C -1.651958 1.631649 -1.012447 0.4961 
RESID (-1) -1.387816 0.750315 -1.849645 0.3155 
R-squared 0.773816 Mean dependent var 3.68E-14 
Adjusted R-squared -4.654593 S.D. dependent var 0.024614 
S.E. of regression 0.058529 Akaike info criterion -4.173593 
Sum squared resid 0.003426 Schwarz criterion -2.963885 
Log likelihood 79.25671 Hannan-Quinn criter. -3.825241 
F-statistic 0.142549 Durbin-Watson stat 2.965431 
Prob (F-statistic) 0.985935    
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Table A5. 
Heteroskedasticity Test: Breusch-Pagan-Godfrey 
F-statistic 1.708042 Prob. F (23,2) 0.4351 
Obs*R-squared 24.74046 Prob. Chi-Square (23) 0.3638 
Scaled explained SS 0.169691 Prob. Chi-Square (23) 1.0000 
Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 03/26/22  Time: 13:41   
Sample: 1993 2018   
Included observations: 26   
Variable Coefficient Standard error t-Statistic Prob. 
C 0.016160 0.016421 0.984104 0.4288 
AGRICGDP (-1) -2.91E-05 0.000342 -0.084981 0.9400 
AGRICGDP (-2) 1.12E-05 0.000255 0.043907 0.9690 
CO2_EMISSION -2.50E-08 5.21E-08 -0.480330 0.6784 
CO2_EMISSION (-1) -6.73E-08 6.25E-08 -1.077865 0.3938 
CO2_EMISSION (-2) 4.05E-08 4.49E-08 0.901159 0.4626 
FERTCONSPERLAND -5.72E-05 9.22E-05 -0.620036 0.5985 
FERTCONSPERLAND (-1) -6.64E-06 9.53E-05 -0.069688 0.9508 
FERTCONSPERLAND (-2) 0.000165 0.000203 0.812348 0.5019 
TLABOFORCE 1.03E-10 5.24E-10 0.196703 0.8622 
TLABOFORCE (-1) 1.75E-10 1.21E-09 0.144227 0.8985 
TLABOFORCE (-2) -3.99E-10 9.75E-10 -0.409157 0.7221 
REALINTR_ 6.83E-05 4.03E-05 1.693582 0.2324 
REALINTR_ (-1) 6.25E-05 9.21E-05 0.679166 0.5671 
REALINTR_ (-2) 5.95E-05 5.31E-05 1.119472 0.3793 
INFLA -4.49E-06 4.04E-05 -0.111280 0.9216 
INFLA (-1) 1.15E-05 7.26E-05 0.158826 0.8884 
INFLA (-2) 7.44E-06 3.58E-05 0.207582 0.8548 
PERMANENT_CROPLAND -0.005376 0.002202 -2.441300 0.1347 
PERMANENT_CROPLAND (-1) 0.001813 0.003775 0.480245 0.6785 
PERMANENT_CROPLAND (-2) 0.002518 0.003090 0.814974 0.5007 
AGRVADPERWORKER -2.24E-07 2.40E-06 -0.093112 0.9343 
AGRVADPERWORKER (-1) -4.49E-07 5.73E-06 -0.078428 0.9446 
AGRVADPERWORKER (-2) 1.01E-06 6.53E-06 0.155135 0.8910 
R-squared 0.951556 Mean dependent var 0.000583 
Adjusted R-squared 0.394453 S.D. dependent var 0.000905 
S.E. of regression 0.000704 Akaike info criterion -12.39877 
Sum squared resid 9.91E-07 Schwarz criterion -11.23745 
Log likelihood 185.1840 Hannan-Quinn criter. -12.06435 
F-statistic 1.708042 Durbin-Watson stat 2.997140 
Prob (F-statistic) 0.435068    
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Table A6. 
Ramsey RESET Test   
Equation: UNTITLED   
Specification: AGRICGDP  AGRICGDP (-1) AGRICGDP (-2) 
CO2_EMISSION CO2_EMISSION (-1) CO2_EMISSION (-2) 
FERTCONSPERLAND FERTCONSPERLAND (-1)  
FERTCONSPERLAND (-2) TLABOFORCE TLABOFORCE (-1) 
TLABOFORCE (-2) REALINTR_ REALINTR_ (-1) REALINTR_ (-2) INFLA 
INFLA (-1) INFLA (-2) PERMANENT_CROPLAND PERMANENT_CROP 
LAND (-1) PERMANENT_CROPLAND (-2) AGRVADPERWORKER 
AGRVADPERWORKER (-1) AGRVADPERWORKER (-2) C 
Omitted Variables: Squares of fitted values  

 Value df Probability  
t-statistic 1.735900 1 0.3327  
F-statistic 3.013349  (1, 1) 0.3327  
F-test summary:   

