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 Modeling the estimation of cumulated methane production generated from batch anaerobic bioreactors is of 
paramount importance. In this context, there are two main modeling approaches. The first approach is based on 
developing mathematical expressions representing the processes involved in the bioreactors. The AM1 model is 
known as the most complete one. However, it is a complicated model as it requires about 80 parameters to be 
tuned. A model named AM2 which is a simplified version of AM1 has also been developed. It is based on only two 
microbial growth processes and requires only 13 parameters. Nevertheless, both AM1 and AM2 models do not 
provide explicit mathematical expressions that enable to estimate the temporal evolution of methane production 
with respect to the parameters involved in the considered models. These models are much more useful for 
simulations and graphical visualizations of the dynamical behavior of the state variables including methane 
production. On the other hand, the second approach suggests semi-empirical or data-driven models which are 
based on simple explicit mathematical expressions that provide an estimate of the cumulated methane 
production (Logistic model, Gompertz model, etc.). But, this type of models require the identification of few 
parameters which are extracted from experimental data. Usually, they are simplistic and use only one growth 
process and thus cannot exhibit the influence of the many parameters involved in such complex dynamic 
biotechnological systems. 

In this paper, to overcome the complexity of the first type of models and to avoid the dependency on experimental 
data in the second type; an explicit analytical mathematical expression is proposed for estimating the cumulated 
methane production for batch anaerobic bioreactors. This analytical expression is derived via the adoption of 
some appropriate approximations performed on the set of differential equations characterizing the AM2 model. 
Therefore, the proposed analytical expression can be considered as an approximation of the AM2 model itself 
and this is the first contribution of this paper. Graphical profiles of the cumulated methane production are 
presented showing that of the proposed logistic expression and that of the AM2 model considered as a reference. 
To the best of the author’s knowledge, no such approach and result have been encountered in the literature. 

On the other hand, this expression resembles formally to the semi-empiric logistic model. However, the 
equivalent parameters of the proposed expression as self-defined by the parameters of the AM2 model and do 
not require experimental data to be identified as it is for the semi-empiric logistic model. Moreover, by comparing 
the proposed logistic model to the semi-empiric logistic model, an identification of the parameters of the semi-
empiric model is linked to the parameters of the AM2 model, providing more insight into the methane 
production. This can be considered as a second contribution of this paper. 

Keywords: methane production, anaerobic digestion, logistic model, AM2 model, kinetic models 
 

INTRODUCTION 

Since the beginning of the 21st century, sustainable 
development is considered as more and more affected by the 
climate change. One severe factor that influences negatively 
the environment and the climate change is the misuse of 
energy generation policy which is responsible of the emission 
of large amounts of greenhouse gas caused by the combustion 

of conventional fossil fuels. Nowadays, it is firmly admitted 
that renewable energy sources have the potential to reduce 
emissions of greenhouse gas when replacing fossil fuels and 
thereby to mitigate climate change. In this context, bioenergy 
systems can contribute to climate change mitigation if they 
replace traditional fossil fuel use (Pawlita-Posmik et al., 2018; 
Sawin and Sverrisson, 2016). 

Biogas can be produced by anaerobic digestion of almost 
every wet organic feedstock such as animal waste, crop 
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residues, domestic food, industrial wastewater, municipal 
sewage sludge, etc. Biogas production has been growing 
steadily in recent years and has made its contribution to 
renewable energy generation. As a consequence, it reduced 
negative impacts on the environment, both in the form of 
greenhouse gas emissions and the pollution of soil and water 
courses (Wellinger et al., 2013). Anaerobic digestion and 
biogas technologies contribute also through the reduction of 
harmful methane emissions from food and farming wastes, 
providing energy and food security, improving waste 
management and sanitation, and reducing poverty and hunger 
(Jain, 2016; Baeyens, Appels, Peng and Dewil, 2016; Wall, 
Dumont and Murphy, 2018). Moreover, methane gas is also an 
option for storage of renewable power. It is much easier to 
handle and safer than hydrogen gas. Many techniques and 
optimization methods are used to improve the efficiency of 
anaerobic bioreactors in regard to the expected outputs: gaz 
production, purification of water and digestates (Mutz, 
Hengevoss, Hugi and Gross, 2017). The use of membrane in 
bioreactors for wastewater treatment is a technology that is 
recently gaining more importance (Sepehri and Sarrafzadeh, 
2018). 

Thereby, it is worth to have means for predicting and 
evaluating the methane production produced by anaerobic 
bioreactors. In this field of research, there are two main 
approaches (Noll and Henke, 2020). 

The first approach is based on mathematical expressions 
representing the processes involved in the bioreactors. The 
earlier mathematical models of anaerobic bioreactors have 
been proposed in the 1970s (Noykova et al., 2002; Yu et al., 
2013; Zaher et al., 2009). Depending on the number of 
biochemical processes considered, there are more or less 
complex models that have been proposed. The ADM1 model 
(Anaerobic Digestion Model No. 1) is the most complete model 
to simulate anaerobic reactors which takes into account most 
processes involved in bioreactors (Ozgun, 2019; Vavilin et al., 
2000). However, this model is very complex because it includes 
biochemical and physicochemical processes and requires more 
than 80 parameters to be tuned. The need for more practical 
models has led to develop the AM2 model which can be 
considered as a light version of ADM1. It corresponds to the 
process of anaerobic digestion involving only two phases. 
Many authors have used AM2 model to study batch and 
continuous anaerobic digesters with different substrates in 
various conditions (Noykova et al., 2002; Vavilin, 2000; Zaher 
et al., 2009). From a mathematical point of view, the AM2 
model corresponds to a set of coupled ordinary differential 
equations of the first order with nonlinear left-hand sides. 
Because of this nonlinearity, direct analytical solutions about 
state variables are not easy to determine. Therefore, the 
solutions are mainly obtained numerically for simulating and 
visualizing graphically the evolution of the state variables.  

