

# Fossil Fuel Consumption, CO<sub>2</sub> Emissions and Growth in High-Income Countries and Low-Income Countries

Chukwuemeka Amaefule <sup>1</sup>\* <sup>(D)</sup>, Ijeoma Emele Kalu <sup>1</sup> <sup>(D)</sup>, Sylvester Udeorah <sup>1</sup> <sup>(D)</sup>, Lawrence Oghenemaro Ebelebe <sup>2</sup> <sup>(D)</sup>

<sup>1</sup>Department of Economics, Faculty of Social Sciences, University of Port Harcourt, Choba, Rivers State, NIGERIA

<sup>2</sup> International Trade and Development, University of Port Harcourt, Choba, Rivers State, NIGERIA

\*Corresponding Author: chukwuemekamaefule@gmail.com

**Citation:** Amaefule, C., Kalu, I. E., Udeorah, S. and Ebelebe, L. O. (2022). Fossil Fuel Consumption, CO<sub>2</sub> Emissions and Growth in High-Income Countries and Low-Income Countries. *European Journal of Sustainable Development Research, 6*(3), em0190. https://doi.org/10.21601/ejosdr/12084

| ARTICLE INFO           | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received: 18 Feb. 2022 | This paper investigates the pairwise causality and co-integration that links fossil fuel consumption (FFC), carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Accepted: 19 Apr. 2022 | dioxide (CO <sub>2</sub> ) emissions, and real gross domestic product (RGDP) between low-income countries (LIC) and high-<br>income countries (HIC). This comparative analysis is anchored on Lv et al. (2019). Lv et al. (2019) enable the<br>analytical framework model utilized to investigate the causality between FFC and CO <sub>2</sub> , CO <sub>2</sub> and RGDP, and FFC<br>and RGDP in HIC and LIC. Data were obtained from world development indicator between 1960 and 2019. The<br>results obtained are, as follows: There exists a unidirectional causality, thus the RGDP granger causes CO <sub>2</sub> in HIC,<br>and no causality between RGDP and CO <sub>2</sub> in LIC. Also, the study found no causality between FFC and RGDP, and<br>FFC and CO <sub>2</sub> in HIC and LIC. The mixed inter-regional causality result showed that there exists bi-directional<br>causality between RGDP and CO <sub>2</sub> for HIC and LIC. This implies that RGDP in LIC granger causes CO <sub>2</sub> in HIC, and<br>CO <sub>2</sub> in HIC granger causes RGDP in LIC. Hence, the presence of a regional super-wicked problem. Also, CO <sub>2</sub> in<br>HIC granger causes FFC in LIC. The result suggests that countries should seamlessly adopt proportionate<br>mitigation and adaptation policies to reduce the pollution transmission between economies. The non-existence<br>of pairwise co-integration between FFC, CO <sub>2</sub> , and RGDP in HIC and LIC connotes that the CO <sub>2</sub> reduction policy<br>should be a short-term public policy strategy with conscious and deliberate targeting to avoid long-run growth<br>reversal. Therefore, this paper concludes that reducing FFC may not necessarily lead to a decline in growth vice<br>versa. Thus, to achieve a low carbon economy and a high growth regime, the global community should adopt a<br>techno-economic paradigm model that would accelerate growth within a low-carbon economy regime to realize |
|                        | <b>Keywords:</b> fossil fuel consumption (FFC), climate change, CO <sub>2</sub> emissions, real gross domestic product (RGDP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**Keywords:** fossil fuel consumption (FFC), climate change, CO<sub>2</sub> emissions, real gross domestic product (RGDP), granger causality, regional super-wicked problem, high-income countries (HIC), low-income countries (LIC)

# **INTRODUCTION**

The prevalence of the super-wicked problem is one of the biggest trepidation for environmental economists. However, there is an emerging puzzle connecting the regional impact of fossil fuel consumption (FFC) on regional carbon dioxide (CO<sub>2</sub>) emission, regional CO<sub>2</sub> impact on regional growth, and regional growth impact on CO<sub>2</sub>. Efforts to reconcile this emerging puzzle seem inconclusive in the literature. FFC (combustion) cause pollution that jerks-up greenhouse gases which in turn cause climate change problem. The chain reaction is that FFC causes CO<sub>2</sub> emissions, CO<sub>2</sub> emissions leads to climate variability, climate variability causes shock and risk to the global economy through the unprecedented weather (flooding) channel and financial loan risk channel. Patz et al. (2018) posit that the overall impact of environmental shock

