OPEN ACCESS

Comprehensive human security assessment in sustainable regional development: Insights for innovation policy

Nataliia Biloshkurska ^{1*} ^(b), Vitaliy Omelyanenko ² ^(b), Olha Yemets ³ ^(b), Oksana Braslavska ⁴ ^(b), Petro Matkovskyi ⁵ ^(b), Olena Omelianenko ^{2,6} ^(b), Tetiana Korniienko ¹ ^(b)

¹Department of Marketing, Management, and Business Management, Pavlo Tychyna Uman State Pedagogical University, Uman, UKRAINE ²Sector of Innovation and Investment Problems of Industrial Development, Institute of Industrial Economics of NAS of Ukraine, Kyiv, UKRAINE

³Department of Entrepreneurship, Trade and Applied Economics, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, UKRAINE

⁴ Department of Geography, Geodesy and Land Management, Pavlo Tychyna Uman State Pedagogical University, Uman, UKRAINE

⁵ Department of Accounting and Taxation, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, UKRAINE

⁶ Department of Business Economics and Administration, Sumy Makarenko State Pedagogical University, Sumy, UKRAINE

*Corresponding Author: biloshkurska.n@udpu.edu.ua

Citation: Biloshkurska, N., Omelyanenko, V., Yemets, O., Braslavska, O., Matkovskyi, P., Omelianenko, O., & Korniienko, T. (2025). Comprehensive human security assessment in sustainable regional development: Insights for innovation policy. *European Journal of Sustainable Development Research*, *9*(4), em0315. https://doi.org/10.29333/ejosdr/16572

ARTICLE INFO	ABSTRACT
Received: 10 Feb. 2025	The study assesses human security within sustainable regional development in Ukraine, focusing on calculating
Accepted: 13 Jun. 2025	a human security index to compare economic, social, and environmental aspects of development. The methodology standardizes indicators to ensure objective evaluation and assigns weighting factors for the index. Analysis revealed significant regional disparities: Kyiv leads in economic stability, social well-being, and environmental responsibility, while Luhansk scores lowest due to socio-economic challenges. The economic component highlights the dependence of human security on income and stability, with Kyiv and Dnipro performing best. Social security is highest in Kyiv, reflecting better access to healthcare, education, and social protection, whereas Luhansk and Chernivtsi rank lowest. Environmentally, Kyiv and Dnipro lead due to significant investments in protection measures, while Western regions lag. The human security index reflects regional disparities and underscores the need for differentiated state strategies to address low-scoring regions through targeted investment and policy adjustments. Additionally, the index is a valuable tool for monitoring and evaluating sustainable development initiatives.
	Keywords: human security, sustainable development, regional development, innovation policy, human security index

INTRODUCTION

The relevance of sustainable regional development in the context of current global challenges is becoming increasingly important, especially for countries with a dynamic socioeconomic context, such as Ukraine. Human security, as a component of sustainable development, reflects not only economic but also social and environmental stability, which provides a favorable environment for the development of society, reduction of inequality, and prevention of social conflicts. Identification and assessment of human security indicators at the regional level are important steps towards the formation of policies aimed at balanced regional development, well-being and strengthening social environmental sustainability.

This paper aims to comprehensively investigate the level of human security in sustainable regional development in Ukraine using statistical analysis of indicators standardized for individual regions. The main emphasis is placed on the calculation of weighting coefficients for each of the components: economic, social, and environmental, which allows us to determine the impact of each indicator on the overall level of human security. This approach provides a scientifically sound basis for constructing a human security index for sustainable regional development, which can be used to compare regions by their level of sustainable development.

In addition, an important component of the study is the analysis of correlations between different human security indicators, which allows us to identify the most and least interrelated indicators. This makes it possible not only to assess the current situation but also to develop recommendations for improving the economic, social, and environmental components of sustainable development in regions with low scores on certain indicators. For example, establishing a close link between economic activity and social

Copyright © 2025 by Author/s and Licensed by Modestum DOO, Serbia. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

well-being allows us to identify priorities for investment in regions with low incomes and high unemployment.

In the context of Ukraine, which is facing internal and external challenges, such as armed conflict and economic crises, the issue of human security at the regional level is becoming even more relevant. The heterogeneity of socioeconomic development in different regions and the environmental problems faced by the country necessitates the search for new methods of assessing and monitoring human security that will be able to consider all regional peculiarities and specific needs of the population. This study proposes the use of an integral approach to assessing human security, which can be a useful tool in developing a policy for sustainable regional development in Ukraine.

Thus, the study of the level of human security in the sustainable regional development of Ukraine is a relevant and promising area with significant scientific and practical potential. The results of the study can be used as a basis for further research and practical recommendations for improving regional policy in the context of sustainable development. It is expected that the proposed methodology for calculating weighting factors and constructing the human security index will contribute to a deeper understanding of sustainable development at the regional level and help to formulate a more effective regional policy that considers all components of human security.

While previous studies have examined the economic consequences of military conflicts, there remains a significant gap in understanding how full-scale wars specifically reshape labor markets, particularly in terms of employment disruptions and long-term unemployment trends. Existing research often focuses on localized conflicts or macroeconomic instability without fully capturing the structural shifts caused by large-scale warfare. This study aims to bridge this gap by analyzing the direct and indirect effects of military conflicts on labor market dynamics. The paper is structured as follows: We first review the relevant literature on war-related labor market transformations. We then outline the methodology used to assess employment shifts. After that we present the empirical findings. And finally, we discuss the broader implications and policy recommendations.

LITERATURE REVIEW

Human security is a multidimensional concept that includes economic, food, environmental, and social security. Wali and Al-Najjar (2020) analyze the transition from the traditional security discourse focused on military threats during the Cold War to the concept of human security in the context of globalization. The authors emphasize that human security encompasses not only physical, but also economic, social, and environmental components, which makes it more relevant to modern challenges. They call for the integration of human security aspects into public policy to effectively address global crises. Owen (2008) emphasizes the importance of a multidimensional approach to measuring human security, as traditional indicators do not reflect all aspects that affect human well-being. Developing effective methods for assessing human security is a key task for researchers. Martin and Kostovicova (2013) note that it is important to create a methodology that can combine different aspects of human security, including social, economic, and environmental factors. This also confirms the importance of involving local communities in the assessment process. Lior et al. (2018) compare different methods of measuring sustainable development in Southeast Europe, highlighting the importance integrating economic, of social, and environmental priorities. They emphasize that sustainable development is not possible without considering human wellbeing. Indicators are critical to measuring sustainable development. Alaimo and Maggino (2020) address conceptual and methodological issues related to sustainable development indicators at the territorial level, emphasizing the need to adapt methods to specific local contexts. Rahma et al. (2019) present a composite indicator of regional sustainable development in Indonesia, demonstrating the importance of integrating economic, social, and environmental indicators into a single measurement framework.

Assessing well-being is an important part of human security research. Loveridge et al. (2020) propose a protocol for the selection of local well-being indicators, which can help to measure human security more accurately at the local level. Another important aspect is the use of composite indicators to measure human development, as discussed in Alaimo and Seri (2023). Gatto (2020) discusses a pluralistic approach to sustainable development, emphasizing the importance of a variety of indicators that can reflect the actual state of development of local communities. This confirms the need to consider social, economic, and environmental aspects in measuring well-being. Challenges related to social security are also an important aspect. Kharazishvili et al. (2020) examine social security in developing countries, using Ukraine as an example, pointing out the importance of indicators for assessing social security. This study emphasizes that social security should be integrated into sustainable development strategies.

Innovation plays a key role in achieving the sustainable development goals. Hickel's (2020) study draws attention to the ecological efficiency of human development in the Anthropocene, emphasizing the need for innovation to address modern environmental challenges. Also important is the approach to sustainable human resource management, which is discussed in an article by Anlesinya and Susomrith (2020). The authors offer a systematic review of human resource management in the context of sustainable development, which emphasizes the importance of integrating social aspects into development strategies. Developing policies that support innovation is essential for achieving sustainable development. The study by Parish et al. (2020) proposes an assessment framework for new methodological approaches to assessing human health safety. It emphasizes the importance of assessing risks and challenges in the context of new technologies and innovations (Biloshkurska et al., 2019; Ponomarenko et al., 2019).

Keković et al. (2023) point to the concept of resilience as a methodological approach to assessing human security in local communities. This demonstrates the need to develop strategies that would stimulate the development of resilience in the context of human security. In this context, resilience is

Figure 1. The sequence of development and implementation of the methodology for a comprehensive human security assessment in sustainable regional development (Source: Authors' own elaboration)

methodologically integrated into the human security assessment as both a measurable capacity and a dynamic process that enables individuals and communities to anticipate, absorb, and adapt to various shocks and stressesenvironmental, economic, social, or political. Drawing on the framework proposed by Keković et al. (2023), resilience is not only an outcome but also a guiding principle that shapes the formulation of policies and practices aimed at achieving sustainable development. It serves as a bridge between immediate risk mitigation and long-term adaptability, thereby embedding sustainability within the human security paradigm. The study by Birkmann et al. (2022) highlights the importance of understanding climate change vulnerability for adaptation planning. It demonstrates how climate change affects human security and points to the need to integrate environmental indicators into development strategies. Roy et al. (2024) proposes a livelihood security approach to sustainable development, which aims to prioritize development in the context of local communities. This emphasizes the importance of considering local contexts when designing sustainable development strategies.

Recent studies have further expanded our understanding of the labor market consequences of military conflicts, particularly in the context of large-scale wars. For instance, Klopov and Ohrenych, (2024) examine post-war employment recovery trends, highlighting the uneven impact across different economic sectors. Similarly, Maksymenko et al. (2024) explore the role of digital transformation and remote work in mitigating war-induced job losses. Moreover, recent policy-oriented research, such as Davymuka and Popadynets (2024), underscores the necessity of government interventions in stabilizing labor markets during prolonged conflicts. Integrating these perspectives provides a more comprehensive framework for analyzing employment disruptions caused by military conflicts.

Therefore, the assessment of human security in the context of sustainable regional development is a complex process that requires the integration of various aspects and methods. The importance of a comprehensive approach to measuring human security is confirmed by current research. Innovations and community involvement in decision-making are key to ensuring sustainable development and improving human security. The issue of human security in sustainable regional development is related to several aspects that remain insufficiently studied in the scientific literature. Firstly, the complexity of this phenomenon requires a comprehensive approach that includes the assessment of economic, social, and environmental indicators. However, there is a certain scientific vacuum regarding the methods that could integrate these heterogeneous indicators into a single index capable of reflecting the level of human security in different regions. Secondly, the diversity of regional characteristics and imbalances in the distribution of resources create additional difficulties in formulating a sustainable development policy that would consider all the specific needs of the population and the capabilities of individual regions. In this regard, methods of standardizing indicators and building correlation matrices are important to more accurately reflect the interrelationships between different aspects of human security.

METHODOLOGY

The methodology of comprehensive security assessment of sustainable regional development should be based on the concept of sustainable development, which combines economic, social, and environmental components (McNeill, 2007). Developing and implementing the methodology for a comprehensive security assessment of sustainable regional development is a logical process of sequential execution of methodological techniques and actions, which can be represented graphically (**Figure 1**).

Based on previous studies (Omelyanenko et al., 2021; Prokopenko et al., 2021), the comprehensive assessment is based on the formation of an integrated indicator (index) of sustainable development security as a geometric mean of 3 sub-indices:

$$I_{SRD_{HS}} = \sqrt[3]{\hat{I}_{ECC} \times \hat{I}_{SC} \times \hat{I}_{EnC}},\tag{1}$$

where $I_{SRD_{HS}}$ is the sustainable regional development human security index, \hat{I}_{ECC} is the sub-index of the economic component of sustainable regional development human

Economic component	Gross regional product per capita Indices of industrial production Capital investments per enterprise Turnover per enterprise Labor productivity per employee
Social component	 Avarage monthly wages of regular employees ILO unemployment rate of population Wage arrears per employee Disposable income per capita Wages and salaries per employee
Environmental component	•Capital investments on environmental protection per enterprise •Current expenditures on environmental protection per enterprise •Air emissions total from stational pollution sources per capita •Carbon dioxide emissions from stational pollution per capita •Recycled waste per capita

Figure 2. Systematization of single human security indicators in the context of sustainable regional development (Omelyanenko et al., 2019)

security, \hat{I}_{SC} is the sub-index of the social component of sustainable regional development human security, and \hat{I}_{EnC} is the sub-index of the environmental component of sustainable regional development human security.

The generalized fequation for the sub-index of the sustainable regional development component (\hat{I}_{C}) is as follows:

$$\hat{I}_{C} = \sum_{j=1}^{m} w_{S_{C_{ij}}} S_{C_{ij}},$$
(2)

where $w_{S_{c_{ij}}}$ is the *j*-th weighting for the standardized indicator $S_{c_{ij}}$ of the security component of sustainable regional development by the *i*-th region, *i* is the sequence number of the region, i = 1, 2, ..., n, n is the number of regions, and *j* is the sequence number of the indicator, j = 1, 2, ..., m, m is the number of individual indicators in the sub-index.

Single indicators of human security in sustainable regional development are summarized in **Figure 2**.

Figure 2 systematizes five single indicators for each of the three components of the security index of sustainable regional development. It is clear that no restrictions are set for single indicators, their number and calculation methods are not regulated, but such indicators have already been tested (Omelyanenko et al., 2019), and our study is a continuation of this work. The selection of five single indicators for each component of the human security index, as presented in Figure 2, aligns with established statistical practices for constructing composite indices, such as those recommended by the Nardo et al. (2005), handbook on constructing composite indicators. This approach ensures a balanced representation of the economic, social, and environmental dimensions of sustainable regional development while maintaining parsimony and avoiding redundancy. These indicators were chosen to reflect key aspects of human security, building on prior validations (Omelyanenko et al., 2018, 2019) and providing a robust foundation for assessing regional disparities in Ukraine. In addition, an integrated assessment of the security of sustainable regional development in Ukraine will be carried out based on official statistics for 2010-2020 (Appendix A, Appendix B, and Appendix C) in the context of 24 regions with the capital Kyiv,

excluding the temporarily occupied territories of the Autonomous Republic of Crimea and parts of Donetsk and Luhansk regions of Ukraine. This task is also solved in the dynamics, as statistical data for 11 years are processed, and average values are taken for the study.