Nevertheless, both AM1 and AM2 models do not provide 
explicit mathematical expressions that enable to estimate the 
temporal evolution of methane production with respect to the 
parameters and initial conditions of the considered processes. 
These models are much more useful for simulations and 
visualizations of the dynamical behavior of the state variables. 
In addition, the prediction of methane production in anaerobic 
reactors by means of mathematical models such as AM1 and 

AM2 can have difficulties to fit the experimental measures 
because of process complexity and sensitivity to the 
parameters and conditions of experiments.  

For these reasons, many empirical or data-driven models 
have been developed constituting a second approach. They 
attempt to approximate the methane production by proposing 
simple formulas to capture the dynamical profile of the 
methane production. They have adopted various methods: 
enzymatic, chemical, kinetics, statistical and microbiological 
growth (Ali et al., 2018; Dewil et al., 2011; Dittmer et al., 2021; 
Simonov, 2009; Zhang, 2020; Zwienstituting et al., 1990). 
These models attempt to provide an accurate estimate of the 
cumulated methane production. One can cite the Transfer 
Function, Logistic function, Gompertz function, etc which 
contain some parameters that require identification and 
adjustment based on experimental data analysis (Parra-Orobio 
et al., 2017). Usually, this type of models use only one 
equivalent growth process which is too simplistic and cannot 
reflect the influence of the many parameters involved in such 
complex dynamical systems. Among many models, the logistic 
one is largely used for methane production in anaerobic 
bioreactors. It provides a mathematical expression that is used 
for cumulated methane prediction. It requires identification by 
experimental data analysis of three parameters which have not 
necessarily biological meanings. The logistic expression has 
been artificially modified in order to give biological meanings 
to its three parameters (Crescenzo and Paraggio, 2019; Gerber 
and Span, 2008; Lemon et al., 2006; Pererva et al., 2020; Van 
et al., 2018).  

This paper intends to present essentially two main 
contributions.  

The first one consists of proposing an explicit analytical 
mathematical expression for estimating the dynamical 
cumulated methane production for batch anaerobic 
bioreactors. This expression is derived via some appropriate 
approximations applied on the set of differential equations 
which are characterizing the AM2 model. This explicit function 
is in the form of a logistic one and depends on the parameters 
of the AM2 model. Thus, it can be considered as an 
approximation of the AM2 model for estimating the cumulated 
methane production. A graphical illustration of both the 
cumulated methane production obtained by simulation of the 
AM2 model and of the proposed explicit logistic function is 
presented enabling to evaluate qualitatively and 
quantitatively the approximations adopted. The result 
obtained by simulation is considered as a reference curve. 

The second contribution comes from the fact that the 
proposed function resembles formally to the empiric logistic 
model which requires the experimental identification of 3 
parameters. Thus, by comparing the parameters of the empiric 
logistic model and its modified version to the proposed one, a 
link is established between their parameters. Thus, the 
parameters which have to be identified via experimental data 
can be expressed in terms of the AM2 model parameters. This 
approach bridges the AM2 model with both the empirical and 
the theoretical logistic function ones providing more insight 
to the methane production. 

To the best of the author’s knowledge, no such approach or 
similar results have been encountered in literature concerning 
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the estimation of cumulated methane production of batch 
anaerobic bioreactors. As a consequence, this proposed 
logistic function enables to overcome the complexity of the 
first type of models as well as the dependency on experimental 
data in the second type of models. 

The paper is organized as follows: First section gives an 
introduction about the issue under consideration. The second 
section presents the AM2 model. The third section determines 
the concentration of the acidogenic bacteria population X1(t) 
which is required in order to determine the concentration of 
the methanogenic bacterial population X2(t). Section four 
establishes the general solution of X2(t) and its particular 
solution given an exponential approximation of X1(t). Section 
five reveals the formal resemblance between the logistic 
function and the inferred expression X2(t) that leads to predict 
the cumulated methane production. Last section concludes the 
paper. 

EQUATIONS GOVERNING THE AM2 
MODEL 

The mathematical AM2 model is based on the laws of 
growth (Simonov et al., 2009). It involves the following 
dynamic variables: X1 is the concentration of the acidogenic 
bacteria population; X2 is the concentration of the 
methanogenic bacterial population; S1 is the concentration of 
the substrate of carbonaceous material and S2 is the substrate 
concentration of volatile fatty acids. For batch systems, the 
mathematical model is expressed in the form of a coupled 
differential equations of the first order system: 

 
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑑𝑑 = 𝜇𝜇1𝑋𝑋1 (1) 

 
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑 = 𝜇𝜇2𝑋𝑋2 (2) 

 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑 = −𝑘𝑘 𝜇𝜇1 1𝑋𝑋1 (3) 

 
𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝜇𝜇2 1𝑋𝑋1 − 𝑘𝑘3𝜇𝜇2𝑋𝑋2 (4) 

For the growth process, the function of Monod µ1 for 
acidogens bacteria and the function of Haldane µ2 for 
methanogens bacteria are respectively:  

 𝜇𝜇1 =   𝜇𝜇1𝑚𝑚
𝑆𝑆1

𝑆𝑆1 + 𝐾𝐾𝑆𝑆1
 (5) 

with 𝜇𝜇1𝑚𝑚 the maximal growth rate and KS1 the constant of 
half-saturation, and 

 𝜇𝜇2 = 𝜇𝜇2𝑚𝑚
𝑆𝑆2

𝑆𝑆2 + 𝑆𝑆22

𝐾𝐾𝐿𝐿2
+ 𝐾𝐾𝑆𝑆2

 (6) 

with 𝜇𝜇2𝑚𝑚  the maximal growth rate, KS2 the constant of 
saturation and K12, the constant of inhibition. 