and climate change vulnerability in the trends of greenhouse gases can be viewed from the rising temperature, precipitation, sea level, and ocean acidification. In the longrun climate change vulnerability could cause severe trepidation for the global economy. Since there is a perceptible global atmospheric interdependence, regional climate change shock can impede regional growth vice versa. Most economies largely depend on fossil fuel for their economic survival in terms of production, consumption, distribution, and exchange that stimulate growth. The nexus between FFC, CO<sub>2</sub>, and real gross domestic product (RGDP) threatens the existing growth model due to the absence of climate change issue. In order to achieve the global carbon emissions target in 2030, scholars are deeply apprehensive about the super-wicked problem surrounding climate change and growth nexus.

Furthermore, the super-wicked problems controversially affect the optimum policy-planning dimension in the climate

Copyright © 2022 by Author/s and Licensed by Veritas Publications Ltd., UK. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

change mitigation-adaptation legislation. Typically, a superwicked problem creates a planning-policy scenario on the optimal platform that enables the achievement of high, rapid, and sustainable economic growth and low carbon emission simultaneously. Unfortunately, the existence of a trade-off between growth and climate change targets causes policy planning mix-up. At the center of policy-travesty there is the probable causal impact between the climate changes and growth vice versa have which could leave the fossil-fuel dependent economy in a worse-off position. Therefore, the puzzle becomes how best to enhance climate change control and regulation, attain re-balancing and restructuring of global FFC and energy mix, and the optimal input combination that can guarantee a green economy. As scholars contemplate the solutions to these puzzles, the literature acknowledges that time is running out and the contributors of climate change constitute policy healing blocks to ending climate change. What is the optimal trade-off between climate change and economic growth required to get mitigation policy right? How could a high carbon-emitting economy respond to the vulnerability of climate change matrix manifested through flooding, unpredictable weather patterns, and shocks on economic outlook? What is the causal impact that permeates climate change and growth nexus?

This paper addresses question of a causal relationship between climate change and growth. The significance of this study is anchored on the causal relationship between climate change and growth. The  $CO_2$  in low-income countries (LIC) remains relatively low, the question becomes does high  $CO_2$  in high-income countries (HIC) imply high  $CO_2$  in LIC holding  $CO_2$  in middle-income countries (MIC) constant? What is the causal linkage between fossil fuel and economic growth in LIC and HIC? and does causality exist between  $CO_2$  and economic growth in LIC and HIC? The motivating question adduced in this paper becomes what is the causality between FFC and  $CO_2$ , FFC and RGDP,  $CO_2$  and RGDP? Thus, this study aims to compare the causal relationship between FFC (or combustion),  $CO_2$  emission, and RGDP (a proxy for economic growth) in LIC and HIC. This study proposed five fundamental hypotheses:

- 1. There is causality existing between FFC and CO<sub>2</sub>;
- 2. There is causality existing between CO<sub>2</sub> and RGDP;
- 3. There is causality between FFC and RGDP;
- 4. There is regional causality between CO<sub>2</sub> and RGDP; and,
- 5. There is no long-run relationship between CO<sub>2</sub> and RGDP.

This paper is divided into five parts namely, introduction, literature review, methodology, discussion, and conclusion.