The third stage of the methodology for a comprehensive assessment of human security in the context of sustainable regional development (see Figure 1) is to standardize the numerical values of the single indicators under study (see Figure 2). At the beginning of the standardization procedure, single indicators are subject to the determination of their impact on the security of sustainable regional development. For example, if the growth of indicators indicates the strengthening of human security in the context of sustainable regional development, such indicators are called incentives. If an increase in the indicators indicates a weakening of human security and the security of sustainable regional development, such indicators are called disincentives. After classifying the indicators by the direction of their impact on the security of sustainable development, we proceed directly to the standardization procedure, the essence of which is to bring the entire data set to a single measurement scale in the range [0; 1], where the worst numerical value is standardized as 0, and the best is assigned a value of 1, but within the aggregate of the values of each indicator. Mathematically, the standardization procedure for the incentives $(S_{C_{ii}} \uparrow)$ indicator is implemented by the Eq. (3):

$$S_{C_{ij}} \uparrow = \frac{x_{ij} - x_{min_j}}{x_{max_j} - x_{min_j}},\tag{3}$$

where x_{ij} is the numerical value of the *j*-th single indicator of human security of sustainable development of the *i*-th region, which is being standardized, and x_{min_j} and x_{min_j} are, respectively, the smallest and largest numerical values of the *j*-th single indicator of the human dimension of sustainable regional development security.

According to Eq. (3), the highest numerical value of the incentive indicator will be 1, and the lowest value will be 0.

For disincentives $(S_{C_{ij}}\downarrow)$, the standardization is based on the Eq. (4):

$$S_{C_{ij}} \downarrow = \frac{x_{max_j} - x_{ij}}{x_{max_j} - x_{min_j}},\tag{4}$$

According to Eq. (4), the highest numerical value of the disincentive indicator will be 0, and the lowest will be 1.

The fourth stage of the methodology for a comprehensive assessment of human security in the context of sustainable regional development involves building a correlation matrix. This methodology involves calculating all the pairwise correlation coefficients between standardized single indicators using the Eq. (5):

$$r_{S_{C_{ij}S_{C_j}}} = \frac{cov\left(S_{C_{ij}} - S_{C_j}\right)}{\sigma_{S_{C_{ij}}}\sigma_{S_{C_j}}},\tag{5}$$

where $r_{S_{C_{ij}S_{C_{j}}}}$ is the Pearson pairwise correlation coefficient between the standardized single indicator $S_{C_{ij}}$ and any other standardized single indicator S_{C_j} , $cov (S_{C_{ij}} - S_{C_j})$ is the covariance for the standardized single indicator $S_{C_{ij}}$ and any other standardized single indicator S_{C_j} , $\sigma_{S_{C_{ij}}}$ is the standard deviation of the standardized single indicator $S_{C_{ij}}$, and $\sigma_{S_{C_j}}$ is the standard deviation of any other standardized single indicator S_{C_i} .

The correlation matrix summarizes all the values of the pairwise correlation coefficients calculated using the Eq. (5). You can also build a correlation matrix using the Excel function "data analysis \Rightarrow correlation".

The fifth stage of the methodology for the comprehensive assessment of human security in the context of sustainable regional development involves calculating the weighting coefficients of standardized single indicators within the subindex. The principle of indicator dominance is necessarily considered (Prokopenko et al., 2019, pp. 388-389). That is, the indicator that is most closely related to the others has the greatest weight. Based on the principle of dominance, for example, the weighting of the first single indicator of the economic component of human security in sustainable regional development ($w_{S_{ECC}}$) is calculated by the Eq. (6):

$$w_{S_{ECC_{1}}} = \frac{\sum_{i=1}^{n} \left| r_{S_{ECC_{i1}}S_{ECC_{ij}}} \right|}{\sum_{j=1}^{m} \left| r_{S_{ECC_{ij}}S_{ECC_{i-1j}}} \right|}.$$
 (6)

Eq. (6) calculates the weighting coefficient of a single indicator of the relevant component of human security in sustainable regional development according to the principle of dominance. The numerator of the equation represented by Eq. (6) is the sum of all pairwise correlation coefficients between the first standardized single indicator and the rest of the standardized indicators, and the denominator is the sum of all pairwise correlation coefficients of the correlation matrix. Accordingly, the indicator that correlates most strongly with the others has a higher weight.

The weighting coefficient of the second single indicator of the first component of human security in sustainable regional development is calculated by the Eq. (7):

Table 1. Levels of the sustainable regional developmenthuman security index (Prokopenko et al., 2019, p. 391)

Integral index value	Security level characteristics	Threats
$I_{SRD_{HS}} \in [0.75; 1.00]$	High	Minimal
$I_{SRD_{HS}} \in [0.50; 0.75)$	Middle	Acceptable
$I_{SRD_{HS}} \in [0.25; 0.50)$	Low	Significant
$I_{SRD_{HS}} \in [0.00; 0.25)$	Critical	Maximal

$$w_{S_{ECC_2}} = \frac{\sum_{i=1}^{n} \left| r_{S_{ECC_{i2}S_{ECC_{ij}}}} \right|}{\sum_{j=1}^{m} \left| r_{S_{ECC_{ij}S_{ECC_{i-1j}}}} \right|}.$$
(7)

The weighting coefficients of other single indicators of any component of human security in sustainable regional development are calculated similarly to those in Eq. (6) and Eq. (7).

The following criterion should be used to determine the correctness of calculations of the weighting coefficients of standardized single indicators of any component of human security in sustainable regional development:

$$\sum_{j=1}^{m} w_{S_{C_j}} = 1.$$
(8)

To set the levels of the human security index for sustainable regional development, we should proceed with the following constraints:

$$0 \le I_{SRD_{HS}} \le 1. \tag{9}$$

Thus, according to Eq. (9), the sustainable regional development human security index can take numerical values from 0 to 1, and to determine its levels, we will use the source (Prokopenko et al., 2019, p. 391) (**Table 1**).

The data in Table 1 are similarly used to rank the levels of human security by the components of sustainable regional development-economic, social, and environmental. At the same time, for an adequate and reliable interpretation of the human security index of sustainable regional development, the 4 levels described in Table 1 are quite sufficient. Thus, at a high level, the impact of threats to human security is minimal and does not significantly affect the disruption of sustainable regional development. At the medium level, the existing threats to human security can be considered acceptable, but their impact on sustainable development is significant and therefore requires urgent municipal decisions. At the low level, threats to human security are considered significant, and their impact on sustainable regional development is considered destructive and requires urgent municipal action to stabilize the situation. The critical level is characterized by the maximum impact of all existing threats to human security, which are catastrophic for sustainable regional development. But in any case, it is necessary to analyze in detail the causes and consequences of the destructive impact of threats on the level of human security of sustainable regional development.

Table 2. Standardized indicators of the economic componentof sustainable regional development human security index (bythe example of Ukraine's regions)

Region	$S_{EcC1\uparrow}^*$	$S_{EcC2\uparrow}$	$S_{EcC3\uparrow}$	$S_{EcC4\uparrow}$	$S_{EcC5\uparrow}$
Cherkasy	0.176	0.681	0.133	0.388	0.399
Chernihiv	0.148	0.517	0.247	0.261	0.206
Chernivtsi	0.042	0.587	0.030	0.000	0.024
City of Kyiv	1.000	0.547	0.749	0.984	1.000
Dnipropetrovsk	0.342	0.665	0.728	0.874	0.578
Donetsk	0.116	0.414	0.726	1.000	0.454
Ivano-Frankivsk	0.115	0.731	0.314	0.148	0.296
Kharkiv	0.218	0.652	0.000	0.248	0.251
Kherson	0.099	0.682	0.020	0.048	0.162
Khmelnytskyi	0.118	0.643	0.428	0.188	0.182
Kirovohrad	0.153	0.884	0.064	0.176	0.293
Kyiv	0.320	0.778	1.000	0.601	0.579
Luhansk	0.000	0.000	0.239	0.260	0.000
Lviv	0.167	0.766	0.355	0.312	0.258
Mykolaiv	0.173	0.755	0.079	0.187	0.372
Odesa	0.185	0.677	0.017	0.226	0.373
Poltava	0.351	0.660	0.800	0.617	0.437
Rivne	0.091	0.807	0.219	0.163	0.124
Sumy	0.135	0.624	0.243	0.279	0.155
Ternopil	0.073	0.796	0.430	0.280	0.291
Vinnytsia	0.156	0.893	0.427	0.289	0.275
Volyn	0.116	0.813	0.494	0.597	0.515
Zakarpattia	0.055	0.712	0.148	0.080	0.109
Zaporizhzhia	0.226	0.660	0.114	0.384	0.318
Zhytomyr	0.121	1.000	0.192	0.202	0.135

Note. $*S_{\uparrow}$ means that the standardized single indicator is an incentive (compiled & calculated using Eq. [1] and Eq. [2] based on the data in Appendix A)

Table 3. Matrix of pairwise correlation coefficients between standardized indicators of the economic component of sustainable regional development human security index in Ukrainian regions

	S_{EcC1}	S_{EcC2}	S_{EcC3}	S_{EcC4}	S_{EcC5}
S_{EcC1}	1				
S_{EcC2}	-0.0132	1			
S_{EcC3}	0.5000	-0.0586	1		
S_{EcC4}	0.6507	-0.2044	0.8000	1	
S_{EcC5}	0.8542	0.0892	0.6535	0.8238	1

Note. Compiled & calculated using Excel based on the data in Table 2

RESULTS AND DISCUSSION

The calculation of the level of human security in sustainable regional development, considering the weight of individual indicators, is the final 7th stage of the methodology for a comprehensive assessment of human security in sustainable regional development, the implementation of which is based on the statistical data of **Appendix A**, **Appendix B**, and **Appendix C** and Eq. (1)-Eq. (9).

Thus, guided by **Figure 2**, we first standardize the human security indicators in each component of sustainable regional development using the example of Ukrainian regions and build the corresponding correlation matrices. In this way, we lay the groundwork for calculating all the necessary weighting factors and constructing the human security index for sustainable

regional development in Ukraine. The results of standardizing the indicators of the economic component of human security are summarized in **Table 2**, and the correlation matrix is presented in **Table 3**.

The data in Table 2 indicate that, based on the aggregate of standardized values of single indicators, Luhansk Region ranks lowest in the economic component of human security of sustainable regional development, with its average annual values of GDP per capita, industrial production index, and labor productivity per employee being the lowest among Ukrainian regions analyzed. This assessment reflects data from 2010-2020, a period that includes the onset of armed conflict in parts of Luhansk starting in 2014. While the methodology standardizes indicators to ensure comparability across regions, it does not explicitly adjust for war-related distortions, such as disruptions to economic activity caused by the conflict. Consequently, Luhansk's low scores may partly reflect these external factors. In contrast, Kharkiv Region ranks lowest in average annual capital investment per enterprise, and Chernivtsi Region in turnover per enterprise, highlighting distinct regional challenges. The capital Kyiv was the absolute leader in terms of average annual GDP per capita and labor productivity per employee, and ranked second in terms of turnover per enterprise, behind Donetsk Region. Zhytomyr Region was the leader in terms of industrial production index growth, while Kyiv Region took the lead in terms of capital investment per enterprise.

Based on the data in **Table 2**, we build a correlation matrix using the correlation function in Excel (**Table 3**).

Based on the numerical values of the pairwise correlation coefficients presented in **Table 3**, it can be concluded that the strongest stochastic relationship exists between capital investment per enterprise and turnover per enterprise (0.8), turnover per enterprise and labor productivity per employee (0.82), GDP per capita and labor productivity per employee (0.85). At the same time, the weakest stochastic relationship is between the industrial production Index and: labor productivity per worker (0.09), capital investment per enterprise (0.06), and GDP per capita (0.01).

The results of the standardization of the indicators of the social component of human security are summarized in **Table 4**, and the correlation matrix is presented in **Table 5**.

The data in Table 4 reveal that the city of Kyiv leads in the social component of human security of sustainable regional development in Ukraine, with the highest average annual values for standardized indicators including average monthly wages of regular employees, disposable income per capita, and wages and salaries per employee, alongside the lowest ILO unemployment rate and wage arrears per employee among all regions analyzed. This dominance likely reflects Kyiv's urban economic advantages, such as higher wage opportunities and labor market stability, which may not be representative of rural areas within the broader Kyiv Region or other parts of Ukraine. This urban-rural disparity represents a potential limitation, as the methodology aggregates data at the regional level and does not account for intra-regional variations in social conditions. Conversely, Luhansk Region exhibits the lowest social security scores across these indicators, followed by Chernivtsi Region, highlighting stark regional disparities.

Table 4. Standardized indicators of the social component of sustainable regional development human security index (by the example of Ukraine's regions)

-		0 ,			
Region	$S_{SC1\uparrow}^*$	$S_{SC2\uparrow}$	$S_{SC3\uparrow}$	$S_{SC4\uparrow}$	$S_{SC5\uparrow}$
Cherkasy	0.088	0.417	0.864	0.181	0.197
Chernihiv	0.025	0.171	0.914	0.197	0.140
Chernivtsi	0.008	0.545	1.000	0.114	0.000
City of Kyiv	1.000	1.000	0.977	1.000	1.000
Dnipropetrovsk	0.323	0.785	0.921	0.380	0.501
Donetsk	0.460	0.052	0.543	0.110	0.433
Ivano-Frankivsk	0.100	0.662	0.931	0.163	0.186
Kharkiv	0.145	0.965	0.746	0.256	0.194
Kherson	0.025	0.362	0.894	0.175	0.034
Khmelnytskyi	0.075	0.510	0.955	0.193	0.143
Kirovohrad	0.052	0.225	0.809	0.180	0.106
Kyiv	0.337	0.945	0.842	0.301	0.571
Luhansk	0.158	0.000	0.000	0.000	0.035
Lviv	0.151	0.782	0.870	0.227	0.261
Mykolaiv	0.240	0.509	0.714	0.222	0.314
Odesa	0.179	0.991	0.943	0.274	0.231
Poltava	0.211	0.217	0.931	0.270	0.372
Rivne	0.121	0.259	0.927	0.159	0.148
Sumy	0.081	0.463	0.423	0.229	0.244
Ternopil	0.000	0.179	0.942	0.120	0.149
Vinnytsia	0.112	0.362	0.959	0.220	0.273
Volyn	0.048	0.324	0.939	0.140	0.191
Zakarpattia	0.117	0.449	0.963	0.096	0.252
Zaporizhzhia	0.287	0.542	0.838	0.322	0.402
Zhytomyr	0.055	0.221	0.943	0.194	0.198

Note. $*S_{\uparrow}$ means that the standardized single indicator is an incentive (compiled and calculated using Eq. [1] and Eq. [2] based on the data in Appendix B)

Table 5. Matrix of pairwise correlation coefficients between standardized indicators of the social component of sustainable development human security index in Ukrainian regions

	S_{SC1}	S_{SC2}	S_{SC3}	S_{SC4}	S_{SC5}
S_{SC1}	1				
S_{SC2}	0.4184	1			
S_{SC3}	-0.0300	0.3319	1		
S_{SC4}	0.8419	0.5935	0.2869	1	
S_{SC5}	0.9276	0.4916	0.1448	0.8584	1
Note (Compiled & ca	lculated usi	ng Excel has	ed on the data	a in Table 4

Based on the numerical values of the pairwise correlation coefficients presented in **Table 5**, it can be concluded that the tightest stochastic relationship exists between the average monthly wage of full-time employees and disposable income per capita (0.84), disposable income per capita and labor costs per employee (0.86), and the average monthly wage of full-time employees and labor costs per employees and labor costs per employees and labor costs per employee (0.86), and the average monthly wage of full-time employees and labor costs per employee (0.93). At the same time, the weakest stochastic relationship is between wage arrears per employee and: the ILO unemployment rate (0.33), disposable income per capita (0.29), labor costs per employee (0.14), and disposable income per capita (-0.03).