The flow of methane which is the end product depends 
directly on the growth of methanogenic bacteria population 
X2, according to the relation: 

 𝑄𝑄𝐶𝐶𝐶𝐶4(𝑑𝑑) = 𝑘𝑘4.𝜇𝜇2.𝑋𝑋2(𝑑𝑑) (7) 

The cumulative quantity C(t) of the produced methane can 
be estimated by:  

 𝐶𝐶(𝑑𝑑) = 𝑘𝑘4.𝑋𝑋2(𝑑𝑑) (8) 

For the implementation, this model can be written in a 
state space form such as: 

 
𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑑𝑑(𝑑𝑑)) (9) 

with the state space vector: 
𝑑𝑑(𝑑𝑑) = (𝑋𝑋1(𝑑𝑑) 𝑋𝑋2(𝑑𝑑) 𝑆𝑆1(𝑑𝑑) 𝑆𝑆2(𝑑𝑑))𝑇𝑇 

and initial conditions: 
𝑑𝑑(𝑑𝑑0) = (𝑋𝑋1(𝑑𝑑0) 𝑋𝑋2(𝑑𝑑0) 𝑆𝑆1(𝑑𝑑0) 𝑆𝑆2(𝑑𝑑0))𝑇𝑇  

There are nine parameters involved in this model (µ1m, KS1, 
µ2m, KS2, KI2, k1, k2, k3, k4). To solve mathematically this system 
of differential equations, we must also provide four initial 
conditions: S1(0), S2(0), X1(0) and X2(0). 

This ODE system has been implemented by means of 
Euler’s integration method and also has been solved by using 
the ODE function of Scilab software. The graphical results 
obtained by solving this system correspond to a simulation 
carried out with the following parameter values of the two 
phases processes (Table 1). 

The initial condition values are shown in Table 2. 

ANALYTICAL APPROACH FOR S1(t) AND 
X1(t) 

Temporal Evolution of Substrate S1(t) 

To analyze the system of differential equations of AM2 
model, consider the differential equations X1(t) et S1(t) 
corresponding to equations (1) and (3). It can be noticed that 
they are in fact decoupled from equations X2(t) and S2(t). 
Therefore, by combining (1) and (3), one can write the 
following equalities: 

 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑 = −𝑘𝑘1. 𝜇𝜇1.𝑋𝑋1(𝑑𝑑) = −𝑘𝑘1.

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑑𝑑  (10) 

by integrating (10), one gets the following linear 
relationship between S1(t) and X1(t) that is: 

 𝑆𝑆1 = −𝑘𝑘1.𝑋𝑋1(𝑑𝑑) + 𝑆𝑆10 + 𝑘𝑘1.𝑋𝑋10 (11) 

where X10 and S10 are respectively the initial values of X1(t) 
and S1(t). 

To explicit X1(t), let’s replace µ1 in (10) by its expression in 
(1) so that one gets the relation:  

 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑 = −𝑘𝑘1. 𝜇𝜇1.𝑋𝑋1 = −𝑘𝑘1. 𝜇𝜇1𝑚𝑚.

𝑆𝑆1
(𝑆𝑆1 + 𝐾𝐾𝑆𝑆1) .𝑋𝑋1 (12) 

Table 1. Parameter values of the two phases processes 
𝛍𝛍𝟏𝟏𝟏𝟏 𝐊𝐊𝐬𝐬𝟏𝟏  𝛍𝛍𝟐𝟐𝟏𝟏 𝐊𝐊𝐬𝐬𝟐𝟐  𝐊𝐊𝒊𝒊𝟐𝟐  k1 k2 k3 k4 

0.4/day 72𝑔𝑔/𝑙𝑙 0.4/day 18 g/l 103 g/l 13 12 22 75 
 

Table 2. Initial conditions values 

S1(0) S2(0) X1(0) X2(0) 
10 g/l 2 g/l 0.4 g/l 0.01 g/l 
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replacing X1(t) by its expression obtained in (11), one gets 
the following first order non linear differential equation in 
terms of S1(t) with respect to the time independent variable: 

 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑 =.𝜇𝜇1𝑚𝑚.

𝑆𝑆1
(𝑆𝑆1 + 𝐾𝐾𝑆𝑆1) . (𝑆𝑆1 − 𝛼𝛼) (13) 

with: 𝛼𝛼 = 𝑆𝑆10 + 𝑘𝑘1.𝑋𝑋10  

By separating the variables from both sides in (13), it can 
be rewritten in the following form: 

 
(𝑆𝑆1 + 𝐾𝐾𝑆𝑆1)
𝑆𝑆1. (𝑆𝑆1 − 𝛼𝛼) .

𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑 = 𝜇𝜇1𝑚𝑚 (14) 

By introducing the initial conditions, one obtains the 
solution of (14) in an analytical inverse form t=f(S1): 

 𝑑𝑑 = 𝑓𝑓(𝑆𝑆1) =
(𝐾𝐾𝑆𝑆1 + 𝛼𝛼)
𝛼𝛼.𝑢𝑢1𝑚𝑚

. 𝑙𝑙𝑙𝑙(
|𝑆𝑆1 − 𝛼𝛼|
|𝑆𝑆10 − 𝛼𝛼|) −

𝐾𝐾𝑆𝑆1
𝛼𝛼.𝑢𝑢1𝑚𝑚

. 𝑙𝑙𝑙𝑙( �
𝑆𝑆1
𝑆𝑆10

�) (15) 

It is not possible to express S1(t) in a standard form. So, 
from (15), S1(t) can be easily computed and graphically 
represented by only generating values to S1 and computing 
consequently the corresponding time t. 

