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 In this study, the removal of carbon dioxide (CO2) that has a huge contribution to global warming from gas 
emissions was performed using absorption method. Effect of operational parameters such as temperature and 
gas flow rate on the absorption capacity (g CO2/kg solvent and mol CO2/mol MEA) was investigated in a bubble 
column reactor with a semi-batch operation. The monoethanolamine (MEA) was used as a solvent and absorption 
capacity was determined at different gas flow rates (2.5 and 5 L/min) and temperatures (25-35-45 oC). Because of 
the study, absorption capacities of 74.71 g CO2 / kg MEA and 0.51 mol CO2/mol MEA were obtained at 5 L / min 
gas flow rate, 25oC and 20% solvent concentration. The absorption capacity increases as the temperature 
decreases and as the flow rate increases. Because of the study, it can be concluded that the capture of CO2 into 
the MEA solution at bubble column can be successfully achieved with high absorption capacity. 
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INTRODUCTION 

Because of the increasing industrialization and the need 
for energy in the world, our dependence on fossil fuels has 
increased, which causes an increase in carbon dioxide 
concentration in the atmosphere. According to NASA, over the 
past 171 years, the global average amount of carbon dioxide is 
raised with human activities by 48% above pre-industrial 
levels found in 1850 and hit a record high in 2021 as 416 parts 
per million (NASA, 2021). Carbon dioxide (CO2) is an 
important greenhouse gas that causes global warming effects 
(NASA, 2021). To reduce global warming, reduction of CO2 
emissions is critical and considering this energy needs 
supplied from fossil fuels, CCS (carbon capture storage) is the 
best way to maintain CO2 level under control. 

Various methods have been studied to reduce post-
combustion CO2 emissions, such as chemical absorption 
(Heydarifard et al., 2020; Pang et. al., 2021), physical 
absorption (Elhambakhsh et al., 2020), membrane separation 
(Widakdo et al., 2021; Yu et al., 2021), adsorption (Wu et al., 
2021), cryogenic separation (Bi and Ju, 2021), algal system 
(Judd et al., 2015). In these processes, chemical absorption is 
extensively used for the removal of CO2 from flue gas by 
chemical reaction with a solvent (Chen et al., 2008). The 
drawbacks of CO2 adsorption method include adsorption 
mechanism only occurring on the material surface, and that 
regeneration would require a stoppage to the adsorption 
process. Cryogenic CO2 separation also requires significant 

amounts of energy for the cooling of CO2 down to its 
liquefaction temperature at 78.5 °C. CO2 capture with a 
membrane is an interesting field of study but it still faces 
challenges in the form of the unavoidable tradeoff between 
permeability and selectivity, as well as poor resistance towards 
acid gases (Wibowo et al., 2021). 

Absorption-based technology is the most widely used 
worldwide, accounting for 64% of total CO2 capture capacity in 
these facilities and is used in 72% of the facilities. Amine-
based solvent alone is used in 69% of the facilities, accounting 
for 55% of total CO2 capture capacity. The popularity of amine-
based absorbent, is most due to its high absorption efficiency, 
low energy consumption, high economic value, and simple 
operation (Peng et al., 2012; Wibowo et al., 2021). In the field 
of CO2 absorption, innovations can be made on the searching 
solvents and scrubber types. Several scrubbers are used to 
capture CO2, such as packed bed column, sieve tray column and 
bubble column. Bubble columns have several advantages, such 
as high mass and heat transfer rates, simple operation without 
any moving parts and the flexibility to adjust various residence 
time requirements. 

Various solvents are used in the bubble column for CO2 
absorption based on published data. Heydarifard et al. focus on 
CO2 reactive absorption using Piperazine aqueous solutions in 
a stirrer bubble column (Heydarifard et al., 2018). Bai and Yeh 
(1997) studied the CO2 capture by ammonia in bubble column 
reactor. In a stirred bubble column, Pashaei et al. (2017) 
investigated the solubility and chemical absorption rate of 
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carbon dioxide into aqueous solutions of diethanolamine. 
Monoethanolamine (MEA) is frequently used to evaluate 
experimental setups and as a reference. Aronu et al. (2011) and 
Maneeintr et al. (2009) obtained 76 g CO2/kg MEA and 80 g 
CO2/kg MEA absorption capacities using bubble columns at 
20% MEA and 40oC, respectively. Aronu et al. (2011) obtained 
0.516 mol CO2/mol MEA absorption capacity at 2.5 M (%15) 
MEA, 40oC temperature and 4.84 kpa partial pressure of CO2. 