The results of the standardization of the indicators of the environmental component of human security are summarized in **Table 6**, and the correlation matrix is presented in **Table 7**.

The results of the analysis of the standardized average values of the indicators of the environmental component of human security of sustainable regional development in Ukraine for 2010-2020, presented in **Table 6**, indicate that

Table 6. Standardized indicators of the environmentalcomponent of sustainable regional development humansecurity index (by the example of Ukraine's regions)

Pagion	S. aut	S. mt	S. cal	S. aut*	Su ant
Region	SENCIT	SEnC2↑	O O O O	SEnC4	SEnC5↑
Спегказу	0.019	0.111	0.822	0.779	0.024
Chernihiv	0.037	0.208	0.870	0.847	0.004
Chernivtsi	0.025	0.082	1.000	0.998	0.003
City of Kyiv	0.039	0.094	0.970	0.804	0.000
Dnipropetrovsk	0.411	1.000	0.055	0.125	1.000
Donetsk	0.411	0.593	0.000	0.000	0.072
Ivano-Frankivsk	0.126	0.197	0.431	0.164	0.015
Kharkiv	0.070	0.157	0.835	0.674	0.004
Kherson	0.000	0.039	0.976	0.983	0.002
Khmelnytskyi	0.022	0.126	0.954	0.837	0.011
Kirovohrad	0.015	0.061	0.957	0.913	0.386
Kyiv	1.000	0.151	0.801	0.686	0.007
Luhansk	0.126	0.607	0.595	0.507	0.035
Lviv	0.041	0.082	0.843	0.877	0.005
Mykolaiv	0.054	0.379	0.953	0.835	0.003
Odesa	0.009	0.070	0.962	0.906	0.001
Poltava	0.091	0.439	0.846	0.811	0.083
Rivne	0.032	0.313	0.973	0.886	0.002
Sumy	0.029	0.310	0.923	0.868	0.008
Ternopil	0.019	0.000	0.965	0.960	0.006
Vinnytsia	0.035	0.076	0.728	0.650	0.008
Volyn	0.014	0.113	0.990	0.962	0.002
Zakarpattia	0.009	0.093	0.990	1.000	0.000
Zaporizhzhia	0.277	0.586	0.565	0.201	0.052
Zhytomyr	0.006	0.065	0.969	0.957	0.002

Note. S_{\downarrow} means that the standardized single indicator is a disincentive (compiled and calculated using Eq. [1] and Eq. [2] based on the data in Appendix C)

Table 7. Matrix of pairwise correlation coefficients betweenstandardized indicators of the environmental component ofsustainable regional development human security index inUkrainian regions

	S_{EnC1}	S_{EnC2}	S_{EnC3}	S_{EnC4}	S_{EnC5}
S_{EnC1}	1				
S_{EnC2}	0.3929	1			
S_{EnC3}	-0.4987	-0.7701	1		
S_{EnC4}	-0.5066	-0.7344	0.9473	1	
S_{EnC5}	0.2590	0.6257	-0.5476	-0.4141	1
Note. C	ompiled & ca	alculated usi	ng Excel bas	ed on the data	a in <mark>Table 6</mark>

regional environmental policy in Ukraine is generally in a state of neglect.

Capital investment in environmental protection per enterprise varied widely, ranging from UAH 816 in Kherson Region to UAH 170.9 thousand in Kyiv region, with a national average of UAH 20.7 thousand. However, in 64% of Ukraine's regions, this investment did not exceed UAH 10,000 per enterprise. The situation with waste disposal is even more concerning: in 80% of Ukraine's regions, the average annual volume of waste disposal was below 1 ton, ranging from 5.7 kg in Kyiv to 925 kg in Luhansk Region. In contrast, Zaporizhzhia Region averaged 1.4 tons, Donetsk Region 1.9 tons, Poltava Region 2.2 tons, Kirovohrad Region 10.3 tons, and Dnipro Region 26.7 tons. For regions like Luhansk and Donetsk, affected by conflict since 2014, data gaps were addressed by using pre-conflict values (2010-2013) from the State Statistics Service of Ukraine (2024) and averaging them across the 2010-

	$\sum_{i=1}^{5} \left r_{\mathcal{S}_{EcC_{i1}}\mathcal{S}_{EcC_{ij}}} \right $	W _{SEcCi}	$\sum_{i=1}^{5} \left r_{S_{SC_{i2}}S_{SC_{ij}}} \right $	W _{Ssci}	$\sum_{i=1}^{5} \left r_{\mathcal{S}_{EnC_{i3}}\mathcal{S}_{EnC_{ij}}} \right $	W _{SEnCi}
$S_{C_{1j}}$	2.018111	0.217106	2.217887	0.225169	1.657205	0.145457
$S_{C_{2j}}$	0.365509	0.039321	1.835296	0.186327	2.523228	0.221470
$S_{C_{3j}}$	2.012145	0.216464	0.793629	0.080572	2.763699	0.242577
$S_{C_{4i}}$	2.478990	0.266687	2.580690	0.262002	2.602478	0.228426
$S_{C_{5j}}$	2.420756	0.260422	2.422383	0.245930	1.846463	0.162069
$\sum_{j=1}^{3} \left r_{S_{C_{ij}S_{C_{i-1j}}}} \right $	9.295511	1.000000	9.849885	1.000000	11.393070	1.000000

Table 8. Calculation of the weighting coefficients of standardized indicators of the components of the sustainable regional development human security index of Ukraine

Note. Compiled and calculated using Eq. (6), Eq. (7), and Eq. (8) based on the data in Table 3, Table 5, and Table 7

2020 period, as outlined before. While this ensures consistency in standardization, it may not fully reflect post-conflict environmental conditions, posing a limitation to the analysis.

The Ternopil Region was the outsider in terms of current environmental protection expenditures per enterprise, while the flagship was Dnipro. Donetsk Region was characterized by the highest volumes of air pollutant emissions from stationary sources per capita (253.6 kg) and carbon dioxide emissions from stationary sources per capita (9.7 tons), while Dnipro was the second with 239.9 kg of air pollutant emissions from stationary sources per capita and 8.5 tons of carbon dioxide emissions from stationary sources per capita. The lowest air pollutant emissions from stationary sources per capita and carbon dioxide emissions from stationary sources per capita in 2010-2020 were in the western regions of Ukraine– Zakarpattia, Volyn, and Chernivtsi.

The data in **Table 7** show that among the human security indicators in the environmental component of the security of sustainable regional development of Ukraine, the densest stochastic relationship is between current environmental protection expenditures per enterprise and carbon dioxide emissions from stationary sources of pollution per capita (0.73), as well as air pollutant emissions from stationary sources of pollution per capita (0.77). At the same time, the highest level of stochastic correlation density is observed between air pollutant emissions from stationary sources of pollution per capita and carbon dioxide emissions from stationary sources of pollution per capita (0.95). At the same time, the weakest stochastic relationship is between capital investment in environmental protection per enterprise and: current environmental protection expenditures per enterprise (0.39), and waste disposal per capita (0.26).

Table 8 summarizes the results of the calculation of the weighting coefficients of the standardized human security indicators by the components of sustainable regional development in Ukraine. This is the result of step 5 of the methodology for the comprehensive assessment of human security in sustainable regional development (see Figure 1).

As can be seen from **Table 8**, when calculating the weighting coefficients of the indicators of each component, the principle of equality of the weighting coefficients of 1 was observed (see Eq. [8]). It has also been found that the index of industrial production for the year (3.9%) has the least impact on the economic component of the human security index in the context of sustainable regional development of Ukraine,

while the volume of products sold per enterprise per year (26.7%) has the greatest impact. As for the social component of the human security index of sustainable regional development, the lowest impact is made by wage arrears per 1 employee (8.1%), and the highest impact is made by disposable income per 1 person. The environmental component is dominated by the indicator of air pollutant emissions from stationary sources per capita per year (24.3%), while the lowest impact is caused by capital investments in environmental protection per enterprise per year.

Using the weighting factors, the sub-indices and the human security index of sustainable regional development of Ukraine were calculated and the regions were ranked, the results are summarized in **Table 9**.

Table 9 is the result of calculating the level of human security in the sustainable development of Ukraine's regions using index analysis and modelling. This index includes three sub-indices: economic, social and environmental, which indicate the level of human security in various aspects of sustainable development of regions. The human security index for Sustainable Development is the average of the three subindices and indicates the overall level of development and security of a region in terms of economic stability, social wellbeing and environmental sustainability. The highest index scores are observed in Kyiv (0.743), which also has the highest rank in all components, indicating the capital's leadership in sustainable development. Among other regions, Dnipropetrovsk (0.544), Kyiv (0.564), and Poltava (0.453) regions demonstrate high scores, which indicates their relative stability and high level of development.

The economic component of human security reflects economic stability and the ability of a region to provide an adequate standard of living for its population (Biloshkurska, 2010). The highest value of the economic sub-index is observed in Kyiv (0.924), which is significantly higher than in other regions. This can be explained by the concentration of economic resources, business, and investment in the capital. Among the other regions, Dnipropetrovsk (0.642), Kyiv (0.628), and Poltava (0.554) regions have high values, which indicates the relative economic stability of these regions. On the other hand, Chernivtsi (0.045), Luhansk (0.121), Zakarpattia (0.122), and Kherson (0.108) regions have the lowest values of the economic sub-index, indicating problems with economic sustainability and low-income levels in these regions.

	Î	\hat{I}_{EcC}		Î _{SC}		\hat{I}_{EnC}		Î _{SRDHS}	
Region	Value	Rank	Value	Rank	Value	Rank	Value	Rank	
Cherkasy	0.3012	8	0.2631	15	0.4085	20	0.3187	11	
Chernihiv	0.2291	15	0.1969	22	0.4567	15	0.2741	18	
Chernivtsi	0.0449	25	0.2140	20	0.4929	7	0.1680	24	
City of Kyiv	0.9235	1	0.9981	1	0.4454	17	0.7432	1	
Dnipropetrovsk	0.6416	2	0.5161	3	0.4852	10	0.5436	3	
Donetsk	0.5837	4	0.2923	12	0.2027	25	0.3258	10	
Ivano-Frankivsk	0.2384	13	0.3093	10	0.2066	24	0.2479	22	
Kharkiv	0.2043	19	0.3875	6	0.4020	21	0.3169	13	
Kherson	0.1078	24	0.1994	21	0.4702	11	0.2163	23	
Khmelnytskyi	0.2410	12	0.2746	13	0.4556	16	0.3113	14	
Kirovohrad	0.2052	18	0.1918	23	0.5189	2	0.2733	20	
Kyiv	0.6276	3	0.5391	2	0.5311	1	0.5643	2	
Luhansk	0.1211	23	0.0442	25	0.4185	19	0.1308	25	
Lviv	0.2934	9	0.3735	7	0.4298	18	0.3611	6	
Mykolaiv	0.2312	14	0.3417	8	0.5142	4	0.3437	9	
Odesa	0.2278	16	0.4295	4	0.4574	13	0.3550	7	
Poltava	0.5538	5	0.3252	9	0.5144	3	0.4525	4	
Rivne	0.1750	21	0.2283	19	0.5127	5	0.2736	19	
Sumy	0.2211	17	0.2585	16	0.4962	6	0.3050	15	
Ternopil	0.2905	10	0.1772	24	0.4570	14	0.2865	16	
Vinnytsia	0.3102	7	0.2947	11	0.3484	23	0.3170	12	
Volyn	0.4574	6	0.2306	17	0.4874	9	0.3718	5	
Zakarpattia	0.1217	22	0.2746	14	0.4907	8	0.2541	21	
Zaporizhzhia	0.2847	11	0.4161	5	0.3615	22	0.3499	8	
Zhytomyr	0.1963	20	0.2292	18	0.4692	12	0.2764	17	

Table 9. Formation of a comprehensive human security index for sustainable development of Ukrainian regions

Note. Compiled and calculated using Eq. (1) and Eq. (2) based on the data in Table 2, Table 4, Table 6, and Table 8

The social component of the index reflects human security and social protection of the population, including access to healthcare, education, and social programs (Serohin et al., 2023). The highest values of the social sub-index are observed in Kyiv (0.998), which indicates the high quality of social services and their accessibility. Other leaders in the social subindex include Kyiv (0.539), Dnipro (0.516), Odesa (0.430), and Zaporizhzhia (0.416) regions, which indicates a relatively high level of social infrastructure in these regions. Luhansk (0.044), Ternopil (0.177), Kherson (0.199), and Chernihiv (0.197) regions have the lowest scores, which may indicate insufficient provision of or limited access to social services.

The environmental component of human security indicates the level of environmental sustainability and the presence of environmental risks (Serohin et al., 2023). Kyiv Region has the highest score (0.5311), which indicates a relatively favorable environmental situation or effective environmental protection measures. Other regions with high scores include Kirovohrad (0.519), Poltava (0.514), and Rivne (0.513), which reflects their efforts to maintain environmental sustainability. In contrast, Donetsk (0.203), Ivano-Frankivsk (0.207), and Luhansk (0.419) regions have the lowest scores on the environmental sub-index, which may indicate environmental challenges related to industrial production, military operations, or other factors.

In general, the capital of Ukraine, Kyiv, as well as regions such as Kyiv, Dnipro and Poltava regions, demonstrate the most comprehensive development in terms of human security of sustainable development, with high scores in all subindices. This can be explained by the developed economies, significant budget funding and high level of infrastructure services in these regions. At the same time, some regions, such as Luhansk, Kherson, and Chernivtsi regions, have low scores in both the overall human security index and individual subindices. This reflects their socio-economic problems, limited resources, and insufficient investment in infrastructure and services.

Thus, the analysis of the comprehensive human security index of sustainable development of Ukraine's regions reveals significant differences between the regions in three key aspects: economic, social, and environmental. The highest indicators of stability and development are demonstrated by the capital (Kyiv), as well as Kyiv, Dnipro, and Poltava regions, which indicates the concentration of resources, developed infrastructure, and significant investments in economic, social, and environmental development. At the same time, regions such as Luhansk, Kherson, Chernivtsi, and other lowscoring regions face significant socio-economic challenges that limit their potential for sustainable development. Of particular concern is the situation in the regions affected by the hostilities, such as Donetsk and Luhansk regions, which have the lowest human security index scores due to destroyed infrastructure, low economic activity, and deteriorating environmental conditions. In addition, regions with low scores on the social sub-index, such as Luhansk, Ternopil, and Kherson, require increased humanitarian support and the development of social programs to ensure basic needs and access to services. The environmental situation in some regions, particularly in Donetsk and Luhansk regions, also requires increased attention. Poor environmental performance in these regions may be the result of active industrial activity and hostilities, which creates additional challenges for sustainable development and the safety of the population.