Temporal Evolution of Bacteria X1(t) 

The dynamic evolution of bacteria X1(t) can be derived 
from relation (11) as follows: 

 𝑋𝑋1(𝑑𝑑) = −
1
𝑘𝑘1 (𝑆𝑆1(𝑑𝑑) − 𝑎𝑎)) (16) 

Similarity to S1(t), X1(t) cannot be expressed in a direct 
analytical standard form but can be expressed in the inverse 
form: t=g(X1) as follows: 

 
𝑑𝑑 =

𝐾𝐾𝑠𝑠1
𝛼𝛼.𝑢𝑢1𝑚𝑚

. 𝑙𝑙𝑙𝑙 ��
𝑋𝑋1(𝑑𝑑)
𝑋𝑋10

�� −
𝐾𝐾𝑆𝑆1

𝛼𝛼.𝑢𝑢1𝑚𝑚
. 𝑙𝑙𝑙𝑙( �

𝑘𝑘1.𝑋𝑋1(𝑑𝑑) − 𝛼𝛼
𝑘𝑘1.𝑋𝑋10 − 𝛼𝛼 �)

+
1
𝑢𝑢1𝑚𝑚

. 𝑙𝑙𝑙𝑙( �
𝑋𝑋1(𝑑𝑑)
𝑋𝑋10

�) 
(17) 

The analytical expressions (15) and (17) include the model 
parameters (Ks1, u1m, k1) and the initial values (S10, X10). They 
enable to analyze the evolution of S1(t) and X1(t) as well as their 
sensitivity to the related model parameters. By varying the 
values of X1(t), the values of the corresponding time are 
computed and the function X1=g-1(t) can be drawn. Graphics of 
X1(t) obtained by numerical simulation from the AM2 model 
(blue segments) and also from the analytical expression (17) 
(red circles) as implemented under Scilab software are 
presented in Figure 1. They appear superimposed and thus are 
similar.  

Moreover, in order to obtain an approximate analytical 
expression of X1(t) derived from (17), one needs to examine 
this expression which is composed of three parts. A graphical 
representation of the parts composing (17) can reveal the 
combination that can provide the best approximation of X1(t). 
Let’s consider the first part of (17) that is constituted of the 
following expression: 

 𝑑𝑑𝑎𝑎 =
(𝐾𝐾𝑆𝑆1)
𝑎𝑎. 𝜇𝜇1𝑚𝑚

. 𝑙𝑙𝑙𝑙( �
𝑋𝑋1(𝑑𝑑)
𝑋𝑋10

�) −
𝐾𝐾𝑆𝑆1
𝑎𝑎.𝑢𝑢1𝑚𝑚

. 𝑙𝑙𝑙𝑙( �
𝑘𝑘1.𝑋𝑋1(𝑑𝑑) − 𝛼𝛼
𝑘𝑘1.𝑋𝑋10 − 𝛼𝛼 �) (17-a) 

This expression (17-a) is represented graphically by the 
blue + in Figure 1. This curve is very close to the theoretical 
curve drawn from (17) with red circles. The profiles of these 
two curves are almost exponential, therefore, (17-a) can be 

 
Figure 1. Analytical expression of 𝑋𝑋1(𝑑𝑑) and its approximation 
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considered as an approximate expression of (17). The second 
part of expression (17) that is left is: 

 𝑑𝑑𝑏𝑏 =
1
𝜇𝜇1𝑚𝑚

. 𝑙𝑙𝑙𝑙( �
𝑋𝑋1(𝑑𝑑)
𝑋𝑋10

�) (17-b) 

It corresponds to the curve that is approximately a line (in 
blue star) situated at the left side of Figure 1 and which can be 
neglected. 

Some Remarks 

Behavior evolution of S1(t) and X1(t) 

Although the equation of X1(t) and S1(t) are non-linear, 
there profiles present behaviors like systems whose dynamics 
are characterized by a transient response followed by a steady 
state response. So, to determine the steady state asymptotic 
value of X1(t) which is reached for large time values, it requires 
combining (3), (5), (11) and equaling to zero the first derivative 
of X1(t): 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑑𝑑

= 𝜇𝜇1𝑚𝑚 . 𝑆𝑆1
(𝑆𝑆1+𝐾𝐾𝑆𝑆1)

.𝑋𝑋1 = 𝜇𝜇1𝑚𝑚. (−𝑘𝑘1.𝑋𝑋1+𝛼𝛼).𝑋𝑋1
(−𝑘𝑘1.𝑋𝑋1+𝐾𝐾𝑆𝑆1+𝛼𝛼)

= 0  

This leads to the condition: −𝑘𝑘1.𝑋𝑋1 + 𝛼𝛼 = 0 , which 
consequently leads to the asymptotic steady state value of 
acidogenic bacteria: X1(t) = 𝑋𝑋1𝑆𝑆 = 𝛼𝛼

𝑘𝑘1
= 𝑋𝑋10 + 𝑆𝑆10

𝑘𝑘1
≅ 1.17 𝑔𝑔/𝑙𝑙 . 

Similarly, from equation (11), we can determine the 
asymptotic steady state value for S1(t) which tends to zero. 
This means that the concentration of the substrate of 
carbonaceous material will be almost completely consumed at 
relatively large time durations. 

Settling time for X1(t) and S1(t) 

In such systems, it is important to determine the settling 
time tset which is defined as the time to reach the steady state 
value up to 5%. For X1(t), it corresponds to:  

X1(tset)=X1set=0.95*X1S = 1.11 g/l. 

By replacing this settling value X1set in (12), the settling 
time ts is about 45 days. From equation (11), we can estimate 
the settling value for S1(t) which is about 50 days. The 
comparison of these results are in full agreement with those 
given by simulation of the system of differential equations 
composing AM2 model. 

TEMPORAL EVOLUTION OF X2(t) 

Establishment of Differential Equations for X2(t) 

From the previous equations (2) and (4), we can write: 

 
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑 = 𝜇𝜇2.𝑋𝑋2 = 𝜇𝜇2𝑚𝑚.

𝑆𝑆2
𝑆𝑆2 + 𝑆𝑆22

𝐾𝐾𝐼𝐼2
+ 𝐾𝐾𝑆𝑆2

.𝑋𝑋2 (18) 

On the other hand, by using (1) and (2), equation (4) can be 
written in the following form:  

 
𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑 = 𝑘𝑘2

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑑𝑑 − 𝑘𝑘3.