## LITERATURE REVIEW

Before we delve into the discussion of the theoretical and empirical reviews. It is imperative to provide a brief emerging issues of climate change reversal (Skoufias, 2012). The prevailing issues in the FFC, CO<sub>2</sub>, and RGDP debate affect the global optimal mitigation mix between HIC and LIC or between high emitting economies and low emitting economies. There is the nationally determined contributions (NDCs) target which requires a 45% reduction in global emissions by 2030 and net-zero emission target of 2050. When fossil fuel is anthropogenically utilized large amounts of CO<sub>2</sub> emissions are generated and released into the air. Greenhouse gases (GHG) traps heat in the environment, causing global warming. GHG emissions include CO<sub>2</sub>, methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF<sub>6</sub>), nitrogen trifluoride (NF<sub>3</sub>), fluorinated ethers (HFEs), etc. They are gases that are generated within the thermal infrared range that adds to the GHG effect and global climate change. Evidence shows that the shift in the global average temperature (GAT) from the El Nino event to La Nino did not cause a corresponding downward shift in the GAT frontier. Nevertheless, the 2020 GAT is estimated to be at 1.2°C higher than the 1850-1900 pre-industrial baseline and comparable to the previous GAT's record of 2016 (WMO, 2020). Historically, conscious efforts to address remote and immediate causes of climate change are traceable to breakthrough of the Cancun Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). UNFCCC Article 2 states that there shall be a "stabilization of GHG concentration in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." Article 2 has been re-affirmed in the 1992 Rio Earth Summit, 1997 the Kyoto Protocol, and the 2015 Paris Agreement, etc. Specifically, the Paris Agreement is an international treaty on climate change adopted by 196 countries at Conference of Parties 21, in Paris. The goal of the Paris Agreement is to limit global warming to well below 2°C, preferably to 1.5°C, compared to pre-industrial levels (IPCC, 2022; UNFCCC, 2021). According to UNFCCC (2021), Paris Agreement established an enhanced transparency framework (ETF). The ETF "improve statistic on the global stock take that assesses the collective progress towards the long-term climate goals. Also, the greenhouse gas protocol provides the foundation for sustainable climate strategies and more efficient, resilient, and profitable organizations" (IRSA, 2013). Climate change impact poses an uncertain risk to the global economy. The unpredictable nature of the ecosystem could result in a high loss of essential features that supports lives and health. Between 2030 and 2050, climate change could generate over 250,000 additional deaths. In the past 130 years, the world has warmed by a close value of 0.850°C. The level of CO<sub>2</sub> in the Earth's atmosphere has been rising consistently for decades and traps extra heat near the surface of the earth causing the temperature to rise (NASA, 2021). The unfathomable global environment shock emanating from disproportionate contributions of CO2 emissions in LIC (CO2LIC), MIC (CO<sub>2</sub>MIC), and HIC (CO<sub>2</sub>HIC) has become a burning and disturbing inevitable tragedy too threatening to neglect to chance (Figure 1).

However, FFC-CO<sub>2</sub> emissions, CO<sub>2</sub> emissions and economic growth, and economic growth-FFC relationships are supported by an empirical linkage in super-wicked problem hypothesis. Fossil fuel exploration causes an upward concentration shift in GHG concentration which creates unimaginable damage cost, in turn, causes environment shock (WMO, 2020). This environmental shock causes global warming (heat-trapping in the ecosystem) that creates climate vulnerability impact on environment by causing a substantial decline in agricultural



Figure 1. Global CO<sub>2</sub> emission (1960-2016)

productivity, thus making it increasingly difficult to achieve economic growth and sustainable development goals.

#### **Theoretical Review: Complex Theory**

Wicked problems revolve around the policy-planning relationship of the political class due to their involvement in leveraging machinery to solve the climate change issue (Sun and Yang, 2016). Climate change is a wicked problem borne out of the complexity in the effecting change that has multiple and conflicting inputs and multiple possible outcomes (Head, 2008; Incropera, 2015). Rittel and Webber (1973, p. 161-166) identified properties of wicked problems. They are, as follows: there is no definitive formulation, no ends to causal chains, no true-false solutions rather good-bad solutions, no immediate or ultimate test for a solution, every attempt at a solution is consequential, no exhaustive set of solutions, it is unique, every wicked problem points to other wicked problems, discrepancies have multivariate dimension-choice of solutions determines the nature of the problem's resolutions, wicked problems create an organization, stakeholder, fragmentation and institutional problems (Conklin, 2016; Whelton & Ballard, 2002). These complexities and uncertainty exist because of the dynamic properties of the system upon which wicked problems thrive.

The complex theory is built on the general system theory (Lazarus, 2009). Grobman (2005) maintains that environmental problem is complex because of the systems interrelatedness and interconnectedness of actions and reactions. Each system has a hierarchy and subsystem that establishes a pattern of dynamic interactions hence any perceptible reordering or alterations generates a domino effect (Simon, 1962), setting variants actions into motion in an opposite, unpredictable dimension with unpredictable consequences (Barabasi, 2003).