Based on the results of a comprehensive assessment of human security in the context of sustainable regional development, several recommendations can be made to improve the effectiveness of the state's innovative policy, in particular:

- 1. Expand innovation programs to support depressed regions, as regions with a low economic sub-index need to create special innovation programs to stimulate economic growth. These could include technology parks, grants for small business development, incentives for local innovative start-ups, and retraining programs. It is also important to develop digital tools to support entrepreneurship, which will create new jobs and attract investment. In addition, both individual entrepreneurs and small and medium-sized businesses can apply for such programs, provided they can justify the need to finance innovative initiatives to intensify their business activities. To combat the problem of low employment, it is necessary to introduce vocational training programs to help residents acquire new skills in demand in the labor market, including training in IT, green technologies, business management, and other innovative fields.
- 2. Stimulate social innovation policy to improve human security, especially for regions with low social indicators. Here, innovative solutions should be introduced to improve the quality of life of the population, including the massive introduction of digital platforms for social support, including the digitalization of the processes of applying for any type of state support, such as subsidies, social benefits, and medical and educational services. For example, in regions with low access to medical services, telemedicine can be an important tool for improving human security. The implementation of telemedicine projects will allow doctors to consult patients remotely, providing primary healthcare and diagnostic services without the need for a physical visit to the hospital. To improve the quality and accessibility of education, the development of distance learning platforms can be encouraged to provide access to education for children and youth from different regions, especially in rural areas or conflict zones. Innovative policies can promote the creation of social enterprises that address human security issues, such as the rehabilitation of war victims, assistance to IDPs, and support for socially vulnerable groups. This can be done through grants, preferential taxation, or social business incubators.
- 3. Stimulate investment in environmental innovations to improve the environmental situation in regions with a low environmental sub-index. To this end, the development of environmentally friendly technologies, the use of renewable energy sources, and the introduction of innovative methods to reduce pollutant emissions should be encouraged. Innovative policies in this area could include the creation of special environmental funds to support sustainable development projects and attract businesses to green investments. Government incentives, such as reduced income taxes for companies that implement green

technologies, can be a powerful incentive. Subsidies for the introduction of green technologies, such as renewable energy sources, can help reduce start-up costs and attract investment. Investing in research and development in environmental technologies can stimulate the creation of new solutions. Government grants for R&D in partnership with universities and businesses can help accelerate the development and commercialization of environmental innovations. The state can stimulate the market for environmental innovations by purchasing environmentally friendly goods and services for its own needs. Incubators and accelerators for environmental start-ups will help young companies develop their innovative products by providing access to funding, mentoring, and market resources. This will create a favorable environment for new businesses aimed at solving environmental problems.

- 4. Develop a recovery strategy for the regions affected by military operations. Regions that have suffered significant destruction due to military operations require tailored, innovative support. Programs should be established to rebuild infrastructure using modern technologies, such as 3D printing of building structures, as piloted in post-conflict reconstruction efforts in the Netherlands for rapid housing solutions. International partners should be engaged to finance these projects, drawing on models like Rwanda's postconflict recovery, where mobile banking and digital agricultural platforms revitalized the economy and improved livelihoods (World Bank, 2020). Particular attention should focus on innovations in energy conservation and renewable energy, exemplified by Bosnia and Herzegovina's integration of smart energy grids to restore infrastructure and enhance efficiency (United Nations Development Program [UNDP], 2008). Modernizing industrial enterprises to minimize environmental impact, alongside offering tax incentives for businesses that establish operations in recovering regions, will spur job creation and economic growth. Support for small and medium-sized businesses through soft loans or grants will further stimulate local economies. Promoting agricultural development and restoring essential service businesses critical. Engaging communities are also in reconstruction via local projects will foster social cohesion, while international organizations can provide financial and expert support to implement best practices, ensuring a sustainable recovery.
- 5. Support the creation of regional innovation clusters that will bring together scientific institutions, business, and government, and contribute to more efficient use of regional potential. Such clusters can focus on the development of specific industries (e.g., IT, agriculture, and biotechnology) to help create new jobs and increase the competitiveness of regions at the national and international levels. The combination of science, business, and government within the cluster creates a favorable environment for innovation. Scientific institutions provide access to research and new

technologies, businesses provide financial resources, and the government creates regulatory and tax incentives. This interaction facilitates the development and introduction of new products and services, region's productivity increasing the and competitiveness. Human capital development is also an important advantage of innovation clusters. Attracting scientists, engineers and young professionals helps create new jobs and training opportunities. Knowledge is shared and professional skills are developed among the local population, which reduces the outflow of personnel and attracts talented professionals from other regions. Innovation clusters are attractive to domestic and foreign investors, as they offer convenient access to innovative solutions, reduce risks, and increase the efficiency of investments. The development of clusters can also attract grants from international organizations, which will help projects develop faster.

Innovative state policies aimed at supporting sustainable development and improving human security can be a key factor in ensuring economic, social, and environmental stability in Ukraine, contributing to balanced regional development and improving the quality of life of the population.

CONCLUSION

The results of the study of methodological support for a comprehensive assessment of human security in the context of sustainable regional development and proposals for improving innovation policy allow us to draw several important conclusions.

Firstly, a comprehensive assessment of human security in sustainable regional development involves the use of a multistage methodology, including the standardization of indicators and the calculation of weighting factors. This approach provides a detailed understanding of the situation in each region of Ukraine in terms of economic, social, and environmental components. The final stage of the methodology, in particular, considers the weight of each indicator, which makes the assessment more accurate and adapted to different regional development conditions.

Secondly, the results of the study show that the economic security of the regions varies significantly. Kyiv is the leader in terms of GDP per capita and labor productivity, which indicates the concentration of resources, capital, and investment in the capital. At the same time, Luhansk Region ranks the lowest, in particular, due to low GDP per capita, labor productivity, and capital investment. Other regions, such as Dnipropetrovsk and Kyiv regions, also demonstrate a relatively high level of economic development due to high investment and significant trade turnover. These regions have a welldeveloped economic infrastructure, which increases their resilience to economic fluctuations. The correlation analysis showed that the strongest stochastic relationship is between capital investment per enterprise and turnover per enterprise, as well as between labor productivity and GDP per capita. This indicates that a higher level of investment contributes to economic activity and productivity. At the same time, the index of industrial output proved to be less significant for assessing economic security, which may indicate structural problems in the industry in some regions.

Thirdly, social indicators showed significant differences between regions–Kyiv demonstrated a high level of social security due to better access to healthcare services, highincome levels, and access to social infrastructure, but Luhansk region ranked the worst, with the highest unemployment rate and lowest per capita income. Chernivtsi and Ternopil regions also have low average monthly wages, which may indicate insufficient development of social infrastructure. The high correlation between the average monthly salary and per capita disposable income indicates the importance of financial security for the human security of the regions.

Fourthly, the environmental aspect of human security demonstrates insufficient attention to environmental protection measures in many regions. There is a significant disparity in the amount of capital investment in environmental protection per enterprise: Kyiv Region has the highest figures, while in most other regions investments are much lower. This leads to low waste recycling rates and high emissions of harmful substances, especially in Donetsk and Dnipro regions. The strongest correlation exists between environmental expenditures and pollutant emissions, which demonstrates the importance of financing environmental protection measures to reduce environmental risks.

Fifthly, the calculation of the overall human security index shows that Kyiv, Dnipro, and Kyiv regions have the highest scores, which is ensured by high values of economic, social, and environmental indicators. Kyiv is a leader in all three components of the index due to its concentration of resources and developed infrastructure. On the contrary, Luhansk, Chernivtsi, and Kherson regions have the lowest scores, which indicates problems in the economic, social, and environmental security of these regions. The use of index analysis allows us not only to assess the level of security and development of the regions but also to identify the main weaknesses that require additional attention. The poor performance of some regions can serve as a basis for developing special support programs aimed at improving investment attractiveness, reducing unemployment, and enhancing environmental sustainability. This approach will help to achieve more regional development, which is important for the stability of the country as a whole.

Finally, the human security index serves as a vital tool for assessing the sustainable development of regions, integrating not only economic but also social and environmental dimensions. This multidimensional approach provides a comprehensive view of regional development, pinpointing weaknesses and enabling targeted resource allocation to the most vulnerable sectors. As such, it facilitates the creation of effective public policies that enhance living standards and promote sustainable development in Ukraine. To ensure its ongoing relevance, the Index can be adapted or updated periodically-adjusting indicators or weights based on evolving regional conditions, such as post-conflict recovery progress, environmental shifts, or economic trends-allowing policymakers to respond dynamically to emerging challenges and opportunities.

Despite its contributions, the study faces several limitations that warrant consideration. The reliance on regional averages may mask intra-regional disparities, such as urban-rural divides, potentially overestimating security in urban-centric regions like Kyiv while underrepresenting rural challenges. Data constraints, particularly in conflict-affected areas like Luhansk and Donetsk, necessitated the use of preconflict averages (2010-2013) for some indicators, which may not fully capture post-2014 realities. Additionally, the selection and weighting of indicators, while methodologically justified, involve subjective decisions that might not fully align with region-specific priorities or emerging threats. Future research could address these limitations by incorporating subregional data to reveal internal variations, updating conflictzone statistics as conditions allow, and engaging local stakeholders to refine indicator selection and weighting through participatory approaches. Further exploration could also test the Index's applicability in other post-conflict or transitional contexts beyond Ukraine or integrate advanced tools like real-time environmental sensors or machine learning to enhance its predictive capacity and responsiveness to dynamic regional needs.

Author contributions: NB: Conceptualization, data curation, funding acquisition, methodology, project administration, supervision, and writing – original draft; VO: Conceptualization, formal analysis, funding acquisition, methodology, and writing – review & editing; OY: Formal analysis, resources, validation, and writing – original draft; OB: Conceptualization, investigation, software, and writing – original draft; PM: Formal analysis, investigation, resources, validation, and writing – original draft; OO: Funding acquisition, resources, software, and writing – original draft; TK: Funding acquisition, investigation, validation, visualization, and writing – original draft. All co-authors have agreed with the results and conclusions.

Funding: This study was funded by the Ministry of Education and Science of Ukraine and National Academy of Sciences of Ukraine within the framework of research project No. 0123U101614 strategic design of innovative business environment to enhance human security in wartime and postwar conditions, research project No. 0123U100271 organizational and economic support of the post-war sustainable development of territories based on the methodology of innovation infrastructure and service communities' development, and research project No 0124U000549 digital transformations to ensure civil protection and post-war economic recovery in the face of environmental and social challenges.

Ethical statement: The authors stated that this research presents negligible risks concerning privacy, equity, health, and safety. Throughout the study, the authors adhered strictly to the highest ethical benchmarks for scholarly publications, ensuring practices such as informed consent, anonymity, and confidentiality were rigorously upheld. The authors further stated that the authors noted that no institutional ethical clearance was deemed necessary, given that the dataset employed was fully anonymized, no human biological samples were involved, and the investigation did not induce any significant distress among participants.

Declaration of interest: No conflict of interest is declared by the authors.

Data sharing statement: Data supporting the findings and conclusions are available upon request from the corresponding author.

REFERENCES

- Alaimo, L. S., & Maggino, F. (2020). Sustainable development goals indicators at territorial level: Conceptual and methodological issues–The Italian perspective. *Social Indicators Research*, (147), 383-419. https://doi.org/10.1007 /s11205-019-02162-4
- Alaimo, L. S., & Seri, E. (2023). Measuring human development by means of composite indicators: Open issues and new methodological tools. *Quality & Quantity, 57*(1), 397-415. https://doi.org/10.1007/s11135-022-01597-1
- Anlesinya, A., & Susomrith, P. (2020). Sustainable human resource management: A systematic review of a developing field. *Journal of Global Responsibility*, 11(3), 295-324. https://doi.org/10.1108/JGR-04-2019-0038
- Biloshkurska, N. (2010). Adaptive behavior models and their role in formation of enterprise economic security. *Actual Problems of Economics*, (12), 101-105.
- Biloshkurska, N., Harnyk, O., Biloshkurskyi, M., Liannoi, M., Kudrina, O., & Omelyanenko, V. (2019). Methodological bases of innovation development priorities integrated assessment. *International Journal of Civil Engineering and Technology*, 10(1), 1231-1240.
- Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., & Alegría, A. (2022). Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning. *Science of The Total Environment*, (803), Article 150065. https://doi.org/10.1016/j.scitotenv.2021.150065
- Davymuka, S. A., & Popadynets, N. M. (2024). Trends in the development of innovative entrepreneurship and prospects for post-war reconstruction. *Economic Innovations*, 26(93), 20-32. https://doi.org/10.31520/ei. 2024.26.4(93).20-32
- Gatto, A. (2020). A pluralistic approach to economic and business sustainability: A critical meta-synthesis of foundations, metrics, and evidence of human and local development. *Corporate Social Responsibility and Environmental Management*, 27(4), 1525-1539. https://doi.org/10.1002/csr.1912
- Hickel, J. (2020). The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. *Ecological Economics*, (167), Article 106331. https://doi.org/10.1016/j.ecolecon.2019.05.011
- Keković, Z., Stanković, N., & Galić, D. (2023). The concept of resilience as a broader methodological approach for assessment of human security in local communities. *Security Dialogues*, 14(1), 25-44. https://doi.org/10.47054/ SD23141025k
- Kharazishvili, Y., Kwilinski, A., Grishnova, O., & Dzwigol, H. (2020). Social safety of society for developing countries to meet sustainable development standards: Indicators, level, strategic benchmarks (with calculations based on the case study of Ukraine). *Sustainability*, *12*(21), Article 8953. https://doi.org/10.3390/su12218953