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑  (19) 

by integrating this last equation (19), we obtain:  

 𝑆𝑆2(𝑑𝑑) = 𝑘𝑘2𝑋𝑋1(𝑑𝑑) − 𝑘𝑘3.𝑋𝑋2(𝑑𝑑) + 𝐶𝐶 (20) 

which can also be written as:  

 𝑆𝑆2(𝑑𝑑) = −𝑘𝑘3𝑋𝑋2(𝑑𝑑) + 𝑘𝑘2.𝑋𝑋1(𝑑𝑑) + 𝐶𝐶 = −𝑘𝑘3.𝑋𝑋2 + 𝑓𝑓(𝑑𝑑) (21) 

with: 𝑓𝑓(𝑑𝑑) = 𝑘𝑘2.𝑋𝑋1(𝑑𝑑) + 𝐶𝐶 and 𝐶𝐶 = 𝑆𝑆20 − 𝑘𝑘2𝑋𝑋10 + 𝑘𝑘3.𝑋𝑋20 

By replacing S2(t) from (21) into the (18), we can explicit a 
nonlinear differential equation of the first order on X2(t) which 
depends on X1(t) via the term b(t): 

 
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑 = 𝜇𝜇2𝑚𝑚.

(−𝑘𝑘3.𝑋𝑋2 + 𝑓𝑓).𝑋𝑋2

[(−𝑘𝑘3.𝑋𝑋2 + 𝑓𝑓) + (−𝑘𝑘3.𝑋𝑋2+𝑓𝑓)
𝐾𝐾12

2
+𝐾𝐾𝑠𝑠2]

= 𝑔𝑔(𝑋𝑋2,𝑋𝑋1) (22) 

Under this form, the differential equation (22) cannot be 
solved to obtain an analytical expression. This is only possible 
in the case where X1(t) is independent from time which is not 
the case in our general problem since we know already the 
profile of X1(t) as given by (17).  

Approximation of the Growth Process of Bacteria µ2(S2) 

To obtain analytical solutions for X2(t) and S2(t), it is 
necessary to make some approximations that simplify the 
differential equations (21) and (22). That is the only way to 
make them amenable to expressions that are analytically 
integrable. To be solvable analytically, it needs again to be 
simplified to the level that the grown law of the methanogenic 
process of the bacterial population becomes linear of the form:  

 𝜇𝜇2 =
𝜇𝜇2𝑚𝑚
𝐾𝐾𝑆𝑆2

. 𝑆𝑆2 (23) 

By adopting these simplifications, (22) can be written as 
follows:  

 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑 = 𝜇𝜇2𝑚𝑚.

𝑆𝑆2
𝐾𝐾𝐾𝐾2 .𝑋𝑋2 = 𝜇𝜇2𝑚𝑚.

(−𝑘𝑘3.𝑋𝑋2 + 𝑘𝑘2.𝑋𝑋1 + 𝐶𝐶).𝑋𝑋2
𝐾𝐾𝐾𝐾2

= 𝜇𝜇2𝑚𝑚.
𝑓𝑓(𝑑𝑑).𝑋𝑋2 − 𝑘𝑘3.𝑋𝑋22

𝐾𝐾𝐾𝐾2  
(24) 

Now, the differential equation (24) corresponds to 
Bernoulli’s differential equation [Parker, 2020]. It can be 
rewritten to match the standard form of Bernoulli’s 
differential equation for the particular case where the 
coefficient n=2; that is: 

 
𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑 + 𝑃𝑃(𝑑𝑑).𝑑𝑑(𝑑𝑑) = 𝑄𝑄(𝑑𝑑).𝑑𝑑2(𝑑𝑑) (25) 

Therefore, equation (24) structured in the standard 
Bernoulli’s form becomes: 

 
𝑑𝑑𝑋𝑋2(𝑑𝑑)
𝑑𝑑𝑑𝑑 −

𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 (𝐶𝐶 + 𝑘𝑘2.𝑋𝑋1(𝑑𝑑)).𝑋𝑋2(𝑑𝑑) = −

𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 . 𝑘𝑘3.𝑋𝑋22(𝑑𝑑) (26) 

with  

 𝑃𝑃(𝑑𝑑) = −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 (𝐶𝐶 + 𝑘𝑘2.𝑋𝑋1(𝑑𝑑)) (27) 

And 

 𝑄𝑄(𝑑𝑑) = 𝑞𝑞0 = −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 . 𝑘𝑘3 (28) 

To solve (25), it is converted into another simpler 
differential equation of the first order that has a general 
solution (Parker, 2020): 

 𝑑𝑑(𝑑𝑑) =
𝑒𝑒−∫ 𝑃𝑃(𝑑𝑑).𝑑𝑑𝑑𝑑𝑡𝑡

0

𝑐𝑐0 − ∫ 𝑄𝑄(𝑑𝑑). 𝑒𝑒−∫ 𝑃𝑃(𝑑𝑑).𝑑𝑑𝑑𝑑𝑡𝑡
0 .𝑑𝑑𝑑𝑑𝑑𝑑

0

 (29) 

To explicit the general solution in the form of (29), it 
requires the provision of P(t) which means to provide the 
profile of X1(t). Here again, the problem of integrating this 
function is not obvious in standard analytical expressions. So, 
in this paper, we will use an exponential approximation for 
X1(t) as announced earlier. 
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Exponential Approximation of X1(t) 

We approximate X1(t) by the exponential part expressed by 
(17-a) that is:  

𝑑𝑑 ≈ −
𝐾𝐾𝑠𝑠1

𝛼𝛼.𝑢𝑢1𝑚𝑚
. 𝑙𝑙𝑙𝑙( �

𝑋𝑋10
𝑋𝑋1(𝑑𝑑)� �

𝑘𝑘1.𝑋𝑋1(𝑑𝑑) − 𝛼𝛼
𝑘𝑘1 .𝑋𝑋10 − 𝛼𝛼 �) 

The exponential approximation of X1(t) can be written in a 
form that corresponds to a Logistic Function as follows:  