 Sum of Sq. df Mean squares  
Test SSR 0.011372 1 0.011372  
Restricted SSR 0.015146 2 0.007573  
Unrestricted SSR 0.003774 1 0.003774  
Unrestricted Test Equation:   
Dependent Variable: AGRICGDP   
Method: ARDL    
Date: 03/26/22  Time: 13:41   
Sample: 1993 2018   
Included observations: 26   
Maximum dependent lags: 2 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (2 lags, automatic):  
Fixed regressors: C   
Variable Coefficient Standard error t-Statistic Prob.* 
AGRICGDP (-1) 0.174148 0.041994 4.146969 0.1506 
AGRICGDP (-2) 0.407537 0.090047 4.525803 0.1384 
CO2_EMISSION 0.000182 4.24E-05 4.292733 0.1457 
CO2_EMISSION (-1) 0.000163 4.03E-05 4.049479 0.1541 
CO2_EMISSION (-2) 0.000145 3.01E-05 4.819696 0.1302 
FERTCONSPERLAND -0.226124 0.049400 -4.577422 0.1369 
FERTCONSPERLAND (-1) -0.195499 0.040389 -4.840370 0.1297 
FERTCONSPERLAND (-2) -0.647341 0.144247 -4.487713 0.1396 
TLABOFORCE 4.18E-06 9.17E-07 4.564037 0.1373 
TLABOFORCE (-1) 9.45E-07 2.10E-07 4.496428 0.1393 
TLABOFORCE (-2) -3.25E-06 6.89E-07 -4.718628 0.1329 
REALINTR_ 0.276165 0.054624 5.055722 0.1243 
REALINTR_ (-1) 0.183932 0.041637 4.417543 0.1417 
REALINTR_ (-2) -0.074745 0.013311 -5.615043 0.1122 
INFLA 0.297724 0.060448 4.925280 0.1275 
INFLA (-1) 0.155639 0.033596 4.632724 0.1353 
INFLA (-2) -0.040236 0.006893 -5.837303 0.1080 
PERMANENT_CROPLAND -5.052648 0.909007 -5.558429 0.1133 
PERMANENT_CROPLAND (-1) -4.201465 0.988857 -4.248808 0.1472 
PERMANENT_CROPLAND (-2) 0.058242 0.365762 0.159234 0.8995 
AGRVADPERWORKER 0.022187 0.005108 4.343494 0.1441 
AGRVADPERWORKER (-1) -0.012538 0.002883 -4.349128 0.1439 
AGRVADPERWORKER (-2) -0.020951 0.004776 -4.387164 0.1427 
C -32.14762 10.09069 -3.185871 0.1936 
FITTED^2 -0.010766 0.006202 -1.735900 0.3327 
R-squared 0.999990 Mean dependent var 24.82605 
Adjusted R-squared 0.999759 S.D. dependent var 3.956536 
S.E. of regression 0.061431 Akaike info criterion -4.076812 
Sum squared resid 0.003774 Schwarz criterion -2.867104 
Log likelihood 77.99855 Hannan-Quinn criter. -3.728460 
F-statistic 4320.901 Durbin-Watson stat 2.961739 
Prob (F-statistic) 0.012012    
*Note. p-values and any subsequent tests do not account for model selection 
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Model 2 

 
  

Table A7. 
Dependent variable: AGRICGDP   
Method: ARDL    
Date: 03/26/22  Time: 13:42   
Sample (adjusted): 1992 2014   
Included observations: 23 after adjustments  
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic): CO2_INTENSITY 
FERTCONSPERLAND TLABOFORCE REALINTR_ INFLA 
PERMANENT_CROPLAND AGRVADPERWORKER  
Fixed regressors: C   
Number of models evalulated: 128  
Selected Model: ARDL (1, 0, 0, 1, 1, 0, 1, 1)  
Variable Coefficient Standard error t-Statistic Prob.* 
AGRICGDP (-1) 0.656411 0.065268 10.05721 0.0000 
CO2_INTENSITY -4.252292 5.121080 -0.830351 0.4257 
FERTCONSPERLAND -0.073640 0.062249 -1.182987 0.2642 
TLABOFORCE 2.33E-06 3.02E-07 7.712418 0.0000 
TLABOFORCE (-1) -2.07E-06 3.20E-07 -6.478651 0.0001 
REALINTR_ 0.243086 0.023998 10.12947 0.0000 
REALINTR_ (-1) -0.045470 0.019836 -2.292236 0.0448 
INFLA 0.159270 0.018730 8.503491 0.0000 
PERMANENT_CROPLAND -6.580449 1.361019 -4.834943 0.0007 
PERMANENT_CROPLAND (-1) 4.739023 1.397314 3.391522 0.0069 
AGRVADPERWORKER 0.015291 0.000945 16.17915 0.0000 
AGRVADPERWORKER (-1) -0.017822 0.001136 -15.68813 0.0000 
C 12.93498 11.95883 1.081625 0.3048 
R-squared 0.988754 Mean dependent var 25.31014 
Adjusted R-squared 0.975259 S.D. dependent var 3.959696 
S.E. of regression 0.622829 Akaike info criterion 2.188436 
Sum squared resid 3.879157 Schwarz criterion 2.830237 
Log likelihood -12.16701 Hannan-Quinn criter. 2.349847 
F-statistic 73.26830 Durbin-Watson stat 2.804740 
Prob (F-statistic) 0.000000    
*Note. p-values and any subsequent tests do not account for model selection 
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Table A8.  
ARDL Long Run Form and Bounds Test  
Dependent Variable: D (AGRICGDP)  
Selected Model: ARDL (1, 0, 0, 1, 1, 0, 1, 1)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 13:51   
Sample: 1960 2020   
Included observations: 23   
Conditional Error Correction Regression 
Variable Coefficient Standard error t-Statistic Prob. 
C 12.93498 11.95883 1.081625 0.3048 
AGRICGDP (-1)* -0.343589 0.065268 -5.264301 0.0004 
CO2_INTENSITY** -4.252292 5.121080 -0.830351 0.4257 
FERTCONSPERLAND** -0.073640 0.062249 -1.182987 0.2642 
TLABOFORCE (-1) 2.58E-07 2.65E-07 0.973825 0.3531 
REALINTR_ (-1) 0.197617 0.032002 6.175099 0.0001 
INFLA** 0.159270 0.018730 8.503491 0.0000 
PERMANENT_CROPLAND (-1) -1.841426 0.926456 -1.987602 0.0749 
AGRVADPERWORKER (-1) -0.002531 0.000767 -3.300746 0.0080 
D (TLABOFORCE) 2.33E-06 3.02E-07 7.712418 0.0000 
D (REALINTR_) 0.243086 0.023998 10.12947 0.0000 
D (PERMANENT_CROPLAND) -6.580449 1.361019 -4.834943 0.0007 
D (AGRVADPERWORKER) 0.015291 0.000945 16.17915 0.0000 
* p-value incompatible with t-Bounds distribution. 
** Variable interpreted as Z = Z (-1) + D (Z).  
Levels equation 
Case 2: Restricted Constant and No Trend 
Variable Coefficient Standard error t-Statistic Prob. 
CO2_INTENSITY -12.37611 14.05593 -0.880490 0.3993 
FERTCONSPERLAND -0.214326 0.175235 -1.223078 0.2493 
TLABOFORCE 7.52E-07 8.77E-07 0.856904 0.4116 
REALINTR_ 0.575155 0.153830 3.738907 0.0039 
INFLA 0.463549 0.111069 4.173515 0.0019 
PERMANENT_CROPLAND -5.359389 3.482386 -1.538999 0.1548 
AGRVADPERWORKER -0.007366 0.003236 -2.276033 0.0461 
C 37.64668 31.33977 1.201243 0.2573 
EC=AGRICGDP - (-12.3761*CO2_INTENSITY -0.2143*FERTCONSPERLAND + 0.0000*TLABOFORCE + 0.5752*REALINTR_ + 0.4635*INFLA 
-5.3594*PERMANENT_CROPLAND -0.0074*AGRVADPERWORKER+37.6467 ) 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
   Asymptotic: n=1,000  
F-statistic 56.01215 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 
Actual sample size 23  Finite sample: n=35  
  10% 2.196 3.37 
  5% 2.597 3.907 
  1% 3.599 5.23 
   Finite sample: n=30  
  10% 2.277 3.498 
  5% 2.73 4.163 
  1% 3.864 5.694 