- Klopov, I., & Ohrenych, J. (2024). The model of economic recovery of Ukraine in the post-war period: The strategy of the economic miracle. *Baltic Journal of Economic Studies, 10*(5), 184-191. https://doi.org/10.30525/2256-0742/2024-10-5-184-191
- Lior, N., Radovanović, M., & Filipović, S. (2018). Comparing sustainable development measurement based on different priorities: Sustainable development goals, economics, and human well-being–Southeast Europe case. *Sustainability Science*, (13), 973-1000. https://doi.org/10.1007/s11625-018-0557-2
- Loveridge, R., Sallu, S. M., Pesha, I. J., & Marshall, A. R. (2020). Measuring human wellbeing: A protocol for selecting local indicators. *Environmental Science & Policy*, (114), 461-469. https://doi.org/10.1016/j.envsci.2020.09.002
- Maksymenko, I., Akimov, A., & Markova, S. (2024). Trends in the digital transformation of Ukraine's economy in the context of war. *Baltic Journal of Economic Studies*, *10*(1), 175-184. https://doi.org/10.30525/2256-0742/2024-10-1-175-184
- Martin, M., & Kostovicova, D. (2013). From concept to method: The challenge of a human security methodology. In M. Martin, & T. Owen (Eds.), *Routledge handbook of human security* (pp. 297-307). Routledge. https://doi.org/10.4324/ 9781315885926
- McNeill, D. (2007). 'Human development': The power of the idea. *Journal of Human Development, 8*(1), 5-22. https://doi.org/10.1080/14649880601101366
- Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). *Handbook on constructing composite indicators: Methodology and user guide*. OECD Publishing. https://doi.org/10.1787/533411815016
- Omelyanenko, V., Martynenko, V., Slatvinskyi, M., Povorozniuk, I., Biloshkurska, N., & Biloshkurskyi, M. (2019). Methodological bases of sectoral innovation priorities evaluation within security-based strategies. *International Journal of Civil Engineering and Technology*, 10(2), 1217-1226.
- Omelyanenko, V., Prokopenko, O., Kudrina, O., Petrova, I., Biloshkurska, N., Biloshkurskyi, M., & Omelyanenko, O. (2021). Digital component of innovation landscapes: Con of sustainable development at the local level. In *Proceedings of the 44th International Convention on Information, Communication and Electronic Technology* (pp. 1324-1328). IEEE. https://doi.org/10.23919/mipro52101. 2021.9597058
- Omelyanenko, V., Semenets-Orlova, I., Khomeriki, O., Lyasota, L., & Medviedieva, Y. (2018). Technology transfer management culture (education-based approach). *Problems and Perspectives in Management*, *16*(3), 454-463. https://doi.org/10.21511/ppm.16(3).2018.36
- Owen, T. (2008). Measuring human security. In P. H. Liotta, D. A. Mouat, W. G. Kepner, & J. M. Lancaster (Eds.), *Environmental change and human security: Recognizing and acting on hazard impacts* (pp. 31-50). Springer. https://doi.org/10.1007/978-1-4020-8551-2_3

- Parish, S. T., Aschner, M., Casey, W., Corvaro, M., Embry, M. R., Fitzpatrick, S., & Boobis, A. (2020). An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. *Regulatory Toxicology and Pharmacology*, (112), Article 104592. https://doi.org/10. 1016/j.yrtph.2020.104592
- Ponomarenko, T., Prokopenko, O., Slatvinskyi, M., Biloshkurska, N., Biloshkurskyi, M., & Omelyanenko, V. (2019). National investment and innovation security assessment methodology. *International Journal of Mechanical Engineering and Technology*, 10(2), 847-857.
- Prokopenko, O., Bezliudnyi, O., Omelyanenko, V., Slatvinskyi, M., Biloshkurska, N., & Biloshkurskyi, M. (2021). Patterns identification in the dynamics of countries' technological development in the context of military conflict. *Eastern-European Journal of Enterprise Technologies, 2*(110), 6-15. https://doi.org/10.15587/1729-4061.2021.230236
- Prokopenko, O., Slatvinskyi, M., Biloshkurska, N., Biloshkurskyi, M., & Omelyanenko, V. (2019). Methodology of national investment and innovation security analytics. *Problems and Perspectives in Management*, 17(1), 380-394. https://doi.org/10.21511/ ppm.17(1).2019.33
- Rahma, H., Fauzi, A., Juanda, B., & Widjojanto, B. (2019). Development of a composite measure of regional sustainable development in Indonesia. *Sustainability*, *11*(20), Article 5861. https://doi.org/10.3390/su11205861
- Roy, S., Bose, A., Basak, D., & Chowdhury, I. R. (2024). Towards sustainable society: The sustainable livelihood security (SLS) approach for prioritizing development and understanding sustainability: An insight from West Bengal, India. *Environmental Development and Sustainability*, (26), 20095-20126. https://doi.org/10.1007/ s10668-023-03456-x
- Serohin, V., Serohina, S., Bodrova, I., Hrytsenko, H., & Omelianenko, O. (2023). The potential of territorial communities as a factor of socio-environmental development of territories. WSEAS Transactions on Environment and Development, (19), 197-206. https://doi.org/10.37394/232015.2023.19.17
- State Statistics Service of Ukraine. (2024). Statistical information. *State Statistics Service of Ukraine*. https://www.ukrstat.gov.ua
- UNDP. (2008). Crisis prevention and recovery report 2008: Post-conflict economic recovery–Enabling local ingenuity. *United Nations Development Program*. https://www.undp. org/publications/crisis-prevention-and-recovery-report-2008-post-conflict-economic-recovery-enabling-localingenuity
- Wali, N. S., & Al-Najjar, S. A. (2020). Conceptual evolution and fundamental challenges in transition from Cold War security discourse and emergence of human security discourse in the age of globalization. UKH Journal of Social Sciences, 4(1), 58-68. https://doi.org/10.25079/ukhjss.v4n1 y2020.pp58-68
- World Bank. (2020). Future drivers of growth in Rwanda: Innovation, integration, agglomeration, and competition. Rwanda economic update, no. 14. World Bank. https://doi.org/10.1596/978-1-4648-1280-4

APPENDIX A

Table A1. Gross regional product per capita* by region for 2010-2020 (UAH)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	17,325	21,082	24,558	26,168	30,628	40,759	48,025	59,612	76,881	86,279	91,817	47,558
Chernihiv	15,406	19,357	22,096	22,603	26,530	35,196	41,726	55,139	69,712	78,098	85,435	42,845
Chernivtsi	10,939	13,228	14,529	15,154	16,552	20,338	23,365	31,495	37,443	46,135	50,110	25,390
City of Kyiv	70,424	79,729	97,429	109,402	124,163	155,904	191,736	238,687	283,175	320,898	342,247	183,072
Dnipropetrovsk	34,709	42,068	44,650	46,333	53,749	65,897	75,396	97,043	114,750	122,298	126,209	74,827
Donetsk	28,986	36,446	38,907	37,830	27,771	26,864	32,318	39,299	45,936	49,385	50,124	37,624
Ivano-Frankivsk	14,814	19,386	23,379	24,022	27,232	33,170	37,220	46,282	57,030	63,237	66,245	37,456
Kharkiv	23,639	27,966	29,972	31,128	35,328	45,816	57,150	69,409	86,889	92,835	97,428	54,324
Kherson	14,346	16,990	17,910	19,311	21,725	30,246	36,585	45,486	52,914	59,972	66,973	34,769
Khmelnytskyi	13,602	17,260	19,920	20,165	24,662	31,660	37,881	49,858	59,576	65,893	77,153	37,966
Kirovohrad	15,533	19,918	22,082	25,533	29,223	39,356	47,469	55,128	67,743	77,788	81,166	43,722
Kyiv	26,140	34,420	40,483	39,988	46,058	60,109	74,216	89,904	112,510	123,216	135,817	71,169
Luhansk	19,788	25,067	25,950	24,514	14,079	10,778	14,251	13,873	16,300	18,793	20,297	18,517
Lviv	16,353	20,490	24,387	24,937	28,731	37,338	45,319	58,183	70,169	85,177	94,317	45,946
Mykolaiv	20,276	23,402	24,838	27,355	30,357	41,501	50,091	60,486	70,325	82,121	86,750	47,046
Odesa	22,544	25,748	27,070	29,118	31,268	41,682	50,159	62,643	72,731	82,879	92,823	48,970
Poltava	29,652	35,246	38,424	39,962	48,040	66,390	81,145	105,994	123,722	134,383	136,608	76,324
Rivne	13,785	16,735	18,860	19,003	24,762	30,350	33,958	42,004	49,038	58,318	62,485	33,573
Sumy	15,711	19,800	21,722	23,517	26,943	37170	41,741	51,367	62,943	70,550	75,815	40,662
Ternopil	11,713	15,055	16,644	16,819	20,228	24,963	29,247	38,563	46,828	54,821	60,565	30,495
Vinnytsia	14,332	17,768	20,253	22,303	27,249	37,270	46,615	58,296	71,098	83,133	88,380	44,245
Volyn	13,916	16,993	19,249	19,817	23,218	30,387	34,310	49,937	58,294	73,192	75,193	37,682
Zakarpattia	12,278	14,455	17,088	17,044	19,170	22,989	25,727	34,197	41,706	48,853	49,538	27,550
Zaporizhzhia	23,657	27,567	30,656	30,526	37,251	50,609	59,729	75,196	85,764	91,452	99,738	55,650
Zhytomyr	14,616	17,184	19,551	20,286	23,678	30,698	38,520	49,700	62,905	70,225	76,017	38,489

Note. *This indicator is an incentive (compiled and calculated according to the State Statistics Service of Ukraine, 2024)

Table A2. Indices of industrial production* by region for 2010-2020 (%)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	117.1	103.4	94.9	95.2	94.7	90.8	106.3	99.1	102.3	101.3	96.8	99.9
Chernihiv	99.8	98.0	98.1	89.6	97.2	91.2	105.8	96.5	99.2	89.9	93.2	96.1
Chernivtsi	111.9	89.6	86.8	103.7	92.9	98.3	96.9	106.7	105.8	100.3	85.9	97.7
City of Kyiv	104.1	102.0	95.9	89.9	85.9	94.6	104.4	95.8	98.1	98.0	97.7	96.8
Dnipropetrovsk	116.1	105.4	102.2	98.5	92.5	92.1	99.3	100.1	103.0	101.0	87.8	99.6
Donetsk	114.7	113.6	94.6	93.6	68.5	65.4	106.4	89.1	102.6	100.6	96.6	93.7
Ivano-Frankivsk	100.2	125.7	101.2	95.3	98.9	89.1	95.5	112.0	110.3	95.6	93.4	101.1
Kharkiv	105.8	105.5	97.6	94.5	94.8	88.2	105.8	106.1	102.9	96.7	95.8	99.3
Kherson	100.5	93.1	104.7	92.4	96.4	98.1	102.0	103.2	101.1	104.4	104.8	100.0
Khmelnytskyi	104.9	109.2	101.2	97.6	97.8	95.7	104.7	101.6	95.3	85.5	98.0	99.0
Kirovohrad	113.3	111.0	107.5	106.6	100.8	82.9	120.3	105.5	102.2	103.6	102.2	104.7
Kyiv	108.0	110.6	96.8	99.1	101.6	93.0	106.2	110.3	102.0	99.7	98.5	102.2
Luhansk	107.1	115.8	92.5	91.1	58.0	34.0	139.0	69.0	83.0	96.0	93.4	84.0
Lviv	100.9	112.8	101.6	101.2	97.2	98.5	99.3	106.0	102.4	97.0	105.4	101.9
Mykolaiv	110.3	104.2	99.5	96.5	101.4	91.1	110.5	101.5	104.0	98.3	102.6	101.7
Odesa	102.9	83.6	96.9	100.6	99.7	96.1	109.2	112.2	92.4	107.4	100.7	99.9
Poltava	112.6	99.6	100.0	94.7	92.9	96.2	100.1	98.9	101.5	98.8	99.8	99.4
Rivne	129.6	107.6	96.7	91.4	103.7	100.3	98.1	109.3	95.6	106.9	97.3	102.9
Sumy	93.5	107.7	95.6	107.0	88.1	98.4	91.2	101.7	110.3	98.3	95.5	98.6
Ternopil	102.5	112.4	102.1	99.5	116.5	92.1	110.3	108.5	98.2	98.3	91.7	102.6
Vinnytsia	106.5	100.0	107.1	110.4	105.4	104.0	105.3	108.2	99.2	114.7	94.5	104.9
Volyn	126.7	112.6	94.5	102.9	103.2	98.6	100.2	105.7	102.2	94.9	95.7	103.0
Zakarpattia	142.9	101.8	101.4	96.9	106.1	79.7	105.9	100.3	105.1	86.1	92.7	100.7
Zaporizhzhia	107.8	106.3	96.8	97.1	96.8	95.3	96.9	106.2	103.6	95.5	92.9	99.4
Zhytomyr	108.2	125.3	116.6	113.4	107.1	110.0	105.7	109.5	97.5	94.3	97.6	107.4

Biloshkurska et al. / Eur	opean Journal of Sustainable	Development Research,	9(4), em0315
---------------------------	------------------------------	-----------------------	--------------

Table A3. Capital investments	per enterprise* by region	for 2010-2020	(UAH thousand)
	per enterprise of region		(or mr erro crocarter)

-			1	, 0			`	,				
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	388.0	452.1	526.2	430.4	400.1	540.7	807.3	918.8	1,210.8	1,172.7	977.7	738.0
Chernihiv	364.8	434.1	465.0	456.9	435.6	589.9	1,015.8	1,245.1	1,469.5	1,356.6	1,272.3	839.3
Chernivtsi	322.7	480.9	558.2	542.6	415.0	688.0	762.5	762.3	908.3	967.4	789.4	646.4
City of Kyiv	622.4	769.4	1,056.8	809.7	776.1	1,008.7	1,394.5	1,597.5	2,188.9	2,093.5	1,610.2	1,286.0
Dnipropetrovsk	584.9	823.2	822.6	755.1	776.1	951.2	1,296.5	1,538.4	2,070.4	2,146.5	1,901.0	1,267.1
Donetsk	547.5	927.7	1,132.6	971.5	1,157.4	706.0	1,135.4	1,652.5	2,772.5	2,970.6	2,807.7	1,266.1
Ivano-Frankivsk	571.8	556.9	673.2	599.9	860.6	1,209.9	1,154.7	1,270.8	1,131.5	1,082.7	780.2	899.7
Kharkiv	312.6	506.4	591.3	356.2	323.6	451.0	809.7	856.8	989.8	913.1	805.3	620.0
Kherson	263.4	399.5	318.8	262.2	270.6	388.0	640.3	908.1	1077.3	1453.2	887.0	638.0
Khmelnytskyi	454.2	553.5	529.6	525.3	585.3	973.9	1,464.9	1,509.9	1,517.3	1,339.5	1,387.1	1,000.7
Kirovohrad	313.0	601.2	652.7	436.8	408.4	528.0	882.1	946.5	890.1	890.3	788.7	676.9
Kyiv	742.8	1,071.0	1,165.0	1,108.2	1,099.6	1,341.1	1,873.9	1,783.7	2,030.2	2,386.3	1,612.2	1,509.4
Luhansk	516.7	631.2	766.2	998.6	1,615.4	614.2	1,169.1	977.1	933.4	899.7	956.3	832.5
Lviv	434.1	726.5	644.7	523.2	514.2	718.6	1,193.7	1,344.2	1,507.6	1,516.7	1,130.6	935.5
Mykolaiv	393.9	506.5	460.5	465.2	360.9	566.7	968.1	1,034.9	883.3	1,022.1	827.8	690.1
Odesa	389.4	396.9	592.9	456.3	391.0	418.0	796.5	928.3	962.9	814.8	841.8	635.0
Poltava	657.5	816.1	1,045.6	941.5	883.0	822.1	1,698.2	1,556.3	1,700.7	2,011.1	2,265.6	1,331.3
Rivne	380.0	523.7	562.6	548.4	540.5	825.1	920.6	1,160.4	1,303.5	1,129.8	938.5	815.1
Sumy	406.6	557.2	528.6	467.8	480.9	627.0	1,090.0	1,217.7	1,302.7	1,243.0	1,181.1	836.2
Ternopil	452.2	507.9	701.6	568.6	502.0	751.1	1,150.4	1,518.2	1,660.7	1,808.8	1,421.0	1,002.3
Vinnytsia	444.1	629.2	666.1	655.5	608.1	780.9	960.3	1,278.3	1,814.7	1,527.4	1,379.2	1,000.1
Volyn	339.7	526.4	628.6	603.7	614.5	1,101.2	1,266.5	1,258.2	1,468.1	2,012.7	1,508.5	1,059.0
Zakarpattia	380.7	547.5	486.2	439.2	434.6	618.3	921.9	971.6	1,167.6	1,460.6	763.5	751.8
Zaporizhzhia	545.9	447.0	503.8	462.8	485.7	540.4	819.3	1,089.4	1,049.3	950.5	1,008.3	721.3
Zhytomyr	317.8	405.2	465.0	452.3	441.0	612.1	939.9	1,189.6	1,264.6	1,158.9	1,313.1	790.4
Note *This indica	tor is an i	ncontivo (c	omniled a	nd calculat	ad accordin	or to the St	tato Statiet	ice Sorvice	of Ukrain	2024)		