 𝑋𝑋1𝑒𝑒(𝑑𝑑) =
𝛼𝛼
𝑘𝑘1

. (
1

1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑
𝐵𝐵

)
) (30) 

with  

𝐵𝐵 =
𝐾𝐾𝑠𝑠1

𝛼𝛼.𝑢𝑢1𝑚𝑚
; 𝐴𝐴1 =

𝑆𝑆10
𝑘𝑘1 .𝑋𝑋10

 

Determination of X2(t) with Exponential Approximation 
of X1(t) 

To explicit X2(t) from (29) given the exponential 
approximation of X1(t), we need to define the functions Pe(t) 
and Qe(t) respectively from (26) and (27). In expression (26), 
we replace X1(t) par the exponential approximation as follows: 

𝑃𝑃𝑒𝑒(𝑑𝑑) ≡ −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝑠𝑠2

�𝐶𝐶 + 𝑘𝑘2.𝑋𝑋1𝑒𝑒(𝑑𝑑)� 

it can be written in the form: 

 
𝑃𝑃𝑒𝑒(𝑑𝑑) = −

𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 .𝐶𝐶 −

𝜇𝜇2𝑚𝑚
𝑘𝑘𝐾𝐾2

𝑘𝑘2. 𝑎𝑎
𝑘𝑘1

. (
1

1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑/𝐵𝐵))

= 𝑒𝑒0𝑒𝑒 + 𝑒𝑒1𝑒𝑒.
1

(1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑/𝐵𝐵)) 
(31) 

with  

𝑒𝑒0𝑒𝑒 = −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2𝐶𝐶 

𝑒𝑒1𝑒𝑒 = −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 𝑘𝑘2.

𝑎𝑎
𝑘𝑘1 = −

𝜇𝜇2𝑚𝑚
𝐾𝐾𝐾𝐾2 .

𝑘𝑘2
𝑘𝑘1 . (𝑆𝑆10 + 𝑘𝑘1.𝑋𝑋10) 

Q(t) becomes Qe(t): 

𝑄𝑄𝑒𝑒(𝑑𝑑) = 𝑞𝑞0 = −
𝜇𝜇2𝑚𝑚
𝐾𝐾𝑠𝑠2

. 𝑘𝑘3 

Now, we can determine X2(t) from expression (29). The 
integral at the numerator can be computed: 

 𝐼𝐼(𝑑𝑑) = � 𝑃𝑃𝑒𝑒(𝑑𝑑). 𝑑𝑑𝑑𝑑] =
𝑑𝑑

0
𝑒𝑒0. 𝑑𝑑 + 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙(𝐴𝐴1 + 𝑒𝑒𝑒𝑒𝑒𝑒(

𝑑𝑑
𝐵𝐵))

− 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙(𝐴𝐴1 + 1) 
(31-a) 

With some basic transformations, this expression can be 
written : 

 𝐼𝐼(𝑑𝑑) = 𝑒𝑒0. 𝑑𝑑 + 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙 �𝑒𝑒𝑒𝑒𝑒𝑒(
𝑑𝑑
𝐵𝐵). (1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒( −

𝑑𝑑
𝐵𝐵)�

− 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) 
(31-b) 

and: 

 
𝐼𝐼(𝑑𝑑) = −𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) + (𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑

+ 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙 �(1 + 𝐴𝐴1 . 𝑒𝑒𝑒𝑒𝑒𝑒( −
𝑑𝑑
𝐵𝐵

)� (31-c) 

The expression of the numerator is: 

 

𝑁𝑁(𝑑𝑑) = 𝑒𝑒𝑒𝑒𝑒𝑒[ −� 𝑃𝑃𝑒𝑒(𝑑𝑑).𝑑𝑑𝑑𝑑] =
𝑑𝑑

0
= 𝑒𝑒𝑒𝑒𝑒𝑒[ 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) − (𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑

− 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙(1 + 𝐴𝐴1 . 𝑒𝑒𝑒𝑒𝑒𝑒(
−𝑑𝑑
𝐵𝐵 ))] 

(32) 

The denominator can be expressed as follows: 

 𝐷𝐷(𝑑𝑑) = 𝑐𝑐0 − 𝑞𝑞0.� 𝑒𝑒𝑁𝑁(𝑑𝑑). 𝑑𝑑𝑑𝑑
𝑑𝑑

0
 (33) 

= 𝑐𝑐0 − 𝑞𝑞0.� 𝑒𝑒𝑒𝑒𝑒𝑒[(𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1)) − (𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑
𝑑𝑑

0

− 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒(
−𝑑𝑑
𝐵𝐵 ))].𝑑𝑑𝑑𝑑 

By taking into account the initial value of X2(0) = X20; it 
gives: c0=1/x20. Finally, the expression X2e(t) can be written as 
follows: 

 
𝑋𝑋2𝑒𝑒(𝑑𝑑)

=
𝑒𝑒20. 𝑒𝑒𝑒𝑒𝑒𝑒[𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) − (𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑 − 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1. 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑/𝐵𝐵))]

1− 𝑒𝑒20. 𝑞𝑞0.∫ 𝑒𝑒𝑒𝑒𝑒𝑒[(𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) − (𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑 − 𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙(1 + 𝐴𝐴1 . 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑/𝐵𝐵))].𝑑𝑑𝑑𝑑
 (34) 

In this last expression (34), the parameters (poe, p1e, q0, B) 
depend from the parameters of the AM2 model. Then, X2e(t) 
will depend on the values of these parameters. However, the 
integral on the denominator cannot be written in standard 
forms but can only be expressed with special functions such as 
the error function erf(x), the incomplete gamma function ɣ(x, 
z) and exponential integral function Ei(x). It is thus difficult to 
analyze X2e(t) including these special functions.  