 



 Amaefule et al. / European Journal of Sustainable Development Research, 7(1), em0206 21 / 36 

 

  

Table A9. 
ARDL error correction regression  
Dependent Variable: D (AGRICGDP)  
Selected Model: ARDL (1, 0, 0, 1, 1, 0, 1, 1)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 13:51   
Sample: 1960 2020   
Included observations: 23   
ECM regression 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
D (TLABOFORCE) 2.33E-06 1.69E-07 13.79129 0.0000 
D (REALINTR_) 0.243086 0.010571 22.99498 0.0000 
D (PERMANENT_CROPLAND) -6.580449 0.676734 -9.723832 0.0000 
D (AGRVADPERWORKER) 0.015291 0.000485 31.50648 0.0000 
CointEq (-1)* -0.343589 0.011406 -30.12303 0.0000 
R-squared 0.986069 Mean dependent var -0.038914 
Adjusted R-squared 0.982973 S.D. dependent var 3.557674 
S.E. of regression 0.464229 Akaike info criterion 1.492783 
Sum squared resid 3.879157 Schwarz criterion 1.739630 
Log likelihood -12.16701 Hannan-Quinn criter. 1.554865 
Durbin-Watson stat 2.804740    
* p-value incompatible with t-Bounds distribution. 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
F-statistic 56.01215 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 
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Table A10. 
Ramsey RESET Test   
Equation: UNTITLED   
Specification: AGRICGDP  AGRICGDP (-1) CO2_INTENSITY 
FERTCONSPERLAND TLABOFORCE TLABOFORCE (-1) REALINTR_ 
REALINTR_ (-1) INFLA PERMANENT_CROPLAND 
PERMANENT_CROPLAND (-1) AGRVADPERWORKER 
AGRVADPERWORKER (-1) C  
Omitted Variables: Squares of fitted values  

 Value df Probability  
t-statistic 1.261799 9 0.2387  
F-statistic 1.592136  (1, 9) 0.2387  
F-test summary:   