According to Peters (2017) and Peters et al. (2017), emerging climate-poverty mix is defined as complex, related to multiple possible causes and internal dynamics which have negative consequences for society if not addressed properly. Thus, the development of the complex theory is based on the existence of wicked problems. Complexity theory identified that a small shift around policy indicators could produce a massive difference in the outcome that is politically and technically complex (see also social mess theory). According to Rittel and Webber (1973), ten properties of wicked problems implicitly captured the complexity of consequential reactions of the policy change and direction of change with ultimate price of policy failure due to complexity- interconnectedness, and motives within the system. Aside from complex theory, path-dependence theory provides a glimpse of the impact of structural adjustment and the technical progress in terms of technology adoption. According to Unruh (2000), pathdependent analysis in the debate of super-wicked problem can be resolved by understanding how path-dependent policy is produced to affect future policy needs. This is owing to the fact that technology adoption creates high carbon hence a counterbalancing policy to create technology adoption with low carbon with path-dependency epistemology thinking (in Levin et al., 2012).

#### **Empirical Review**

Economists' interest in the super-wicked problem hypothesis can be decomposed into three components. This study robustly focused on one of the worries in the economics of climate change. The study is concerned with the transmission causality channels between climate change shock (proxy by  $CO_2$  emission) and economic growth.

Cederborg and Snobohm (2016) observed a relationship between per capita gross domestic product (GDP) and per capita CO<sub>2</sub> emissions. The implication of the study connotes that an increasing GDP per capita results in a higher CO<sub>2</sub> emission. Kasperowicz (2015) studied the relationship between CO<sub>2</sub> emission and GDP for 18 EU countries from 1995 to 2012. The study found a negative long-run relationship between GDP and CO<sub>2</sub>. Rozenberg and Hallegate (2015) found a link between climate change and poverty to be based on the nature of demographic and socio-economic trends. Hallegate et al. (2014) identified productivity, prices, assets, and opportunities as the major determinates that explain the causality between poverty and climate change. Leichenko and Silva (2014) demonstrated that climate change-poverty linkages are complex, multifaceted, and country-specific. The study identified direct channels (agricultural productivity) and immediate channels (flood and drought) cause climate change vulnerability that leads to inequality within the climate change-poverty trap cycle trajectories.

Gupta (2014) found the relationship between climate change, population, and economic growth. The study found that carbon emission per capita has declined in developed countries but worrisomely growing in developing countries due to population growth and economic growth. Economic growth and population growth contribute most to increasing emissions globally and have an out-paced improvement in energy efficiency.

A similar dimension, is the cost of implementing energy and industrial policies, especially fossil fuel industries, and deep structural changes in the global economic frontier. Hertel and Rosch (2010) captured the link between climate changeagriculture-poverty. The study found that direct linkage (payment for environmental services) and indirect linkage (factor market) exist between climate change mitigation and poverty. Reid and Swiderska (2008) developed a study that estimated the relationship between biodiversity, poverty, and climate change. Thornton et al. (2008) found that the



Figure 2. RGDP LIC/Time

explanatory variable that climate change vulnerability dictates the causality between poverty and climate change.

#### **Review of Literature**

The recent literature is silent on the FFC,  $CO_2$ , and growth causality for LIC and HIC in its comparative form. In this paper, our target is on environmental-growth causality which is one of the linkages in super-wicked problems as conceptualized by Lv et al. (2019). Most recently, there is a deeper shift in the environment-GDP literature to include how best to determine the optimal mitigation for the global economy that guarantees sustainable growth.

#### **METHODOLOGY**

This study adopts a quasi-experimental research design approach. The general analytical framework for this study is obtained from the study conducted by Hallegatte et al. (2014). As a point of departure, this paper captures the comparative causality between FFC, CO<sub>2</sub> emissions, and GDP per capita in LIC and HIC. Granger causality is utilized to examine the cause and effect that exist between two theoretical nexuses. The test enables us to identify whether changes in one variable X affect the change in variable Y. The method is employed to investigate the extent to which feedback effect or two-way (bidirectional or unidirectional) impact can be ascertained from an economic relationship. The granger causality test is built around the probability definition of whether one-time series is empirically significant for forecasting another. The idea behind this method is to align this paper with the existing debate that supper-wicked problems exist in the climate change and growth targets. The granger causality result would enable policymakers to make policy actions that can stimulate growth and reduce carbon emission in both regions simultaneously. This study considers HIC and LIC as a single country in the climate action plan. This assumption became necessary because of the existing debate that HIC is a major pollution contributor and LIC is less contributor to pollution that aggravates GHG emissions.