Note. *This indicator is an incentive (compiled and calculated according to the State Statistics Service of Ukraine, 2024)

Table A4. Turnover per enterprise* by region for 2010-2020 (UAH thousand)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	6,260.2	7,725.8	8,867.8	7,612.4	9,054.7	12,643.9	14,638.0	16,182.8	18,885.0	21,297.7	23,160.7	13,833.9
Chernihiv	4,255.7	4,892.8	5,655.5	5,367.8	6,763.7	10,050.4	14,605.2	16,248.8	16,671.3	16,558.9	18,316.2	10,995.1
Chernivtsi	1,942.7	3,381.0	3,327.6	3,017.9	3,536.4	4,463.6	5,910.3	6,895.1	7,620.0	8,160.6	9,393.2	5,174.1
City of Kyiv	13,484.0	14,035.4	18,297.7	15,573.9	17,802.5	22,099.7	32,794.7	36,917.2	42,143.0	39,511.8	41,147.6	27,137.5
Dnipropetrovsk	13,957.7	17,145.3	16,361.7	15,767.5	18,169.0	21,433.2	26,273.7	32,101.1	36,070.9	34,909.7	35,693.2	24,692.5
Donetsk	18,229.8	23,741.2	23,728.7	20,037.6	33,092.7	27,671.1	32,582.2	38,028.1	47,004.4	41,860.5	39,772.8	27,501.8
Ivano-Frankivsk	3,983.2	4,530.7	4,997.3	5,188.1	5,344.4	6,781.8	9,814.5	10,408.8	11,770.3	14,013.8	15,581.1	8,484.8
Kharkiv	5,713.6	6,531.4	7,181.9	6,225.4	7,065.6	9,640.2	13,365.1	14,614.7	15,852.5	15,702.8	17,470.6	10,714.9
Kherson	3,723.9	4,123.5	3,518.6	3,330.9	3,929.4	5,685.6	7,742.6	8,070.1	8,922.9	8,802.4	10,142.9	6,253.7
Khmelnytskyi	3,447.2	4,469.8	4,994.8	5,041.1	6,077.6	8,237.9	10,696.6	12,872.4	14,205.4	13,986.7	16,469.1	9,366.1
Kirovohrad	3,853.1	4,965.1	6,319.8	6,219.1	7,389.5	8,599.7	10,237.9	10,865.4	12,288.3	12,561.9	14,227.2	9,112.2
Kyiv	9,467.5	11,138.0	13,026.1	12,389.9	14,474.5	18,137.2	21,783.0	21,303.0	24,445.5	24,777.4	28,495.2	18,597.5
Luhansk	9,593.8	11,520.7	10,930.9	9,155.6	14,165.3	10,311.3	13,707.6	11,427.3	11,569.5	11,251.4	13,437.5	10,982.3
Lviv	4,819.7	7,336.7	7,615.1	6,986.5	8,056.6	9,829.4	13,138.6	14,627.0	18,237.5	19,851.0	21,074.1	12,135.8
Mykolaiv	4,169.3	5,800.2	5,177.0	5,027.4	6,104.3	9,161.8	11,944.9	12,328.7	13,197.0	13,381.9	14,741.1	9,353.1
Odesa	5,308.9	5,818.8	5,716.5	5,241.2	6,547.9	8,873.2	13,271.1	13,614.7	15,298.3	15,102.0	17,679.4	10,221.2
Poltava	10,630.5	11,377.2	12,177.4	10,979.4	13,194.8	17,986.0	23,421.5	25,452.6	26,846.6	25,922.7	27,453.6	18,953.8
Rivne	3,983.1	5,130.8	5,183.9	5,504.7	7,267.0	8,123.2	10,493.4	11,420.2	12,238.4	12,224.3	13,567.8	8,818.2
Sumy	4,690.1	6,093.4	6,767.6	5,938.5	6,897.2	10,334.8	13,277.2	15,190.8	17,586.9	17,246.3	19,457.8	11,393.9
Ternopil	3,651.4	6,769.5	10,165.8	9,558.3	11,820.5	14,736.9	10,897.9	12,697.0	14,120.7	13,977.3	16,485.6	11,416.1
Vinnytsia	4,550.7	5,188.7	5,282.3	5,006.8	7,153.6	10,601.9	13,795.9	15,797.6	17,635.7	18,943.2	20,413.4	11,630.2
Volyn	7,288.0	7,701.4	10,109.1	10,216.9	11,135.4	14,950.8	20,774.2	27,081.0	29,220.6	29,812.9	29,520.2	18,499.4
Zakarpattia	3,493.4	4,731.5	4,893.1	4,984.4	5,747.1	6,594.6	8,025.9	8,604.8	9,301.8	9,774.1	9,673.5	6,965.5
Zaporizhzhia	7,327.5	8,323.1	8,690.2	7,683.5	9,534.9	12,737.1	16,147.5	19,292.1	21,511.0	19,555.9	19,733.7	13,749.1
Zhytomyr	3,605.6	4,377.0	4,851.9	4,764.7	5,721.8	7,143.6	12,410.6	13,676.4	15,705.5	15,527.8	16,888.8	9,686.4

16/22

Biloshkurska et al. / European Journal of Sustainable Development Research, 9(4), em0315

Table A5. Labor productivity pe	er employee* by region	for 2010-2020 (UAH thousand)
1 / 1	1 7 7 0	

	r	· · / F · ·	· · · / · ·	- / -0 -		(-		,				
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	292.1	355.3	429.8	425.6	547.0	824.3	933.0	1,132.5	1,317.0	1,447.1	1,505.9	821.3
Chernihiv	178.8	222.4	290.8	311.3	403.6	630.5	792.9	985.5	987.9	918.1	1,021.8	599.4
Chernivtsi	159.2	201.5	225.3	230.3	281.1	383.3	437.0	566.0	613.2	610.9	665.7	389.6
City of Kyiv	736.4	829.7	911.2	897.9	1,035.9	1,402.4	1,566.6	1,932.3	2,325.5	2,309.5	2,372.9	1,513.6
Dnipropetrovsk	511.0	623.7	591.2	607.1	700.4	918.5	1,145.7	1,488.2	1,714.6	1,687.9	1,667.3	1,027.6
Donetsk	544.8	761.6	742.7	677.8	814.1	797.6	1,096.1	1,514.4	1,779.7	1,579.5	1,415.5	884.5
Ivano-Frankivsk	309.2	352.1	400.3	457.8	476.6	654.1	757.0	891.3	1,040.1	1,140.9	1,143.2	702.5
Kharkiv	318.0	372.3	397.0	374.1	429.0	616.0	804.0	948.4	1,031.8	998.7	1,123.3	650.3
Kherson	250.9	266.0	270.6	295.3	382.9	578.7	706.4	816.2	901.4	875.8	915.0	548.6
Khmelnytskyi	180.5	236.1	281.5	308.5	387.5	551.6	645.3	853.6	958.0	894.0	1,013.0	571.0
Kirovohrad	251.7	306.6	423.6	461.0	595.2	729.3	825.2	924.6	1,072.1	1,036.7	1,125.1	698.9
Kyiv	436.0	547.4	620.8	638.2	737.6	1,000.5	1,183.5	1,376.0	1,568.1	1,630.9	1,774.0	1,028.4
Luhansk	280.8	345.4	331.0	313.2	354.3	311.6	467.8	403.6	624.8	644.6	618.7	361.5
Lviv	246.0	317.4	354.4	374.4	442.0	563.5	736.2	900.8	1,085.1	1,145.6	1,260.1	658.6
Mykolaiv	317.3	349.1	385.7	416.1	525.0	846.8	1,044.3	1,150.9	1,302.1	1,284.2	1,324.2	790.2
Odesa	349.1	369.3	390.3	396.8	490.6	701.4	1,062.7	1,227.4	1,368.9	1,368.4	1,511.5	790.7
Poltava	434.2	465.6	500.4	483.3	591.3	872.8	970.9	1,195.8	1,299.0	1,378.1	1,474.3	865.2
Rivne	195.7	254.7	268.9	314.2	444.1	516.5	599.7	734.6	747.4	716.8	800.6	504.6
Sumy	182.5	243.7	280.7	279.5	345.6	547.9	641.5	784.0	956.4	877.7	978.6	540.4
Ternopil	197.1	392.9	584.6	619.8	775.8	1,037.4	666.2	844.0	898.7	801.7	926.0	696.8
Vinnytsia	215.3	253.1	284.5	303.5	445.2	692.7	838.9	1036.8	1,102.4	1,128.1	1,181.3	678.0
Volyn	326.8	332.3	467.1	529.8	628.9	861.9	1,073.0	1,516.6	1,602.3	1,607.3	1,582.0	955.1
Zakarpattia	202.4	275.1	310.2	358.2	439.3	529.3	519.3	637.1	749.4	701.4	725.1	486.6
Zaporizhzhia	331.5	391.2	404.1	394.6	506.5	713.0	856.2	1,103.5	1,282.8	1,167.7	1,145.6	727.6
Zhytomyr	162.6	205.7	240.1	264.8	332.2	432.3	652.9	766.5	892.9	879.1	890.8	517.4

APPENDIX B

Table B1. Average monthly wages of regular employees* by region for 2010-2020 (UAH)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	1,835	2,155	2,508	2,682	2,829	3,360	4,148	6,042	7,478	8,838	9,797	4,697
Chernihiv	1,711	1,974	2,308	2,504	2,690	3,295	4,002	5,636	6,995	8,206	9,328	4,423
Chernivtsi	1,772	1,985	2,329	2,484	2,578	3,050	3,828	5,621	6,991	8,066	9,166	4,352
City of Kyiv	3,431	4,012	4,607	5,007	5,376	6,732	8,648	11,135	13,542	15,776	17,086	8,668
Dnipropetrovsk	2,369	2,790	3,138	3,336	3,641	4,366	5,075	6,939	8,862	10,751	11,681	5,722
Donetsk	2,549	3,063	3,496	3,755	3,858	4,980	5,989	7,764	9,686	11,716	12,647	6,318
Ivano-Frankivsk	1,927	2,213	2,539	2,679	2,875	3,402	4,202	6,074	7,551	8,817	9,980	4,751
Kharkiv	2,060	2,407	2,753	2,975	3,143	3,697	4,448	6,244	7,657	9,081	9,968	4,948
Kherson	1,733	1,970	2,269	2,464	2,617	3,123	4,046	5,842	7,058	8,187	9,354	4,424
Khmelnytskyi	1,786	2,075	2,425	2,641	2,878	3,371	4,043	5,938	7,346	8,672	9,872	4,641
Kirovohrad	1,815	2,114	2,428	2,608	2,789	3,282	3,974	5,792	7,191	8,360	9,603	4,542
Kyiv	2,295	2,761	3,157	3,351	3,489	4,153	5,229	7,188	9,097	11,003	11,887	5,783
Luhansk	2,271	2,742	3,090	3,337	3,377	3,427	4,637	5,862	7,365	8,731	10,182	5,002
Lviv	1,941	2,244	2,578	2,789	2,961	3,646	4,559	6,391	8,001	9,271	10,299	4,971
Mykolaiv	2,122	2,448	2,822	3,094	3,344	3,984	4,887	6,709	8,160	9,976	11,414	5,360
Odesa	2,046	2,387	2,700	2,947	3,129	3,897	4,809	6,542	8,011	9,246	10,336	5,095
Poltava	2,102	2,481	2,850	2,988	3,179	3,783	4,621	6,551	8,375	9,846	10,819	5,236
Rivne	1,960	2,211	2,575	2,844	3,033	3,573	4,364	6,013	7,469	8,967	10,254	4,842
Sumy	1,866	2,177	2,503	2,702	2,877	3,449	4,131	5,946	7,324	8,579	9,785	4,667
Ternopil	1,659	1,871	2,185	2,359	2,527	2,994	3,695	5,554	6,969	8,275	9,384	4,316
Vinnytsia	1,782	2,074	2,432	2,651	2,810	3,396	4,189	6,121	7,801	9,299	10,297	4,805
Volyn	1,692	1,994	2,339	2,580	2,721	3,291	4,047	5,849	7,324	8,663	9,256	4,523
Zakarpattia	1,846	2,069	2,351	2,553	2,744	3,381	4,298	6,355	8,070	9,202	10,193	4,824
Zaporizhzhia	2,187	2,607	2,927	3,142	3,432	4,200	5,080	6,863	8,726	10,480	11,556	5,564
Zhytomyr	1,785	2,071	2,369	2,561	2,763	3,271	4,000	5,836	7,372	8,528	9,571	4,557
Note. *This indicat	tor is an ir	ncentive (c	ompiled ar	nd calculat	ed accordiı	ng to the S	tate Statis	tics Service	of Ukrain	e, 2024)		