 Sum of Sq. df Mean Squares  
Test SSR 0.583088 1 0.583088  
Restricted SSR 3.879157 10 0.387916  
Unrestricted SSR 3.296069 9 0.366230  
Unrestricted Test Equation:   
Dependent Variable: AGRICGDP   
Method: ARDL    
Date: 03/26/22  Time: 13:52   
Sample: 1992 2014   
Included observations: 23   
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic):  
Fixed regressors: C   
Variable Coefficient Standard error t-Statistic Prob.* 
AGRICGDP (-1) 0.060573 0.476453 0.127133 0.9016 
CO2_INTENSITY -4.977089 5.008924 -0.993644 0.3464 
FERTCONSPERLAND -0.018505 0.074617 -0.247999 0.8097 
TLABOFORCE 2.39E-07 1.69E-06 0.142047 0.8902 
TLABOFORCE (-1) -2.51E-07 1.48E-06 -0.169834 0.8689 
REALINTR_ 0.030110 0.170391 0.176709 0.8636 
REALINTR_ (-1) -0.016580 0.029928 -0.554010 0.5931 
INFLA 0.026919 0.106458 0.252865 0.8061 
PERMANENT_CROPLAND -2.053098 3.823959 -0.536904 0.6044 
PERMANENT_CROPLAND (-1) 1.743223 2.735015 0.637372 0.5398 
AGRVADPERWORKER -3.77E-05 0.012183 -0.003096 0.9976 
AGRVADPERWORKER (-1) -0.000290 0.013938 -0.020790 0.9839 
C 20.37711 13.03095 1.563748 0.1523 
FITTED^2 0.016710 0.013243 1.261799 0.2387 
R-squared 0.990445 Mean dependent var 25.31014 
Adjusted R-squared 0.976642 S.D. dependent var 3.959696 
S.E. of regression 0.605169 Akaike info criterion 2.112505 
Sum squared resid 3.296069 Schwarz criterion 2.803675 
Log likelihood -10.29381 Hannan-Quinn criter. 2.286332 
F-statistic 71.75950 Durbin-Watson stat 2.904298 
Prob (F-statistic) 0.000000    
*Note. p-values and any subsequent tests do not account for model selection 
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Table A11. 
Breusch-Godfrey Serial Correlation LM Test:  
F-statistic 2.270990 Prob. F (2,8) 0.1655 
Obs*R-squared 8.329270 Prob. Chi-Square (2) 0.0155 
Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 03/26/22  Time: 13:52   
Sample: 1992 2014   
Included observations: 23   
Presample missing value lagged residuals set to zero. 
Variable Coefficient Standard error t-Statistic Prob. 
AGRICGDP (-1) -0.013148 0.058635 -0.224233 0.8282 
CO2_INTENSITY -0.834169 4.857129 -0.171741 0.8679 
FERTCONSPERLAND -0.043781 0.059730 -0.732984 0.4845 
TLABOFORCE -2.63E-08 2.71E-07 -0.096966 0.9251 
TLABOFORCE (-1) -1.02E-07 2.90E-07 -0.352931 0.7333 
REALINTR_ -0.004056 0.022076 -0.183739 0.8588 
REALINTR_ (-1) -0.002506 0.018438 -0.135915 0.8952 
INFLA -0.006655 0.017285 -0.385026 0.7103 
PERMANENT_CROPLAND 1.005857 1.346358 0.747095 0.4764 
PERMANENT_CROPLAND (-1) -0.718080 1.312620 -0.547058 0.5993 
AGRVADPERWORKER 0.000232 0.000861 0.269586 0.7943 
AGRVADPERWORKER (-1) 0.000267 0.001022 0.261098 0.8006 
C 3.888828 11.39299 0.341335 0.7416 
RESID (-1) -0.840770 0.394977 -2.128655 0.0659 
RESID (-2) -0.487533 0.391741 -1.244531 0.2485 
R-squared 0.362142 Mean dependent var 1.08E-15 
Adjusted R-squared -0.754109 S.D. dependent var 0.419911 
S.E. of regression 0.556142 Akaike info criterion 1.912709 
Sum squared resid 2.474351 Schwarz criterion 2.653248 
Log likelihood -6.996151 Hannan-Quinn criter. 2.098952 
F-statistic 0.324427 Durbin-Watson stat 2.303450 
Prob (F-statistic) 0.968422    
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Table A12.  
Heteroskedasticity Test: Breusch-Pagan-Godfrey 
F-statistic 1.608084 Prob. F (12,10) 0.2298 
Obs*R-squared 15.14937 Prob. Chi-Square (12) 0.2334 
Scaled explained SS 3.916983 Prob. Chi-Square (12) 0.9849 
Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 03/26/22  Time: 13:53   
Sample: 1992 2014   
Included observations: 23   
Variable Coefficient Standard error t-Statistic Prob. 
C 2.936109 4.745734 0.618684 0.5500 
AGRICGDP (-1) 0.033007 0.025901 1.274345 0.2314 
CO2_INTENSITY -1.458919 2.032246 -0.717885 0.4893 
FERTCONSPERLAND 7.07E-05 0.024703 0.002863 0.9978 
TLABOFORCE -1.23E-07 1.20E-07 -1.023930 0.3300 
TLABOFORCE (-1) -2.25E-09 1.27E-07 -0.017711 0.9862 
REALINTR_ -0.012915 0.009523 -1.356160 0.2049 
REALINTR_ (-1) -0.006575 0.007872 -0.835203 0.4231 
INFLA -0.003633 0.007433 -0.488786 0.6355 
PERMANENT_CROPLAND -0.065218 0.540106 -0.120750 0.9063 
PERMANENT_CROPLAND (-1) 0.443243 0.554509 0.799343 0.4427 
AGRVADPERWORKER -2.24E-05 0.000375 -0.059782 0.9535 
AGRVADPERWORKER (-1) 0.000402 0.000451 0.892298 0.3932 
R-squared 0.658668 Mean dependent var 0.168659 
Adjusted R-squared 0.249070 S.D. dependent var 0.285222 
S.E. of regression 0.247163 Akaike info criterion 0.339988 
Sum squared resid 0.610895 Schwarz criterion 0.981789 
Log likelihood 9.090143 Hannan-Quinn criter. 0.501399 
F-statistic 1.608084 Durbin-Watson stat 3.168591 
Prob (F-statistic) 0.229803    
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Table A13.  
Dependent Variable: FOODPI   
Method: ARDL    
Date: 03/26/22  Time: 22:54   
Sample (adjusted): 1992 2018   
Included observations: 17 after adjustments  
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic): CO2_EMISSION 
AGRVADPERWORKER FERTILIZERCONS EMPLOYAGRIC POPLA 
INFLA ARABLE_LAND   
Fixed regressors: C   
Number of models evalulated: 128  
Selected Model: ARDL (1, 0, 1, 1, 1, 1, 1, 1)  
Variable Coefficient Standard error t-Statistic Prob.* 
FOODPI (-1) -0.859938 0.086748 -9.913028 0.0100 
CO2_EMISSION -0.000445 4.28E-05 -10.39000 0.0091 
AGRVADPERWORKER -0.001526 0.001741 -0.876610 0.4731 
AGRVADPERWORKER (-1) -0.005587 0.001814 -3.079803 0.0912 
FERTILIZERCONS 0.006298 0.000839 7.502861 0.0173 
FERTILIZERCONS (-1) 0.004062 0.001505 2.700210 0.1141 
EMPLOYAGRIC 7.705042 1.511080 5.099028 0.0364 
EMPLOYAGRIC (-1) -15.80827 1.138705 -13.88268 0.0051 
POPLA -4.46E-05 1.08E-05 -4.143065 0.0536 
POPLA (-1) 4.61E-05 1.10E-05 4.191475 0.0525 
INFLA -0.030082 0.014949 -2.012331 0.1818 
INFLA (-1) 0.042395 0.005530 7.666528 0.0166 
ARABLE_LAND 0.412030 0.308299 1.336464 0.3132 
ARABLE_LAND (-1) 2.077104 0.442575 4.693221 0.0425 
C 431.6868 46.02363 9.379676 0.0112 
R-squared 0.999986 Mean dependent var 76.63176 
Adjusted R-squared 0.999888 S.D. dependent var 20.18583 
S.E. of regression 0.213513 Akaike info criterion -0.625601 
Sum squared resid 0.091175 Schwarz criterion 0.109587 
Log likelihood 20.31761 Hannan-Quinn criter. -0.552522 
F-statistic 10214.84 Durbin-Watson stat 2.536258 
Prob (F-statistic) 0.000098    
*Note. p-values and any subsequent tests do not account for model selection 
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Table A14.  
ARDL Long Run Form and Bounds Test  
Dependent Variable: D (FOODPI)   
Selected Model: ARDL (1, 0, 1, 1, 1, 1, 1, 1)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 22:57   
Sample: 1960 2020   
Included observations: 17   
Conditional Error Correction Regression 
Variable Coefficient Standard error t-Statistic Prob. 
C 431.6868 46.02364 9.379676 0.0112 
FOODPI (-1)* -1.859938 0.086748 -21.44064 0.0022 
CO2_EMISSION** -0.000445 4.28E-05 -10.39000 0.0091 
AGRVADPERWORKER (-1) -0.007113 0.001716 -4.144763 0.0536 
FERTILIZERCONS (-1) 0.010360 0.002172 4.770029 0.0412 
EMPLOYAGRIC (-1) -8.103224 0.721110 -11.23716 0.0078 
POPLA (-1) 1.48E-06 2.43E-07 6.075666 0.0260 
INFLA (-1) 0.012314 0.013778 0.893690 0.4658 
ARABLE_LAND (-1) 2.489133 0.212217 11.72922 0.0072 
D (AGRVADPERWORKER) -0.001526 0.001741 -0.876609 0.4731 
D (FERTILIZERCONS) 0.006298 0.000839 7.502861 0.0173 
D (EMPLOYAGRIC) 7.705040 1.511081 5.099026 0.0364 
D (POPLA) -4.46E-05 1.08E-05 -4.143066 0.0536 
D (INFLA) -0.030082 0.014949 -2.012331 0.1818 
D (ARABLE_LAND) 0.412030 0.308299 1.336463 0.3132 
* p-value incompatible with t-Bounds distribution. 
** Variable interpreted as Z = Z (-1) + D (Z).  
Levels Equation 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
CO2_EMISSION -0.000239 1.38E-05 -17.26364 0.0033 
AGRVADPERWORKER -0.003824 0.000999 -3.826785 0.0620 
FERTILIZERCONS 0.005570 0.001052 5.293812 0.0339 
EMPLOYAGRIC -4.356718 0.446499 -9.757500 0.0103 
POPLA 7.95E-07 1.13E-07 7.003108 0.0198 
INFLA 0.006620 0.007164 0.924137 0.4530 
ARABLE_LAND 1.338289 0.079644 16.80337 0.0035 
C 232.0974 28.25044 8.215711 0.0145 
EC=FOODPI - (-0.0002*CO2_EMISSION -0.0038*AGRVADPERWORKER+0.0056*FERTILIZERCONS -4.3567*EMPLOYAGRIC+0.0000*POPLA 
+0.0066*INFLA + 1.3383*ARABLE_LAND + 232.0974 ) 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
   Asymptotic: n=1,000  
F-statistic 305.7378 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 
Actual sample size 17  Finite sample: n=35  
  10% 2.196 3.37 
  5% 2.597 3.907 
  1% 3.599 5.23 
     