#### Model

The apriori expectation conditioning the causality between economic growth and  $CO_2$  emissions is mixed. However, environmental kuznets curve (EKC) provides a nexus on the



Figure 3. RGDP HIC/Time

increasing functional linkage between environmental damage and per capita income at the beginning of economic growth and declines afterward. The rising  $CO_2$  concentration in the ecosystem and the mitigation issues provide adequate background between  $CO_2$  emissions and economic growth. Thus, the super-wicked problem exists because of the foregoing underpinning causality between reduction of the  $CO_2$  shock and benefit on the environmental sustainability. Thus, this paper follows Lv et al. (2019):

$$GDP_t = f(FFC_t, CO2_t, \mu) \tag{1}$$

$$FFC_t = f(CO2_t, GDP_t\mu) \tag{2}$$

$$CO2_t = f(FFC_t, GDP_t\mu) \tag{3}$$

Data from 1960-2019 was obtained from WDI is employed to show the trend of climate change behavior on GDP by investigating the pairwise causality between  $CO_2$  emissions and GDP for LIC and HIC. Granger (1969) presents an endogenous model that captured a lagged-two equation to explain causality. Hence, this study follows that model by making adjustments viz. The modification in this study is on the environment-growth causality:

$$CO2_t = \alpha_1 RGDP_{t-i} + \alpha_2 CO2_{t-i} + \mu_{1t}$$

$$\tag{4}$$

$$RGDP_t = \alpha_3 RGDP_{t-i} + \alpha_4 CO2_{t-j} + \mu_{2t}$$
(5)

$$FFC_t = \alpha_5 RGDP_{t-i} + \alpha_6 FFC_{t-j} + \mu_{3t}$$
(6)

$$RGDP_t = \alpha_7 RGDP_{t-i} + \alpha_8 FFC_{t-j} + \mu_{4t} \tag{7}$$

$$CO2_t = \alpha_9 FFC_{t-i} + \alpha_{10} CO2_{t-j} + \mu_{5t}$$
(8)

$$FFC_t = \alpha_{11} FFC_{t-i} + \alpha_{12} CO2_{t-j} + \mu_{6t}$$
(9)

where  $CO2_t = CO2 \ emission, \alpha_1 = Parameters, RGDP_{t-i} = Lag \ growth, CO2_{t-j} = Lag \ CO2, RGDP_t = Growth, FFC_t = Fossil \ fuel \ consumption, \mu_t = Random \ term$ , the model 4-9

was utilized to explain behavior of  $CO_2$ , FFC, and growth in LIC and HIC.

#### **Trend Analysis**

The trend analyses in **Figure 2-Figure 7** show the relationship between RGDP, FFC, and  $CO_2$  and time between HIC and LIC. **Figure 2-Figure 7** illustrate an upward and downward trend in the hypothesized variable measured as a function of time. The RGDP trend is rising whilst the trend for  $CO_2$  and FFC depicts a declining trend. Our results provide insight into the nature of conflict in policy, which is compelling for further studies in order to establish the flow of causality. The data is a time series and discrete data from 1960-2019. The data groups countries into regional blocks. Due to



Figure 4. CO2 in HIC/Time



**Figure 5.** CO<sub>2</sub> in LIC/Time

the nature of the data, the panel causality study will be conducted through a unit root test and lag criteria lenses.

**Table 1** presents the overall data behavior used for empirical evaluation. The kurtosis measures the "tailedness" of the probability distribution of a real-valued random variable. The coefficients are mixed, platykurtic <3 and leptokurtic >3. The coefficients of Jerque-Bera are nonnegative. However, the p-value of Jerque-Bera in **Table 1** shows that the data of  $CO_2$  in HIC and FFC in HIC is <0.05%, which implies that the study rejects the normality of the variable. For further tests, the variables were subjected to a unit root test to ascertain their empirical value. The values of  $CO_2$  in HIC and FFC in HIC portray a strong statistical indication of the wide extent of anthropogenic activities in HIC.

#### **Unit Root Test**

**Table 2** portrays the stationary test for CO<sub>2</sub> in HIC, CO<sub>2</sub> in LIC, GDP in HIC, GDP in LIC, FFC for HIC and LIC, respectively. The augmented Dickey-Fuller (ADF) unit root test results for the hypothesized variables were stationary at 1<sup>st</sup> differencing. This study adapted the ADF unit root test adjusting for constant and trend, except for fossil FFC. HIC was adjusted for constant (see **Appendix A**).