Determination of X2(t) with Exponential Approximation 
of X1(t) 

It is difficult to analyze X2e(t) with these special functions. 
For this reason, in order to overcome these difficulties, we will 
consider an approximation that simplifies the expression (34). 
To this end, we will neglect the parts that vanishes for 
relatively large values of t that correspond to the steady state 
response. 

so, consider the numerator (32), for relatively large t, the 
term p1.B.exp(-t/B) tends to vanish in the numerator and in the 
denominator. Therefore, the expression Ne(t) becomes: 

𝑁𝑁𝑒𝑒(𝑑𝑑) ≅ 𝑒𝑒𝑒𝑒𝑒𝑒[ −� 𝑃𝑃𝑒𝑒(𝑑𝑑).𝑑𝑑𝑑𝑑] =
𝑑𝑑

0
𝑒𝑒𝑒𝑒𝑒𝑒[𝑒𝑒1.𝐵𝐵. 𝑙𝑙𝑙𝑙( 1 + 𝐴𝐴1) − (𝑒𝑒0

+ 𝑒𝑒1). 𝑑𝑑] 

 𝑁𝑁𝑒𝑒(𝑑𝑑) ≅ (1 + 𝐴𝐴1)𝑝𝑝1.𝐵𝐵. 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑒𝑒0 − 𝑒𝑒1). 𝑑𝑑 (35) 

with this approximation De(t) becomes integrable and is:  

 

𝐷𝐷𝑒𝑒(𝑑𝑑) ≅ 1 − 𝑒𝑒20.𝑞𝑞0.� 𝑒𝑒𝑁𝑁(𝑑𝑑).𝑑𝑑𝑑𝑑
𝑑𝑑

0

= 1 − 𝑒𝑒20.
𝑞𝑞0.

(𝑒𝑒0 + 𝑒𝑒1) . (1

+ 𝐴𝐴1)𝑝𝑝1.𝐵𝐵. [1 − 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑒𝑒0 − 𝑒𝑒1). 𝑑𝑑] 

(36) 

replacing this new results in (29) or (34), we obtain the final 
expression: 

 

𝑋𝑋2𝑒𝑒(𝑑𝑑)

≅
𝑒𝑒20. (1 + 𝐴𝐴1)𝑝𝑝1.𝐵𝐵 . 𝑒𝑒𝑒𝑒𝑒𝑒( (−𝑒𝑒0𝑒𝑒 − 𝑒𝑒1𝑒𝑒). 𝑑𝑑)

1 − 𝑞𝑞0
(𝑝𝑝0+𝑝𝑝1)

. 𝑒𝑒20. (1 + 𝐴𝐴1)𝑝𝑝1.𝐵𝐵[1 − 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑒𝑒0 − 𝑒𝑒1). 𝑑𝑑)]
 (37) 

which shows that the growth of methanogens bacteria 
under our approximations can be written in the form of a 
logistic function with parameters related to the AM2 model: 

 𝑋𝑋2𝑒𝑒(𝑑𝑑) ≅
(𝑒𝑒0𝑒𝑒 + 𝑒𝑒1𝑒𝑒)

𝑞𝑞0 .
1

(1 + 𝐸𝐸1. 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑) (38) 

with: 

𝐸𝐸1 =
𝐸𝐸
𝐷𝐷 =

1
𝐷𝐷 − 1 =

(𝑒𝑒0𝑒𝑒 + 𝑒𝑒1𝑒𝑒)
𝑞𝑞0. 𝑒𝑒20. (1 + 𝐴𝐴1)𝑝𝑝1.𝐵𝐵 − 1 
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PREDICTION OF METHANE PRODUCTION 

Determination of the Parameters of the Logistic Function 

To evaluate the cumulated methane production from the 
AM2 model, we may use the expression (7) and (8). The 
cumulated quantity of methane over a given period t is 
proportional to X2(t).  

If we consider our approximation, it can be written as: 

 
𝑉𝑉2𝑒𝑒(𝑑𝑑) = 𝑘𝑘4.𝑋𝑋2𝑒𝑒(𝑑𝑑)

≅ 𝑘𝑘4.
(𝑒𝑒0𝑒𝑒 + 𝑒𝑒1𝑒𝑒)

𝑞𝑞0 . (
1

1 + 𝐸𝐸1. 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑒𝑒0 + 𝑒𝑒1). 𝑑𝑑) (39) 

where k4 is the production parameter of methane for the 
AM2 model. 

It can be rewritten after some elementary operations and 
arranged in the form of a logistic function: 

 
𝑉𝑉2𝑒𝑒(𝑑𝑑) = 𝑘𝑘4.𝑋𝑋2𝑒𝑒(𝑑𝑑)

≅ 𝑘𝑘4.
(𝑒𝑒0𝑒𝑒 + 𝑒𝑒1𝑒𝑒)

𝑞𝑞0
. (

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒[𝑙𝑙𝑙𝑙(𝐸𝐸1) + (𝑒𝑒0 + 𝑒𝑒1)𝑑𝑑]) (40) 

The empirical logistic function that is used for predicting 
the cumulative methane production is usually expressed as 
follows (Crescenzo and Paraggio., 2019; Gerber and Span., 
2018; Lemon et al., 2006). 

 𝑉𝑉(𝑑𝑑) =
𝑎𝑎

1 + 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑏𝑏 + 𝑐𝑐. 𝑑𝑑) (41) 

where V(t) is the methane volume in time t and (a,b,c) are 
three parameters that have to be determined via an analysis of 
a set of experimental data.  