   Finite sample: n=30  
  10% 2.277 3.498 
  5% 2.73 4.163 
  1% 3.864 5.694 
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Table A15.  
ARDL error correction regression  
Dependent Variable: D (FOODPI)   
Selected Model: ARDL (1, 0, 1, 1, 1, 1, 1, 1)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 22:58   
Sample: 1960 2020   
Included observations: 17   
ECM Regression 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
D (AGRVADPERWORKER) -0.001526 0.000283 -5.385686 0.0328 
D (FERTILIZERCONS) 0.006298 8.08E-05 77.96484 0.0002 
D (EMPLOYAGRIC) 7.705042 0.126687 60.81958 0.0003 
D (POPLA) -4.46E-05 3.86E-07 -115.6062 0.0001 
D (INFLA) -0.030082 0.001622 -18.54965 0.0029 
D (ARABLE_LAND) 0.412030 0.033387 12.34097 0.0065 
CointEq (-1)* -0.859938 0.015857 -54.23081 0.0001 
R-squared 0.999686 Mean dependent var 2.732353 
Adjusted R-squared 0.999498 S.D. dependent var 4.262773 
S.E. of regression 0.095486 Akaike info criterion -1.566778 
Sum squared resid 0.091175 Schwarz criterion -1.223690 
Log likelihood 20.31761 Hannan-Quinn criter. -1.532674 
Durbin-Watson stat 2.536258    
* p-value incompatible with t-Bounds distribution. 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
F-statistic 305.7378 10% 1.92 2.89 
k 7 5% 2.17 3.21 
  2.5% 2.43 3.51 
  1% 2.73 3.9 

 



28 / 36 Amaefule et al. / European Journal of Sustainable Development Research, 7(1), em0206 

 

Table A16.  
Ramsey RESET Test   
Equation: UNTITLED   
Specification: FOODPI  FOODPI (-1) CO2_EMISSION 
AGRVADPERWORKER AGRVADPERWORKER (-1)  
FERTILIZERCONS FERTILIZERCONS (-1) EMPLOYAGRIC 
EMPLOYAGRIC (-1) POPLA POPLA (-1) INFLA INFLA (-1) 
ARABLE_LAND ARABLE_LAND (-1) C  
Omitted Variables: Squares of fitted values  