In this study, the absorption capacity of MEA solution was 
investigated in a bubble column reactor. The main objective of 
this study is to determine the effect of temperature and gas 
flow rate on absorption capacity given as g CO2/kg solvent and 
mol CO2/mol MEA. 

REACTION MECHANISM 

MEA is an important solvent in the CO2 removal process 
because it reacts quickly with carbon dioxide due to its primary 
amine characteristics (Maceiras et al., 2008). 

Different reaction mechanisms are proposed based on the 
number of amine functionality. Two different mechanism 
named zwitterion and termolecular mechanism is proposed to 
describe reaction mechanisms between CO2 and primary 
amine (RNH2) solutions. Because of the reaction between CO2 
and MEA solution, the carbamate (RNHCOO−) is formed in two 
steps according to the zwitterion mechanism, in one step 
according to the termolecular mechanism. 

In the zwitterion mechanism, firstly the zwitterion ion 
(RNH2+COO−) is formed (Eq. 1) as an intermediate and then it 
is deprotonated (Eq. 2) to form carbamate (RNHCOO−). In 
these reactions, B could be CO32−, HCO3−, amine, H2O, or OH− 
(Ramezani et al., 2021). 

CO2+ RNH2RNH2+COO-                             (1) 

RNH2+COO- + BRNHCOO- + BH+                           (2) 
According to the termolecular mechanism, CO2 react with 

MEA, as follow (Eq. 3): 
CO2 + RNH2 +BRNHCOO- + BH+                           (3) 
Additionally, CO2 reacts with H2O as given in Eq. (4-6). But 

overall contribution of these reactions can be negligible in the 
presence of MEA (Ramezani et al., 2021): 

H2O +CO2H+ + HCO3-                             (4) 

H2O H+ +OH-                             (5) 
HCO3- H++ CO32-                                               (6) 

MATERIALS AND METHOD 

Calculation of Absorption Capacity 

The absorption capacity is the maximum amount of 
pollutant absorbed per amount of solvent. The absorption 
capacity of continuous system can be calculated using the 
effluent CO2 concentration vs time graph. The area in Figure 
1 between the curves representing the inlet and outlet 
concentrations of CO2 is used to determine the amount of total 
absorbed CO2. The upper line is actually the CO2 concentration 
in the inlet, which was kept constant during a single run. At 

the outlet, concentration changes alongside the saturation of 
the MEA absorbent solution. The difference between these two 
values shows the absorbed amount. The input flow rate of CO2 
can be calculated using the total flow rate and inlet CO2 
concentration. The outlet flow rate of CO2 can be calculated 
using a fixed flow rate of N2, which is an inert compound and 
effluent CO2 concentration. Eq. (7) was used to calculate the 
CO2 outlet flow rate: 

𝑄𝐶𝑂2𝑜𝑢𝑡
= 𝑄𝑡𝑜𝑡𝑎𝑙𝑖𝑛

× 𝑦𝑁2𝑖𝑛
(

𝑦𝐶𝑂2𝑜𝑢𝑡

𝑦𝑁2𝑜𝑢𝑡

)                            (7) 

In this equation, 𝑄𝐶𝑂2𝑜𝑢𝑡
 is the outlet flow rate (l/min); 

𝑄𝑡𝑜𝑡𝑎𝑙𝑖𝑛
 is the total flow rate (l/min); 𝑦𝑁2𝑖𝑛

is N2 mole fraction in 
the gas inlet; 𝑦𝐶𝑂2𝑜𝑢𝑡

 is CO2 mole fraction in the gas 
outlet; 𝑦𝑁2𝑜𝑢𝑡

is N2 mole fraction in the gas outlet. 