Table B2. ILO unemployment rate of population* by region for 2010-2020 (%)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	10.8	10.0	9.7	9.5	10.5	10.0	10.5	10.2	9.8	8.3	9.5	9.9
Chernihiv	12.0	11.9	11.0	10.3	12.1	11.2	11.8	11.2	11.0	10.1	11.8	11.3
Chernivtsi	10.1	9.6	9.3	8.6	10.2	10.5	9.7	8.4	8.9	6.7	8.7	9.2
City of Kyiv	6.4	6.1	6.0	5.7	7.2	7.5	7.1	6.9	6.6	5.7	6.7	6.5
Dnipropetrovsk	7.6	7.3	7.0	6.8	8.3	7.4	8.1	8.5	8.2	7.7	8.6	7.8
Donetsk	9.1	8.7	8.5	8.2	11.3	14.2	14.6	14.6	14.4	13.5	14.8	12.0
Ivano-Frankivsk	8.9	9.3	8.4	7.8	8.6	8.9	9.2	8.5	8.3	7.1	8.3	8.5
Kharkiv	7.7	7.6	7.2	6.8	8.1	7.3	6.6	6.1	5.5	5.0	6.2	6.7
Kherson	9.4	9.8	9.4	9.1	10.2	10.4	11.5	11.1	10.5	9.6	11.3	10.2
Khmelnytskyi	9.6	9.8	9.4	8.7	9.9	10.4	9.7	8.9	8.8	7.9	9.8	9.4
Kirovohrad	9.8	9.4	9.2	8.5	11.7	11.9	12.7	12.2	12.0	10.9	12.7	11.0
Kyiv	7.9	7.2	6.7	6.4	8.1	6.5	6.9	6.5	6.4	5.9	6.9	6.9
Luhansk	7.8	7.1	6.9	6.7	11.8	16.6	16.9	16.6	16.0	13.5	15.3	12.3
Lviv	8.4	8.3	8.0	7.5	8.8	8.3	7.9	7.5	7.0	6.5	7.5	7.8
Mykolaiv	9.2	8.8	8.4	7.8	9.4	9.2	9.9	10.3	10.0	9.3	10.7	9.4
Odesa	6.6	6.4	6.3	5.7	7.0	6.7	6.9	7.3	6.6	5.9	7.1	6.6
Poltava	10.5	9.9	9.2	8.7	11.8	12.4	12.9	12.0	11.5	10.6	12.0	11.0
Rivne	12.5	11.5	10.8	10.3	11.7	11.0	11.7	11.6	10.2	8.2	9.3	10.8
Sumy	11.6	10.2	9.6	8.5	10.2	10.6	9.8	9.1	9.2	7.7	9.4	9.6
Ternopil	11.6	11.4	10.8	10.3	12.0	12.0	11.7	11.9	10.7	10.0	11.5	11.3
Vinnytsia	11.1	10.9	9.7	9.2	11.1	9.3	10.1	10.7	10.2	9.4	10.6	10.2
Volyn	9.3	9.1	8.8	8.4	10.3	10.0	11.7	12.5	11.6	10.6	12.4	10.4
Zakarpattia	9.3	10.2	9.2	8.2	9.6	9.5	10.3	10.5	10.3	9.1	10.6	9.7
Zaporizhzhia	8.2	7.9	7.5	7.0	8.8	10.2	10.3	10.7	10.3	9.4	10.6	9.2
Zhytomyr	11.0	11.2	10.7	10.2	12.3	12.0	11.7	10.8	10.8	9.6	10.9	11.0

18/22

Biloshkurska et al. / European Journal of Sustainable Development Research, 9(4), em0315

Table B3	. Wage arrears	s per employee*	' by region f	for 2010-2020	(UAH thousand)
----------	----------------	-----------------	---------------	---------------	----------------

0	-	-		0			,					
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	172.0	123.8	76.2	113.5	85.9	174.5	190.8	165.8	842.8	409.4	318.6	239.4
Chernihiv	201.8	176.1	174.7	185.6	163.6	189.7	197.0	140.7	97.1	148.0	110.6	162.6
Chernivtsi	87.9	49.5	3.4	1.8	2.0	63.5	23.2	39.7	35.4	1.8	1.7	28.6
City of Kyiv	88.8	73.1	47.9	53.6	24.6	61.2	47.0	47.0	59.1	83.2	114.8	64.6
Dnipropetrovsk	115.8	31.4	19.5	14.2	10.3	163.7	204.9	236.9	202.6	207.6	536.6	151.5
Donetsk	290.5	259.3	223.8	203.6	249.8	2,888.2	1,157.2	1,003.4	1,764.2	1,712.1	2,124.5	737.2
Ivano-Frankivsk	93.2	81.3	84.5	98.2	93.2	117.8	47.1	61.7	208.6	218.8	331.5	135.4
Kharkiv	257.9	283.2	199.6	204.3	181.7	295.4	477.8	663.1	614.1	689.3	938.0	421.8
Kherson	209.3	164.9	224.5	190.3	130.2	194.5	188.3	119.8	88.5	340.2	261.2	193.5
Khmelnytskyi	185.6	154.2	147.1	130.8	90.6	81.4	55.2	18.1	52.6	108.1	43.4	99.0
Kirovohrad	503.7	556.0	457.9	398.7	342.4	343.3	361.3	328.9	114.6	66.9	97.1	325.1
Kyiv	107.5	72.7	28.9	3.9	421.4	384.5	374.2	405.5	414.9	431.3	444.0	273.9
Luhansk	354.7	298.5	262.1	207.9	342.0	3,285.4	4,904.7	4,273.1	8,722.1	7,766.3	6,425.7	1,578.4
Lviv	208.8	166.3	152.0	166.5	140.8	237.3	333.6	322.1	256.2	212.7	384.0	229.9
Mykolaiv	256.2	402.2	387.9	286.8	376.1	362.9	464.5	733.8	894.0	806.6	307.5	471.1
Odesa	114.3	72.0	55.3	46.9	41.9	75.8	201.7	179.8	175.7	222.7	158.8	116.2
Poltava	149.0	111.8	84.1	66.9	66.8	121.5	144.8	125.4	167.3	221.2	248.6	135.6
Rivne	153.3	84.1	26.3	15.4	10.6	111.4	155.7	65.8	610.1	267.8	43.1	141.4
Sumy	362.3	331.8	391.0	476.5	322.9	652.5	775.9	928.2	1,080.5	2,251.7	2,724.2	923.3
Ternopil	153.0	96.9	93.3	86.7	86.5	74.6	63.3	84.7	58.1	150.9	300.8	117.7
Vinnytsia	161.2	111.7	96.7	91.0	64.7	92.7	71.0	83.6	75.9	68.8	81.0	91.4
Volyn	153.4	120.7	57.1	48.9	39.9	125.6	163.9	44.0	177.9	151.7	252.6	123.1
Zakarpattia	131.0	135.6	152.1	126.5	104.5	53.8	76.7	38.4	30.1	36.0	43.9	86.5
Zaporizhzhia	180.5	164.3	158.3	180.0	150.4	230.9	229.4	267.6	502.8	726.0	377.7	279.9
Zhytomyr	362.0	191.3	91.5	116.3	68.8	117.2	79.0	47.5	43.6	48.8	83.7	117.7
NL	· · · · · · · · · · · · · · · · · · ·			1 1 1	1	1 0		·	C T T1 ·	000 ()		

Note. *This indicator is an incentive (compiled and calculated according to the State Statistics Service of Ukraine, 2024)

Table B4. Disposable income per capita* by region for 2010-2020 (UAH)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	15,769	18,246	20,718	21,633	21,761	26,970	32,327	41,854	50,600	59,626	64,852	15,769
Chernihiv	16,625	19,465	22,770	23,600	23,093	28,440	33,231	42,501	51,213	59,972	65,815	16,625
Chernivtsi	13,503	15,993	18,108	19,438	18,476	23,929	28,361	36,215	42,762	49,142	54,178	13,503
City of Kyiv	37,013	42,577	52,709	55,842	62,715	76,514	92,254	118,208	143,676	173,677	182,547	37,013
Dnipropetrovsk	20,739	24,302	28,772	30,301	32,036	39,142	44,366	57,333	74,755	89,042	94,804	20,739
Donetsk	21,317	24,890	29,337	31,049	26,234	21,346	20,927	25,278	33,840	39,843	42,219	21,317
Ivano-Frankivsk	15,009	17,733	20,148	20,988	20,357	26,540	31,719	40,580	48,724	56,514	61,088	15,009
Kharkiv	18,451	21,788	24,870	26,098	26,274	32,198	38,197	48,370	56,421	66,547	75,923	18,451
Kherson	14,882	17,654	19,940	21,724	20,728	27,880	32,968	41,695	50,195	58,129	63,853	14,882
Khmelnytskyi	15,781	18,738	21,591	22,789	22,686	29,292	34,395	43,638	50,640	58,934	65,411	15,781
Kirovohrad	15,418	18,039	20,554	21,671	21,954	27,383	32,745	42,227	50,373	58,461	64,510	15,418
Kyiv	19,514	22,520	26,542	27,391	28,443	33,956	40,127	50,664	65,623	76,232	80,274	19,514
Luhansk	17,850	20,880	24,024	25,590	19,788	15,634	13,793	16,416	21,252	24,975	27,274	17,850
Lviv	16,514	19,204	21,992	23,138	23,595	29,542	35,325	44,981	56,592	67,353	73,092	16,514
Mykolaiv	16,993	20,041	22,878	23,869	23,459	29,342	34,971	45,356	55,469	64,700	69,884	16,993
Odesa	16,275	19,135	22,224	25,572	24,242	32,385	39,132	50,111	63,153	75,288	82,007	16,275
Poltava	17,991	20,917	24,027	25,371	26,196	31,997	37,938	48,663	61,649	72,843	78,813	17,991
Rivne	14,630	17,326	19,860	21,165	21,781	26,708	31,295	40,325	48,184	55,917	59,350	14,630
Sumy	16,876	19,593	22,582	23,559	23,938	30,572	36,084	45,852	55,829	65,932	71,955	16,876
Ternopil	13,824	16,351	18,561	18,994	18,401	24,040	28,195	36,204	43,577	50,536	55,776	13,824
Vinnytsia	16,018	19,091	21,735	23,001	23,422	29,637	34,931	45,436	55,734	65,503	70,939	16,018
Volyn	14,312	16,658	18,807	19,805	20,137	24,980	30,013	38,514	46,120	53,990	57,973	14,312
Zakarpattia	12,700	15,002	17,191	17,929	17,358	22,457	26,856	33,891	41,418	47,852	52,379	12,700
Zaporizhzhia	20,221	23,685	27,108	28,388	30,182	36,277	43,462	54,261	65,065	76,062	83,309	20,221
Zhytomyr	15,776	18,716	21,288	21,652	22,102	27,801	32,979	42,684	52,715	62,571	66,651	15,776

Biloshkurska et al. / H	European Journal	of Sustainable Devel	opment Research	, 9(4), em0315
-------------------------	------------------	----------------------	-----------------	----------------

|--|

		···· ·· · ·	· · · / · ·			(-		,				
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	18.9	22.6	27.4	29.2	31.9	38.7	47.9	65.9	81.9	96.8	108.2	51.1
Chernihiv	16.4	20.0	23.9	26.3	29.5	38.5	47.0	63.5	79.1	90.1	104.0	48.5
Chernivtsi	15.9	20.0	23.1	24.1	25.9	32.9	40.2	54.9	67.5	80.5	85.7	42.3
City of Kyiv	32.3	38.4	47.8	49.7	52.9	67.4	82.3	106.4	131.7	153.4	165.4	86.7
Dnipropetrovsk	27.0	31.9	37.6	38.7	43.9	53.0	60.2	79.7	102.6	124.0	132.3	64.6
Donetsk	30.3	37.3	44.2	46.7	61.0	60.6	81.4	102.1	121.0	143.4	154.7	61.6
Ivano-Frankivsk	16.7	21.0	25.4	26.1	28.7	36.3	46.4	66.6	80.2	91.9	103.0	50.6
Kharkiv	21.4	25.7	30.6	33.0	35.4	42.3	47.7	64.5	79.8	93.4	104.0	50.9
Kherson	16.5	19.8	23.4	24.7	26.6	33.6	42.9	57.7	71.0	84.0	96.7	43.8
Khmelnytskyi	16.5	20.5	25.1	26.8	30.4	36.9	44.3	63.2	78.6	88.9	101.2	48.7
Kirovohrad	16.4	20.1	24.2	26.5	28.6	34.8	43.1	59.8	75.0	87.7	99.1	47.0
Kyiv	25.8	32.3	37.5	38.8	41.2	52.4	66.0	86.2	106.4	132.0	141.3	67.7
Luhansk	26.2	33.7	39.4	41.0	48.0	45.4	54.9	55.1	76.9	94.6	104.9	43.9
Lviv	21.1	26.0	30.1	32.0	34.8	43.7	53.3	71.1	86.3	99.7	107.3	53.9
Mykolaiv	20.8	26.0	31.7	34.0	37.7	47.0	56.0	73.0	86.3	100.9	118.5	56.3
Odesa	22.2	27.2	32.6	33.8	36.9	46.4	54.1	70.0	82.8	95.8	105.3	52.6
Poltava	22.2	26.7	32.0	34.2	36.5	44.6	55.4	77.3	99.9	109.0	120.4	58.8
Rivne	18.0	22.2	26.3	28.2	31.3	38.0	46.4	61.3	74.4	88.7	98.2	48.9
Sumy	19.1	23.6	28.9	31.5	33.7	42.9	52.8	69.9	87.6	95.9	112.2	53.2
Ternopil	14.6	20.0	23.9	25.7	28.4	36.2	42.9	61.1	77.8	93.4	106.9	48.9
Vinnytsia	17.6	21.9	26.1	28.6	31.3	39.7	49.9	70.3	87.6	103.4	116.3	54.4
Volyn	16.2	20.7	24.8	26.4	30.3	39.0	49.4	67.2	81.3	96.0	104.1	50.8
Zakarpattia	17.4	20.4	23.6	25.8	29.7	40.5	53.3	75.4	95.5	104.9	110.2	53.5
Zaporizhzhia	22.9	28.3	34.0	35.1	39.6	49.7	59.8	77.3	99.1	115.8	124.5	60.2
Zhytomyr	17.3	21.4	25.2	27.2	30.9	37.8	48.7	66.1	82.1	96.1	107.0	51.1
						1 .			0			