The expressions V(t) in (40) and V2e(t) in (41) become 
comparable. By comparing them, we can identify the 
parameters in both models. The empirical parameters 
expressed in terms of the approximate AM2 adopted model can 
be written in the form: 

𝑎𝑎 = 𝑘𝑘4.
(𝑒𝑒0 + 𝑒𝑒1)

𝑞𝑞0
=
𝑘𝑘4
𝑘𝑘3 . (

𝑘𝑘2
𝑘𝑘1 . 𝑆𝑆10 + 𝑆𝑆10 + 𝑘𝑘3.𝑋𝑋20) 

𝑏𝑏 = 𝑙𝑙𝑙𝑙𝑔𝑔(𝐸𝐸1) = �𝑙𝑙𝑙𝑙( (𝑝𝑝0+𝑝𝑝1)
𝑞𝑞0

. (1+𝐴𝐴1)−𝑝𝑝1.𝐵𝐵

𝑥𝑥20
− 1)�  

𝑐𝑐 = −(𝑒𝑒0 + 𝑒𝑒1) 

in order to give a meaning to the parameters of the 
empirical logistic function, it is useful to use its modified 
version known as the modified logistic function. By some 
elementary mathematical transformations, the logistic 
function with (a, b, c) parameters can be transformed into the 
modified logistic function and expressed as: 

 𝑉𝑉𝑉𝑉(𝑑𝑑) =
𝐴𝐴

1 + 𝑒𝑒𝑒𝑒𝑒𝑒( − 4.𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴
(𝑑𝑑 − 𝜆𝜆) + 2)

 (42) 

In (42), Vm(t) is the cumulated methane volume at time t. 
It requires the determination of three parameters via an 
analysis of the experimental data. They are: the maximum 
methane production (A) (mL), the duration of the lag phase (λ) 
(hours), and the maximum rate of methane production (vmax) 
(mL·h-1). 

To make the approximate AM2 model V2e(t) comparable to 
the modified logistic function Vm(t), we transform again the 
expression (40) to resemble (42) as follows:  

 

𝑉𝑉2𝑒𝑒(𝑑𝑑)

= 𝑘𝑘4.
(𝑒𝑒0 + 𝑒𝑒1)

𝑞𝑞0
.

1

(1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �(𝑒𝑒0 + 𝑒𝑒1). (𝑑𝑑 − 2−𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸1)
(𝑝𝑝0+𝑝𝑝1)

) + 2�)
 (43) 

By comparing (42) with (43), the parameters of the 
modified logistic function can be expressed in terms of the 
approximate AM2 model parameters: 

 

𝐴𝐴 = 𝑘𝑘4.
(𝑒𝑒0 + 𝑒𝑒1)

𝑞𝑞0
=
𝑘𝑘4
𝑘𝑘3

. �𝐶𝐶 +
𝑘𝑘2
𝑘𝑘1

. 𝑎𝑎�

=
𝑘𝑘4
𝑘𝑘3

. �𝑆𝑆20 + 𝑘𝑘3.𝑋𝑋20 − 𝑘𝑘2.𝑋𝑋10 +
𝑘𝑘2
𝑘𝑘1

. 𝑆𝑆10� 

𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 =
𝑘𝑘4
4

(𝑒𝑒0 + 𝑒𝑒1)2

𝑞𝑞0
=

1
4
𝜇𝜇2𝑚𝑚
𝐾𝐾𝑠𝑠2

𝑘𝑘4
𝑘𝑘3

�𝐶𝐶 +
𝑘𝑘2
𝑘𝑘1

. 𝑎𝑎�
2

 

𝜆𝜆 =
(2− 𝑙𝑙𝑙𝑙𝑔𝑔(𝐸𝐸1))

(𝑒𝑒0 + 𝑒𝑒1) =
1

(𝑒𝑒0 + 𝑒𝑒1) �2− 𝑙𝑙𝑙𝑙𝑔𝑔(
(𝑒𝑒0 + 𝑒𝑒1)

𝑞𝑞0
.
(1 + 𝐴𝐴1)−𝑝𝑝1.𝐵𝐵

𝑒𝑒20
− 1)� 

(44) 

We notice that the parameters of the logistic function 
depend from the parameters of the AM2 model as well as from 
the initial conditions. Thus, the proposed approach relates the 
parameters of the logistic function with those of the AM2 
model giving a biotechnological sense to them. 

The lag time has to be positive, we can impose a condition 
that is: 

 
𝜆𝜆 =

(2 − 𝑙𝑙𝑙𝑙𝑔𝑔(𝐸𝐸1))
(𝑒𝑒0 + 𝑒𝑒1) =

1
(𝑒𝑒0 + 𝑒𝑒1) �2

− 𝑙𝑙𝑙𝑙𝑔𝑔(
(𝑒𝑒0 + 𝑒𝑒1)

𝑞𝑞0
.
(1 + 𝐴𝐴1)−𝑝𝑝1.𝐵𝐵

𝑒𝑒20
− 1)� > 0 

(45) 

Comparison of Profiles AM2 Model to the Proposed 
Logistic Function 

To analyze what the approximations adopted over the AM2 
in order to get an analytical expression for the cumulated 
methane production, we draw the curve obtained by solving 
numerically the system of AM2 equations. It is the blue curve 
represented in Figure 2. The red curve corresponds to the 
approximate analytical expression V2e(t) based on AM2 
model. 

For relatively large values of t which correspond to the 
steady state, these curves converge towards the same 
asymptotic value that is:  

 
𝑉𝑉2𝑒𝑒(∞) = 𝑘𝑘4.𝑋𝑋2𝑒𝑒(∞) = 𝑘𝑘4.𝑋𝑋2𝑆𝑆

=
𝑘𝑘4
𝑘𝑘3

. �
𝑘𝑘2
𝑘𝑘1

. 𝑆𝑆10 + 𝑆𝑆20 + 𝑘𝑘3.𝑋𝑋20� 
(46) 

CONCLUSION 

A mathematical expression formally comparable to the 
empirical logistic function is proposed for estimating the 
cumulative methane production for batch reactors. It is 
derived through some appropriate approximations performed 
on the set of differential equations characterizing the AM2 
model.  

The comparison of the empirical logistic function with the 
proposed expression enabled to express the three parameters 
of the empiric logistic function as well as its modified version 
in terms of the AM2 parameters.  
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The relations between the sets of both parameters reveals 
the complexity of the methane production processes. This 
approach bridges the mathematical AM2 model with the 
empirical one providing more insight in the methane 
production. 

As perspectives, a study has to be carried out in order to 
analyze the influence of the parameters of the AM2 on the 
proposed logistic function. This study has also to compare the 
parameters of the empiric logistic function which are 
identified experimentally with those obtained by the proposed 
logistic function. 
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