The volumetric flow rates are converted to molar mass flow 
rate using conversion factors and assuming an ideal gas 
equation of state where each mole of gas occupies 22.4 liters at 
standard temperature (273 K) and pressure (1 atm). Then, the 
effluent concentration (ppm)-time graph can be replotted for 
mass flow rate-time. The rate of absorbed CO2 at each reading 
interval is then calculated using Eq. (8): 

𝑅𝐶𝑂2
= 𝑀̇𝐶𝑂2𝑖𝑛

− 𝑀̇𝐶𝑂2𝑜𝑢𝑡
            (8) 

where, Rco2 is the rate of absorbed CO2 ( l/min), 𝑀̇𝐶𝑂2𝑖𝑛
 is the 

mass of absorbed CO2 in the gas inlet, and 𝑀̇𝐶𝑂2𝑜𝑢𝑡
 is the mass 

of absorbed CO2 in the gas outlet. 

The amount of absorbed CO2 for each time interval was 
calculated using Eq. (9): 

𝑀𝐶𝑂2𝑎𝑏
= 𝑅𝐶𝑂2

× (𝑡2 − 𝑡1)            (9) 

where, MCO2 is the mass of absorbed CO2 (mol CO2), Rco2 is the 
rate of absorbed CO2 (l/min), and t is the time (0-250 min). 

The absorption capacity of the absorbent was calculated 
using Eq. (10): 

𝐴𝑏. 𝐶𝑎𝑝 =
∑ 𝑀𝐶𝑂2𝑎𝑏

𝑛
1

𝑀𝑀𝐸𝐴
           (10) 

where n is the number of time intervals (250 min), MCO2 is the 
mass of absorbed CO2 (mol CO2), and MMEA is the mass of MEA 
(mol MEA) in the solution. The calculations can be done using 
MS Excel. 

 
Figure 1. A sample of the CO2 concentration profile at the 
output 
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Chemicals 

MEA was supplied by Sigma (Germany). N2 (>99.99 %, 200 
bar) and CO2 (>99.95%, 150 bar) gas cylinders were purchased 
from Oksan gas, Turkey. In all experiments, deionized water 
was used supplied from the Thermo Scientific (Germany) unit 
with ultrapure filters. 

Experimental Set-up 

In this study, the bubble column absorption column shown 
in Figure 2 was used. The column has a height of 1.00 m and 
diameter of 5.0 cm. The process was performed in semi batch 
mode where liquid did not flow (batch) and the gas phase was 
feeding continuously into the solution. Column surrounded 
with heat jacket that keeps the solution temperature constant 
in the column. In each experiment, the temperature of the heat 
jacket was adjusted to the desired temperature 25 min before 
the run. However, the MEA solution was heated to the desired 
temperature on the hot plate and pour into the reactor 
immediately. A 1L MEA solution is used in each experiment. 
The gas mixture that consists of CO2 and N2 was prepared using 
two separate mass flow controllers (ALICAT Scientific Mass 
Flow Controller, Range:0-10L/min, accuracy; %0,2 of full-
scale). The gas combination (nitrogen and carbon dioxide) is 
so dry, a continuous flow of gas through the column would 
cause the solution to evaporate significantly. This is a negative 
consequence since the solution’s concentration and 
absorption capacity will change. As a result, before introducing 
gas to the absorption column, a humidifier must be used to 
saturate the incoming gas stream with humidity. The initial 
CO2 concentration was adjusted to 50,000 ppm using mass flow 
controllers. At the beginning of the experiment gas mixture 
was fed to the CO2 analyzer to ensure its concentration and 
then fed to the column filled with MEA solution. The gas 
mixture was bubbled using diffuser in the column and the 
carbon dioxide concentration of the effluent gas was 
monitored using an inline CO2 gas analyzer (Vernier, USA). 
The absorption process continued until there was no further 
absorption. This was confirmed by the concentration/time 
profile as shown in Figure 1. 

 

RESULTS AND DISCUSSION 

The Effect of Temperature on Absorption Capacity 

CO2 absorption capacity is an essential feature for the 
successful CO2 removal in a bubble column. The absorption 
capacity can be expressed in two units as mol of CO2 absorbed 
per mol of amine solution and as g CO2 absorbed per kg of 
amine solution. 