APPENDIX C

Table C1. Capital investments on environmental protection per enterprise* by region for 2010-2020 (UAH thousand)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	4.949	3.114	2.748	3.677	2.228	6.547	8.298	2.539	2.516	3.408	4.619	4.041
Chernihiv	5.241	8.485	7.443	8.332	4.068	5.130	4.395	8.034	10.528	7.719	7.908	7.083
Chernivtsi	1.590	4.712	1.947	0.928	0.884	4.622	3.943	6.053	5.227	7.110	19.011	5.058
City of Kyiv	0.553	2.939	4.765	2.344	5.698	5.619	9.290	10.981	15.453	11.349	11.131	7.421
Dnipropetrovsk	34.727	56.198	36.057	35.495	57.390	52.033	64.973	94.248	84.299	82.208	165.565	70.754
Donetsk	20.997	35.146	32.519	51.114	32.969	19.745	62.090	74.128	155.610	251.392	327.166	70.773
Ivano-Frankivsk	17.870	13.885	7.186	11.174	17.588	11.402	17.389	48.484	35.370	28.912	32.938	22.193
Kharkiv	3.824	20.532	24.357	6.769	2.803	2.522	4.657	15.079	11.476	18.873	28.112	12.744
Kherson	0.393	0.517	0.274	0.983	0.826	0.982	0.318	0.396	1.861	0.864	1.360	0.816
Khmelnytskyi	0.672	0.601	2.112	1.468	0.978	2.754	5.896	5.157	10.679	9.013	7.968	4.473
Kirovohrad	3.887	1.117	1.989	1.205	3.169	0.814	2.570	1.833	5.128	8.824	5.669	3.438
Kyiv	3.503	84.737	111.477	99.772	212.030	228.887	466.252	211.413	88.443	329.540	14.046	170.890
Luhansk	9.401	14.955	48.398	28.279	67.179	15.465	11.124	3.947	8.508	4.699	12.756	22.306
Lviv	4.306	5.818	3.695	7.814	7.061	3.242	6.671	13.463	14.793	10.804	7.897	7.841
Mykolaiv	2.784	6.691	6.176	3.106	4.961	9.288	12.210	10.931	12.068	10.113	28.866	9.927
Odesa	2.219	3.488	1.290	1.368	0.409	1.110	0.835	3.958	2.981	2.607	4.900	2.312
Poltava	8.062	7.228	12.558	13.292	12.767	6.599	11.463	19.596	24.101	25.814	32.819	16.308
Rivne	4.048	2.564	5.241	9.014	3.756	8.171	6.422	7.482	7.051	6.079	8.508	6.276
Sumy	2.855	4.362	2.748	2.539	2.551	8.988	9.192	8.261	3.822	3.760	14.097	5.778
Ternopil	1.613	1.339	0.960	0.798	0.830	4.659	12.941	6.877	3.854	4.978	7.050	4.047
Vinnytsia	4.634	7.681	3.576	3.147	0.785	4.293	7.365	9.671	8.334	5.811	18.460	6.788
Volyn	0.678	6.993	1.331	0.536	0.615	0.941	2.108	3.442	5.887	5.732	5.398	3.120
Zakarpattia	1.705	1.514	2.128	1.317	0.892	1.278	1.169	2.391	7.142	2.200	3.721	2.380
Zaporizhzhia	10.916	27.826	31.700	21.852	60.848	41.012	78.874	56.059	71.056	69.226	58.754	48.001
Zhytomyr	1.818	1.654	0.769	0.106	3.834	2.721	2.821	2.253	1.191	0.940	1.681	1.782
Note *This indian	tonic on in	acontina (a	ammiled an	d an lawlat	ad according	ng to the C	tata Ctatia	ian Comina	of Illinoin	2024		

Note. *This indicator is an incentive (compiled and calculated according to the State Statistics Service of Ukraine, 2024)

Table C2. Current expenditures on environmental protection per enterprise* by region for 2010-2020 (UAH thousand)

	_											
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	8.490	9.021	22.539	19.722	25.182	24.826	24.793	28.669	36.057	36.519	28.116	24.770
Chernihiv	33.629	37.089	32.729	26.844	33.021	36.396	44.948	48.363	63.662	54.707	62.574	43.369
Chernivtsi	8.003	12.606	12.944	13.470	14.789	16.976	20.047	22.150	24.748	28.825	38.684	19.202
City of Kyiv	5.059	6.970	12.759	13.488	14.390	16.974	28.870	25.952	35.300	35.772	36.635	21.558
Dnipropetrovsk	88.827	118.698	150.524	141.475	193.300	201.616	214.263	198.390	241.201	266.561	296.561	194.182
Donetsk	59.347	70.501	82.214	80.696	101.121	121.696	195.988	177.279	220.510	228.466	262.035	116.583
Ivano-Frankivsk	19.372	29.453	29.213	25.496	23.503	29.459	36.718	41.397	66.181	73.712	72.219	41.213
Kharkiv	20.429	17.956	20.917	28.749	25.606	31.592	40.244	39.830	44.259	49.331	53.094	33.527
Kherson	8.421	13.435	10.650	7.799	7.697	8.950	10.322	9.635	10.773	11.833	22.396	11.089
Khmelnytskyi	16.373	15.527	19.561	21.245	23.033	27.557	29.005	30.323	34.484	40.556	41.714	27.724
Kirovohrad	12.893	8.025	7.571	10.944	10.588	14.755	15.795	18.145	19.442	20.989	24.077	15.212
Kyiv	15.692	18.971	20.475	21.881	23.962	26.939	33.715	45.487	38.227	45.786	55.257	32.442
Luhansk	119.739	102.550	107.214	92.593	164.939	155.576	172.682	145.745	117.939	121.211	137.690	119.278
Lviv	7.524	11.011	12.793	12.307	13.973	18.345	24.603	24.902	30.634	25.432	28.997	19.256
Mykolaiv	48.699	58.423	22.795	27.136	71.611	142.163	135.192	133.940	65.471	75.158	56.291	75.939
Odesa	13.325	10.288	8.754	10.083	8.703	11.695	24.744	32.403	22.063	15.273	31.347	17.074
Poltava	49.659	54.418	64.436	64.073	64.117	84.288	101.684	104.611	131.849	129.867	98.749	87.391
Rivne	38.654	48.167	54.431	51.299	52.980	64.814	70.121	65.112	66.100	88.998	86.113	63.238
Sumy	27.665	40.064	35.279	30.679	30.355	43.054	58.265	79.930	123.879	104.772	103.013	62.650
Ternopil	3.608	2.907	4.098	3.506	2.922	2.775	3.026	2.686	3.505	3.891	7.089	3.655
Vinnytsia	9.458	12.569	8.849	12.927	12.702	15.601	20.831	23.602	27.674	29.895	22.180	18.220
Volyn	9.495	12.471	12.127	12.237	12.996	19.396	22.662	30.521	40.337	45.493	48.863	25.107
Zakarpattia	7.941	9.819	9.831	7.050	11.727	14.528	25.526	28.363	35.211	42.031	38.947	21.456
Zaporizhzhia	52.532	64.164	82.051	82.057	88.013	110.039	137.270	137.416	166.485	183.975	157.135	115.215
Zhytomyr	9.327	10.766	9.144	9.160	11.635	12.984	17.421	18.013	20.465	24.853	28.951	15.957

Table C3. Air emissions to	tal from stational	pollution sources p	er capita* by	v region fo	r 2010-2020	(kg)
		p		,		1

				-								
Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	47.6	48.7	54.7	58.0	53.3	46.3	42.5	39.6	48.0	43.5	43.6	47.9
Chernihiv	43.2	45.5	42.5	41.0	39.7	32.4	35.9	31.0	29.5	27.7	21.4	35.7
Chernivtsi	4.2	4.2	3.2	3.0	2.7	3.5	3.3	3.6	3.0	2.7	2.0	3.2
City of Kyiv	10.2	11.8	11.6	11.1	10.9	9.2	11.7	15.5	9.9	7.5	8.6	10.7
Dnipropetrovsk	279.7	286.2	290.8	285.7	261.2	222.4	257.9	203.4	191.6	181.6	170.2	239.9
Donetsk	310.9	346.5	346.2	333.4	242.7	215.1	231.2	186.8	189.7	187.2	183.2	253.6
Ivano-Frankivsk	122.6	160.7	142.4	146.8	165.5	162.0	142.5	144.0	161.2	149.8	103.2	145.6
Kharkiv	55.1	63.5	72.0	76.8	55.1	19.6	37.1	16.7	16.7	40.1	35.7	44.6
Kherson	4.9	5.4	5.9	5.6	6.7	8.4	9.2	9.2	12.0	17.3	17.5	9.2
Khmelnytskyi	14.4	14.2	12.5	13.2	13.1	14.1	16.9	16.6	17.5	16.2	14.6	14.8
Kirovohrad	14.7	15.2	16.9	15.9	12.0	14.6	12.2	12.8	12.9	13.7	11.6	13.9
Kyiv	62.2	66.1	75.1	64.9	55.6	45.1	56.6	27.5	46.0	47.4	37.2	52.9
Luhansk	223.3	207.7	198.4	197.4	89.1	52.2	70.8	34.6	21.7	17.5	16.7	104.6
Lviv	44.5	50.9	51.4	47.8	39.5	40.4	40.7	43.1	42.3	35.4	30.4	42.4
Mykolaiv	18.2	21.8	21.4	17.5	13.7	13.6	12.1	12.4	11.6	10.8	10.1	14.9
Odesa	12.2	12.8	11.8	10.9	9.7	10.9	11.1	12.4	15.7	13.9	18.0	12.7
Poltava	48.9	48.9	46.3	45.7	43.4	38.6	39.4	39.5	37.2	36.8	33.4	41.8
Rivne	11.2	14.8	12.9	10.4	10.0	8.8	7.8	8.3	7.9	8.6	8.8	9.9
Sumy	27.3	31.2	26.4	26.9	24.0	15.7	17.9	18.6	19.2	20.3	19.8	22.6
Ternopil	17.1	18.9	19.4	14.8	7.7	8.0	8.5	10.1	9.8	9.0	9.2	12.1
Vinnytsia	62.8	53.4	62.3	92.4	77.3	84.1	75.3	98.9	62.4	64.5	51.1	71.4
Volyn	7.9	7.3	7.0	6.3	4.1	4.5	4.5	4.9	4.9	5.1	5.0	5.6
Zakarpattia	13.9	13.8	6.5	6.1	3.1	3.5	3.9	2.5	3.2	3.0	2.6	5.6
Zaporizhzhia	120.7	128.0	116.3	138.5	117.1	110.5	96.0	105.0	102.4	102.8	93.3	112.1
Zhytomyr	14.4	14.9	14.6	13.6	8.7	7.2	7.5	8.4	10.7	10.5	9.9	11.0
Note *This indian	tonic on it	a continuo (a	ammiled as	d coloulat	ad according	ar to the C	tata Ctatiat	ica Comica	of Illunoin	2024		

Note. *This indicator is an incentive (compiled and calculated according to the State Statistics Service of Ukraine, 2024)

Tuble 04. Garbon aromae emissions nom stational ponation per capital by region for 2010 2020 (Kg
--

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	2,487	2,572	2,621	2,156	2,124	2,142	2,347	1,985	2,231	2,195	2,033	2,267
Chernihiv	1,716	1,784	1,728	1,687	1,588	1,452	1,639	1,596	1,669	1,556	1,399	1,622
Chernivtsi	248	227	200	179	151	170	166	163	181	158	156	182
City of Kyiv	2,484	2,500	2,490	2,266	1,956	1,763	1,933	1,833	1,820	1,785	1,547	2,028
Dnipropetrovsk	5,642	10,236	10,452	9,896	10,047	7,878	9,594	8,069	7,367	7,397	6,516	8,475
Donetsk	13,312	14,451	13,870	13,823	9,862	8,440	8,996	5,447	6,036	5,694	5,428	9,662
Ivano-Frankivsk	5,191	7,443	8,218	7,992	8,154	8,374	8,165	8,686	10,022	9,428	7,499	8,105
Kharkiv	3,786	4,571	4,283	4,332	3,531	1,974	2,665	2,140	2,721	2,857	2,958	3,263
Kherson	361	341	354	349	328	332	323	305	312	303	324	330
Khmelnytskyi	1,616	1,682	1,488	1,607	1,673	1,694	1,861	1,826	1,747	1,787	1,846	1,710
Kirovohrad	832	959	915	958	982	1,040	1,053	1,131	1,185	992	922	996
Kyiv	4,861	4,141	4,269	3,796	3,323	2,674	2,898	1,738	2,318	2,686	2,057	3,150
Luhansk	4,717	9,287	9,021	9,559	7,124	2,970	4,462	1,958	1,476	1,125	953	4,851
Lviv	867	1,200	1,451	1,519	1,323	1,341	1,373	1,536	1,528	1,354	1,188	1,335
Mykolaiv	1,421	1,680	1,789	1,790	1,608	1,568	1,797	1,857	1,793	1,920	1,888	1,735
Odesa	1,439	1,418	1,279	1,468	1,264	1,352	879	758	588	500	667	1,057
Poltava	1,533	1,789	1,666	2,067	2,321	2,304	2,405	2,513	2,386	1,421	1,159	1,961
Rivne	834	1,367	1,209	1,035	1,113	1,072	1,116	1,235	1,174	1,810	1,804	1,251
Sumy	1,417	1,563	1,365	1,446	1,344	1,118	1,451	1,532	1,678	1,486	1,230	1,421
Ternopil	749	678	545	581	488	342	384	581	536	647	473	546
Vinnytsia	2,977	2,815	3,381	4,351	3,957	4,033	3,201	4,037	3,403	3,465	2,779	3,492
Volyn	592	698	695	543	448	427	455	502	493	453	449	523
Zakarpattia	192	301	162	170	102	106	115	174	141	210	155	166
Zaporizhzhia	7,528	7,849	7,040	7,461	7,349	7,927	7,607	8,152	8,567	8,097	7,788	7,755
Zhytomyr	601	575	632	585	516	474	529	571	630	573	603	572

Table C5. Recycled waste per capita* by region for 2010-2020 (kg)

Region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Average
Cherkasy	763	958	755	622	558	579	567	628	653	585	538	657.2
Chernihiv	76	80	96	219	102	128	101	128	109	70	75	107.7
Chernivtsi	36	53	130	100	61	76	133	123	101	130	92	94.2
City of Kyiv	5.5	2.1	1.0	0.5	4.5	0.1	0.6	3.1	0.7	0.3	43.4	5.7
Dnipropetrovsk	28,256	28,190	28,648	31,040	25,617	21,966	20,662	25,936	26,526	28,481	27,731	26,651.9
Donetsk	3,857	4,509	3,014	2,531	60	637	885	1,285	1,601	1,309	1,137	1,916.7
Ivano-Frankivsk	439	271	384	377	308	416	494	473	403	636	386	416.8
Kharkiv	191	108	117	103	74	104	156	45	107	73	94	106.8
Kherson	71	103	69	88	84	62	22	30	32	27	24	56.2
Khmelnytskyi	196	219	401	377	234	267	350	312	396	319	329	308.5
Kirovohrad	20,608	23,784	18,729	18,522	11,560	8,828	3,158	1,539	1,961	1,818	85	10,278.1
Kyiv	755	554	332	311	55	73	31	12	19	5	10	193.7
Luhansk	1,645	2,785	2,215	2,369	447	120	256	42	21	20	19	925.0
Lviv	19	73	67	65	210	129	190	238	141	130	161	129.3
Mykolaiv	100	120	99	96	67	66	70	54	54	55	80	78.5
Odesa	158	51	20	11	5	4	4	4	4	1	1	23.9
Poltava	1,464	2,008	3,053	2,994	2,375	2,129	2,534	1,967	1,979	2,210	1,499	2,204.5
Rivne	104	126	145	49	84	81	56	20	20	34	13	66.7
Sumy	292	398	352	224	218	169	176	209	183	147	132	229.2
Ternopil	138	119	189	182	260	132	78	94	230	267	65	159.6
Vinnytsia	281	216	526	139	149	230	216	222	309	135	94	229.8
Volyn	10	38	54	75	93	101	114	108	115	35	34	70.7
Zakarpattia	10.4	9.4	5.7	4.5	44.1	0.7	0.2	0.2	0.3	0.2	0.2	6.9
Zaporizhzhia	929	949	945	754	919	1,496	1,660	1,570	1,950	2,245	2,092	1,398.1
Zhytomyr	125	79	96	71	73	64	62	67	40	44	28	68.6
									-			