 Value df Probability  
t-statistic 3.443688 1 0.1799  
F-statistic 11.85899  (1, 1) 0.1799  
F-test summary:   
 Sum of Sq. df Mean Squares  
Test SSR 0.084085 1 0.084085  
Restricted SSR 0.091175 2 0.045588  
Unrestricted SSR 0.007090 1 0.007090  
Unrestricted Test Equation:   
Dependent Variable: FOODPI   
Method: ARDL    
Date: 03/26/22  Time: 22:58   
Sample: 1992 2018   
Included observations: 17   
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic):  
Fixed regressors: C   
Variable Coefficient Standard error t-Statistic Prob.* 
FOODPI (-1) -0.450256 0.123787 -3.637333 0.1708 
CO2_EMISSION -0.000263 5.53E-05 -4.767520 0.1316 
AGRVADPERWORKER -0.002798 0.000780 -3.588483 0.1730 
AGRVADPERWORKER (-1) -0.002437 0.001161 -2.098586 0.2831 
FERTILIZERCONS 0.003857 0.000782 4.929017 0.1274 
FERTILIZERCONS (-1) 0.003284 0.000635 5.171889 0.1216 
EMPLOYAGRIC 1.788080 1.818615 0.983210 0.5054 
EMPLOYAGRIC (-1) -5.774005 2.948212 -1.958477 0.3005 
POPLA -2.34E-05 7.48E-06 -3.133316 0.1967 
POPLA (-1) 2.43E-05 7.67E-06 3.168258 0.1946 
INFLA 0.004777 0.011714 0.407823 0.7535 
INFLA (-1) 0.021730 0.006385 3.403464 0.1819 
ARABLE_LAND -0.108715 0.194035 -0.560283 0.6749 
ARABLE_LAND (-1) 1.557292 0.230758 6.748578 0.0937 
C 217.0159 64.92611 3.342506 0.1851 
FITTED^2 0.003343 0.000971 3.443692 0.1799 
R-squared 0.999999 Mean dependent var 76.63176 
Adjusted R-squared 0.999983 S.D. dependent var 20.18583 
S.E. of regression 0.084205 Akaike info criterion -3.061997 
Sum squared resid 0.007090 Schwarz criterion -2.277796 
Log likelihood 42.02697 Hannan-Quinn criter. -2.984046 
F-statistic 61298.61 Durbin-Watson stat 3.333732 
Prob (F-statistic) 0.003169    
*Note. p-values and any subsequent tests do not account for model selection 
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Table A17.  
Breusch-Godfrey Serial Correlation LM Test:  
F-statistic 142.0740 Prob. F (1,1) 0.0533 
Obs*R-squared 16.88118 Prob. Chi-Square (1) 0.0000 
Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 03/26/22  Time: 22:59   
Sample: 1992 2018   
Included observations: 17   
Presample and interior missing value lagged residuals set to zero. 
Variable Coefficient Standard error t-Statistic Prob. 
FOODPI (-1) -0.021406 0.010412 -2.055778 0.2882 
CO2_EMISSION 9.36E-06 5.12E-06 1.828577 0.3186 
AGRVADPERWORKER 0.002861 0.000316 9.047365 0.0701 
AGRVADPERWORKER (-1) -0.000990 0.000230 -4.303330 0.1454 
FERTILIZERCONS -0.000377 0.000104 -3.619218 0.1716 
FERTILIZERCONS (-1) 0.000483 0.000182 2.648450 0.2298 
EMPLOYAGRIC 2.164209 0.254727 8.496177 0.0746 
EMPLOYAGRIC (-1) -0.404220 0.138837 -2.911481 0.2106 
POPLA 8.05E-06 1.44E-06 5.587831 0.1127 
POPLA (-1) -8.07E-06 1.47E-06 -5.503117 0.1144 
INFLA -0.000458 0.001768 -0.259179 0.8386 
INFLA (-1) -0.000415 0.000655 -0.634403 0.6401 
ARABLE_LAND -0.535403 0.057847 -9.255455 0.0685 
ARABLE_LAND (-1) 0.410219 0.062630 6.549881 0.0965 
C -105.9770 10.42405 -10.16659 0.0624 
RESID (-1) -3.701526 0.310544 -11.91948 0.0533 
R-squared 0.993011 Mean dependent var -8.46E-13 
Adjusted R-squared 0.888170 S.D. dependent var 0.075488 
S.E. of regression 0.025244 Akaike info criterion -5.471316 
Sum squared resid 0.000637 Schwarz criterion -4.687115 
Log likelihood 62.50619 Hannan-Quinn criter. -5.393365 
F-statistic 9.471601 Durbin-Watson stat 3.411536 
Prob (F-statistic) 0.250277    

 



30 / 36 Amaefule et al. / European Journal of Sustainable Development Research, 7(1), em0206 

 
  