The effect of temperature on the absorption capacity is 
shown in Figure 3 and Figure 4. The absorption capacity of 
66.27 g CO2/kg solvent and 0.456 mol CO2/mol MEA decreases 
to 45.67 g CO2/kg solvent and 0.32 mol CO2/mol MEA with 
increasing temperature from 25 to 45 oC when using %20 MEA 
solution. This was due to the thermodynamics of the 
exothermic CO2 absorption system that could cause reversible 
reactions when the temperature was too high. The increase in 
temperature could also increase the CO2 vapor pressure over 
the solution that leads to decrease in the physical solubility of 
CO2 in the solvent (Tan et al., 2012). 

The absorption capacity of 74.71 g CO2/kg MEA was 
obtained at 5 L/min gas flow rate, 25oC temperature and 20% 
solvent concentration. Similarly, Maneeintr et al. (2009) 
obtained 80g CO2/kg MEA absorption capacity at 20% MEA and 
40oC. Aronu et al. (2011) obtained 76 g CO2/kg MEA absorption 
capacity at 3.0 M (%20) MEA, 40oC temperature and 15kpa CO2 

with using bubble column. 

 
Figure 2. Experimental setup 

 
Figure 3. The effect of temperature on the absorption capacity 
(g CO2/kg MEA) 

 
Figure 4. The effect of temperature on the absorption capacity 
(mol CO2/mol MEA) 
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The Effect of Gas Flow Rate on Absorption Capacity 

The gas flow rate determines the detention time of the gas 
component and effects the mixing regime of the solution. The 
effect of gas flow rate on the absorption capacity is shown in 
Figure 5 and Figure 6. The amount of CO2 captured per 
solvent amount increases with increasing gas flow rate. The 
absorption capacity of 66.27 g CO2/kg solvent and 0.456 mol 
CO2/mol MEA was increased to 74.71 g CO2/kg solvent and 0.51 
mol CO2/mol MEA when the gas flow rate increased from 2.5 
L/min to 5 L/min. Conway et al. (2015) obtained 0.13 mol 
CO2/mol MEA absorption capacity at 4M (%25) MEA and 
3L/min gas flow rate with using wetted-wall column 
contactor.Aronu et al. (2011) obtained 0.516 mol CO2/mol MEA 
absorption capacity at 2.5 M (%15) MEA, 40oC temperature and 
4.84 kpa partial pressure of CO2 with using bubble column. 

With the increasing gas flow rate, detention time of the gas 
into the solution was decreased. However, a higher flow rate 
creates turbulent conditions in the column, which is favorable 
for mass transfer. With increasing gas flow rates, the driving 
force between CO2 and water is strengthened and more CO2 
molecules transfer from the bulk gas phase to the gas-liquid 
boundary layer, causing an increase in mass-transfer 
coefficient. 

CONCLUSIONS 

In this study, the effect of temperature and gas flow rate on 
the absorption capacity (g CO2/kg solvent and mol CO2/mol 
MEA) determined using bubble column reactor. Experiments 
were performed at semi-batch mode and 20% MEA solution 
was used as a solvent. Because of the study, the following 
findings were obtained: 

1. The absorption capacity increases with the decrease on 
the temperature. The absorption capacity of 45.67 g 
CO2/kg solvent and 0.32 mol CO2/mol MEA increased to 
66.27 g CO2/kg solvent and 0.456 mol CO2/mol MEA 
when the temperature decreases from 45oC to 25 oC.  

2. Gas flow rate also effect the absorption capacity 
positively. The capacity increases from 66.27 g CO2/kg 
solvent and 0.456 mol CO2/mol MEA to 74.71 g CO2/kg 
solvent and 0.51 mol CO2/mol MEA when the gas flow 
rate increases from 2.5 L/min to 5 L/min.  

3. Because of the study, absorption capacities of 74.71 g 
CO2 / kg MEA and 0.51 mol CO2/mol MEA were obtained 
at the conditions of 5 L/min gas flow rate, 25oC and 20% 
MEA concentration. This value is comparable to the 
values obtained in the literature. 

It can be concluded that capture of CO2 into the MEA 
solution at bubble column can be successfully achieved with 
the high absorption capacity. Development of a solvent for a 
high absorption capacity is one of the most crucial issues for 
post-combustion capture. Mixed amine solutions can be used 
to achieve high absorption capacity. 
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