Table A18.  
Heteroskedasticity Test: Breusch-Pagan-Godfrey 
F-statistic 0.304308 Prob. F (14,2) 0.9324 
Obs*R-squared 11.56896 Prob. Chi-Square (14) 0.6409 
Scaled explained SS 0.142885 Prob. Chi-Square (14) 1.0000 
Test equation:    
Dependent variable: RESID^2   
Method: Least squares   
Date: 03/26/22  Time: 23:00   
Sample: 1992 2018   
Included observations: 17   
Variable Coefficient Standard error t-Statistic Prob. 
C 3.548709 2.545027 1.394370 0.2979 
FOODPI (-1) 0.001408 0.004797 0.293502 0.7968 
CO2_EMISSION -2.34E-07 2.37E-06 -0.098730 0.9304 
AGRVADPERWORKER -4.30E-05 9.63E-05 -0.446478 0.6989 
AGRVADPERWORKER (-1) -6.68E-06 0.000100 -0.066599 0.9530 
FERTILIZERCONS 7.70E-06 4.64E-05 0.165863 0.8835 
FERTILIZERCONS (-1) -1.75E-05 8.32E-05 -0.209969 0.8531 
EMPLOYAGRIC -0.047424 0.083560 -0.567547 0.6276 
EMPLOYAGRIC (-1) -0.006717 0.062968 -0.106680 0.9248 
POPLA -2.19E-07 5.96E-07 -0.367219 0.7487 
POPLA (-1) 2.17E-07 6.08E-07 0.357516 0.7549 
INFLA -0.000741 0.000827 -0.896806 0.4645 
INFLA (-1) 0.000369 0.000306 1.208134 0.3505 
ARABLE_LAND 0.014768 0.017048 0.866216 0.4777 
ARABLE_LAND (-1) -0.017362 0.024474 -0.709417 0.5516 
R-squared 0.680527 Mean dependent var 0.005363 
Adjusted R-squared -1.555783 S.D. dependent var 0.007385 
S.E. of regression 0.011807 Akaike info criterion -6.415629 
Sum squared resid 0.000279 Schwarz criterion -5.680440 
Log likelihood 69.53284 Hannan-Quinn criter. -6.342550 
F-statistic 0.304308 Durbin-Watson stat 2.625020 
Prob (F-statistic) 0.932404    
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Table A19. 
Dependent Variable: CROPPI   
Method: ARDL    
Date: 03/26/22  Time: 23:05   
Sample (adjusted): 1992 2018   
Included observations: 17 after adjustments  
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic): AGRVADPERWORKER 
FERTILIZERCONS EMPLOYAGRIC INFLA ARABLE_LAND 
CO2_EMISSION   
Fixed regressors: C   
Number of models evalulated: 64  
Selected Model: ARDL (1, 0, 1, 1, 1, 0, 0)  
Variable Coefficient Standard error t-Statistic Prob.* 
CROPPI (-1) -0.512220 0.081712 -6.268604 0.0008 
AGRVADPERWORKER -0.004652 0.004801 -0.968892 0.3700 
FERTILIZERCONS 0.001077 0.001606 0.670700 0.5274 
FERTILIZERCONS (-1) -0.005343 0.001408 -3.795928 0.0090 
EMPLOYAGRIC 12.64157 1.422447 8.887197 0.0001 
EMPLOYAGRIC (-1) -19.95782 1.667142 -11.97128 0.0000 
INFLA -0.123854 0.023381 -5.297244 0.0018 
INFLA (-1) 0.052228 0.018956 2.755174 0.0331 
ARABLE_LAND 2.199790 0.312959 7.029014 0.0004 
CO2_EMISSION -0.000307 6.48E-05 -4.733844 0.0032 
C 410.1049 107.2093 3.825273 0.0087 
R-squared 0.999423 Mean dependent var 76.06059 
Adjusted R-squared 0.998462 S.D. dependent var 20.35908 
S.E. of regression 0.798380 Akaike info criterion 2.640198 
Sum squared resid 3.824459 Schwarz criterion 3.179336 
Log likelihood -11.44169 Hannan-Quinn criter. 2.693790 
F-statistic 1039.841 Durbin-Watson stat 2.884164 
Prob (F-statistic) 0.000000    
*Note. p-values and any subsequent tests do not account for model selection 
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Table A20. 
ARDL Long Run Form and Bounds Test  
Dependent Variable: D (CROPPI)   
Selected Model: ARDL (1, 0, 1, 1, 1, 0, 0)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 23:06   
Sample: 1960 2020   
Included observations: 17   
Conditional Error Correction Regression 
Variable Coefficient Standard error t-Statistic Prob. 
C 410.1049 107.2093 3.825273 0.0087 
CROPPI (-1)* -1.512220 0.081712 -18.50671 0.0000 
AGRVADPERWORKER** -0.004652 0.004801 -0.968892 0.3700 
FERTILIZERCONS (-1) -0.004266 0.002534 -1.683669 0.1432 
EMPLOYAGRIC (-1) -7.316252 1.750048 -4.180600 0.0058 
INFLA (-1) -0.071626 0.018011 -3.976717 0.0073 
ARABLE_LAND** 2.199790 0.312959 7.029014 0.0004 
CO2_EMISSION** -0.000307 6.48E-05 -4.733844 0.0032 
D (FERTILIZERCONS) 0.001077 0.001606 0.670700 0.5274 
D (EMPLOYAGRIC) 12.64157 1.422447 8.887197 0.0001 
D (INFLA) -0.123854 0.023381 -5.297244 0.0018 
*p-value incompatible with t-Bounds distribution 
**Variable interpreted as Z = Z (-1) + D (Z)  
Levels equation 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
AGRVADPERWORKER -0.003076 0.003143 -0.978577 0.3656 
FERTILIZERCONS -0.002821 0.001640 -1.720127 0.1362 
EMPLOYAGRIC -4.838087 1.083396 -4.465668 0.0043 
INFLA -0.047365 0.011782 -4.020217 0.0070 
ARABLE_LAND 1.454676 0.212091 6.858726 0.0005 
CO2_EMISSION -0.000203 3.96E-05 -5.120416 0.0022 
C 271.1939 66.68240 4.066949 0.0066 
EC = CROPPI - (-0.0031*AGRVADPERWORKER -0.0028*FERTILIZERCONS-4.8381*EMPLOYAGRIC -0.0474*INFLA + 1.4547*ARABLE_LAND -
0.0002*CO2_EMISSION + 271.1939) 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
   Asymptotic: n=1,000  
F-statistic 53.11286 10% 1.99 2.94 
k 6 5% 2.27 3.28 
  2.5% 2.55 3.61 
  1% 2.88 3.99 
Actual sample size 17  Finite sample: n=35  
  10% 2.254 3.388 
  5% 2.685 3.96 
  1% 3.713 5.326 
   Finite sample: n=30  
  10% 2.334 3.515 
  5% 2.794 4.148 
  1% 3.976 5.691 
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Table A21.  
ARDL Error Correction Regression  
Dependent Variable: D (CROPPI)   
Selected Model: ARDL (1, 0, 1, 1, 1, 0, 0)  
Case 2: Restricted Constant and No Trend  
Date: 03/26/22  Time: 23:06   
Sample: 1960 2020   
Included observations: 17   
ECM Regression 
Case 2: Restricted constant and no trend 
Variable Coefficient Standard error t-Statistic Prob. 
D (FERTILIZERCONS) 0.001077 0.000516 2.088200 0.0818 
D (EMPLOYAGRIC) 12.64157 0.604762 20.90340 0.0000 
D (INFLA) -0.123854 0.010408 -11.90031 0.0000 
CointEq (-1)* -0.512220 0.049840 -10.27728 0.0000 
R-squared 0.989741 Mean dependent var 2.858235 
Adjusted R-squared 0.987374 S.D. dependent var 4.827058 
S.E. of regression 0.542392 Akaike info criterion 1.816669 
Sum squared resid 3.824459 Schwarz criterion 2.012719 
Log likelihood -11.44169 Hannan-Quinn criter. 1.836157 
Durbin-Watson stat 2.884164    
* p-value incompatible with t-bounds distribution 
F-bounds test Null hypothesis: No levels relationship 
Test statistic Value Signif. I (0) I (1) 
F-statistic 53.11286 10% 1.99 2.94 
k 6 5% 2.27 3.28 
  2.5% 2.55 3.61 
  1% 2.88 3.99 
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Table A22.  
Breusch-Godfrey Serial Correlation LM Test:  
F-statistic 5.168618 Prob. F (2,4) 0.0778 
Obs*R-squared 12.25711 Prob. Chi-Square (2) 0.0022 
Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 03/26/22  Time: 23:07   
Sample: 1992 2018   
Included observations: 17   
Presample and interior missing value lagged residuals set to zero. 
Variable Coefficient Standard error t-Statistic Prob. 
CROPPI (-1) 0.053588 0.055480 0.965899 0.3888 
AGRVADPERWORKER -0.002778 0.003650 -0.760970 0.4891 
FERTILIZERCONS 0.001264 0.001294 0.976779 0.3840 
FERTILIZERCONS (-1) -0.000932 0.001019 -0.914369 0.4123 
EMPLOYAGRIC -0.957986 0.975669 -0.981876 0.3818 
EMPLOYAGRIC (-1) 0.510761 1.128613 0.452556 0.6743 
INFLA 0.044960 0.032301 1.391933 0.2363 
INFLA (-1) -0.035825 0.023979 -1.494009 0.2095 
ARABLE_LAND 0.480742 0.364412 1.319227 0.2575 
CO2_EMISSION 6.37E-05 6.34E-05 1.004881 0.3718 
C 1.017287 70.15220 0.014501 0.9891 
RESID (-1) -1.596264 0.505662 -3.156779 0.0343 
RESID (-2) -2.192884 1.283436 -1.708605 0.1627 
R-squared 0.721006 Mean dependent var -3.01E-14 
Adjusted R-squared -0.115975 S.D. dependent var 0.488906 
S.E. of regression 0.516479 Akaike info criterion 1.598927 
Sum squared resid 1.067000 Schwarz criterion 2.236090 
Log likelihood -0.590878 Hannan-Quinn criter. 1.662262 
F-statistic 0.861436 Durbin-Watson stat 2.154450 
Prob (F-statistic) 0.624345    
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Table A23. 
Heteroskedasticity Test: Breusch-Pagan-Godfrey 
F-statistic 1.656630 Prob. F (10,6) 0.2772 
Obs*R-squared 12.47999 Prob. Chi-Square (10) 0.2542 
Scaled explained SS 0.943800 Prob. Chi-Square (10) 0.9999 
Test equation:    
Dependent variable: RESID^2   
Method: Least squares   
Date: 03/26/22  Time: 23:08   
Sample: 1992 2018   
Included observations: 17   
Variable Coefficient Standard error t-Statistic Prob. 
C 15.81723 28.89242 0.547453 0.6038 
CROPPI (-1) -0.001982 0.022021 -0.090020 0.9312 
AGRVADPERWORKER -0.000630 0.001294 -0.487089 0.6435 
FERTILIZERCONS -0.000447 0.000433 -1.032310 0.3417 
FERTILIZERCONS (-1) -0.000331 0.000379 -0.871331 0.4171 
EMPLOYAGRIC 0.304299 0.383343 0.793803 0.4575 
EMPLOYAGRIC (-1) -0.539616 0.449287 -1.201048 0.2750 
INFLA -0.002157 0.006301 -0.342289 0.7438 
INFLA (-1) -0.007705 0.005109 -1.508166 0.1822 
ARABLE_LAND -0.022542 0.084341 -0.267271 0.7982 
CO2_EMISSION -1.56E-05 1.75E-05 -0.894167 0.4057 
R-squared 0.734117 Mean dependent var 0.224968 
Adjusted R-squared 0.290978 S.D. dependent var 0.255524 
S.E. of regression 0.215160 Akaike info criterion 0.017791 
Sum squared resid 0.277762 Schwarz criterion 0.556929 
Log likelihood 10.84878 Hannan-Quinn criter. 0.071382 
F-statistic 1.656630 Durbin-Watson stat 3.210551 
Prob (F-statistic) 0.277225    
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Table A24.  
Ramsey RESET Test   
Equation: UNTITLED   
Specification: CROPPI  CROPPI (-1) CO2_EMISSION 
AGRVADPERWORKER INFLA INFLA (-1) EMPLOYAGRIC 
EMPLOYAGRIC (-1) FERTILIZERCONS FERTILIZERCONS (-1) 
ARABLE_LAND C   
Omitted Variables: Squares of fitted values  
 Value df Probability  
t-statistic 0.153417 5 0.8841  
F-statistic 0.023537  (1, 5) 0.8841  
F-test summary:   
 Sum of Sq. df Mean squares  
Test SSR 0.017919 1 0.017919  
Restricted SSR 3.824459 6 0.637410  
Unrestricted SSR 3.806540 5 0.761308  
Unrestricted test equation:   
Dependent variable: CROPPI   
Method: ARDL    
Date: 03/31/22  Time: 09:27   
Sample: 1992 2018   
Included observations: 17   
Maximum dependent lags: 1 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (1 lag, automatic):  
Fixed regressors: C   
Variable Coefficient Standard error t-Statistic Prob.* 
CROPPI (-1) -0.626746 0.751820 -0.833638 0.4425 
CO2_EMISSION -0.000362 0.000368 -0.983700 0.3704 
AGRVADPERWORKER -0.005024 0.005782 -0.868914 0.4246 
INFLA -0.147554 0.156581 -0.942351 0.3893 
INFLA (-1) 0.061599 0.064500 0.955034 0.3834 
EMPLOYAGRIC 15.81158 20.72106 0.763068 0.4799 
EMPLOYAGRIC (-1) -24.43029 29.20918 -0.836391 0.4411 
FERTILIZERCONS 0.000890 0.002135 0.416978 0.6940 
FERTILIZERCONS (-1) -0.006464 0.007467 -0.865687 0.4262 
ARABLE_LAND 2.552559 2.324703 1.098015 0.3222 
C 479.2606 465.7470 1.029015 0.3507 
FITTED^2 -0.001206 0.007860 -0.153417 0.8841 
R-squared 0.999426 Mean dependent var 76.06059 
Adjusted R-squared 0.998163 S.D. dependent var 20.35908 
S.E. of regression 0.872530 Akaike info criterion 2.753149 
Sum squared resid 3.806540 Schwarz criterion 3.341300 
Log likelihood -11.40177 Hannan-Quinn criter. 2.811612 
F-statistic 791.4686 Durbin-Watson stat 2.855614 
Prob (F-statistic) 0.000000    
*Note. p-values and any subsequent tests do not account for model selection 
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