Figure 7. FFC in LIC/Time

#### Lag Selection

The lag selection criterion was employed to determine the optimal lag based on the lower AIC or SIC coefficients. The study utilized the vector autoregressive system to conduct the optimal lag selection. The optimal lag is 1 based on the most selected lag coefficient. These results are imperative for the causality test and co-integration test. Lag lengths are imputed into the system to avoid an arbitrary lag selection process which could affect the results from the causality test (**Table 3**).

#### **RESULTS AND DISCUSSION**

Based on the baseline model (see equations 1-3), the objective of this study is decomposed into components. The causality question is further decomposed into three nexuses namely; FFC and  $CO_2$ ,  $CO_2$  and RGDP, and FFC and RGDP. Whilst the co-integration question is accommodated in this study to evaluate the long-run problem that affects the climate change and growth nexus.

#### Table 1. Descriptive statistics for HIC and LIC

| CO2_IN_HIC | CO2_IN_LIC                                                                                                                                                                                                                                          | RGDP_HIC                                                                                                                                                                                                                   | RGDP_LIC                                                                                                                                                                                                                                                                                                                      | FOSSIL_FUEL_CONS_                                                                                                                                                                                                                                                                                                                                                                                                               | HIC FOSSIL_FUEL_CONSLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12,472,375 | 19,6626.4                                                                                                                                                                                                                                           | 3.59E+13                                                                                                                                                                                                                   | 2.48E+11                                                                                                                                                                                                                                                                                                                      | 83.59376                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.27728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12,703,774 | 19,0135.6                                                                                                                                                                                                                                           | 3.57E+13                                                                                                                                                                                                                   | 2.08E+11                                                                                                                                                                                                                                                                                                                      | 83.11652                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.44592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13,875,576 | 30,0446.4                                                                                                                                                                                                                                           | 4.87E+13                                                                                                                                                                                                                   | 4.57E+11                                                                                                                                                                                                                                                                                                                      | 89.16145                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.63520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10,481,422 | 15,4646.7                                                                                                                                                                                                                                           | 2.21E+13                                                                                                                                                                                                                   | 1.59E+11                                                                                                                                                                                                                                                                                                                      | 81.10873                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.01030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1,038,252. | 34,690.61                                                                                                                                                                                                                                           | 8.36E+12                                                                                                                                                                                                                   | 9.27E+10                                                                                                                                                                                                                                                                                                                      | 1.907725                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.200460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.485491  | 1.440264                                                                                                                                                                                                                                            | -0.064612                                                                                                                                                                                                                  | 0.932414                                                                                                                                                                                                                                                                                                                      | 1.292427                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.750298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.050899   | 4.978221                                                                                                                                                                                                                                            | 1.683966                                                                                                                                                                                                                   | 2.469826                                                                                                                                                                                                                                                                                                                      | 4.382193                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.209742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.534946   | 16.78985                                                                                                                                                                                                                                            | 2.404386                                                                                                                                                                                                                   | 5.168167                                                                                                                                                                                                                                                                                                                      | 11.81390                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.156697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.281542   | 0.000226                                                                                                                                                                                                                                            | 0.300534                                                                                                                                                                                                                   | 0.075465                                                                                                                                                                                                                                                                                                                      | 0.002720                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.206316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.12E+08   | 6,488,672.                                                                                                                                                                                                                                          | 1.19E+15                                                                                                                                                                                                                   | 8.20E+12                                                                                                                                                                                                                                                                                                                      | 2,758.594                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,329.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.45E+13   | 3.85E+10                                                                                                                                                                                                                                            | 2.24E+27                                                                                                                                                                                                                   | 2.75E+23                                                                                                                                                                                                                                                                                                                      | 116.4613                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,151.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33         | 33                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                         | 33                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | CO2_IN_HIC           12,472,375           12,703,774           13,875,576           10,481,422           1,038,252.           -0.485491           2.050899           2.534946           0.281542           4.12E+08           3.45E+13           33 | CO2_IN_HICCO2_IN_LIC12,472,37519,6626.412,703,77419,0135.613,875,57630,0446.410,481,42215,4646.71,038,252.34,690.61-0.4854911.4402642.0508994.9782212.53494616.789850.2815420.0002264.12E+086,488,672.3.45E+133.85E+103333 | CO2_IN_HICCO2_IN_LICRGDP_HIC12,472,37519,6626.43.59E+1312,703,77419,0135.63.57E+1313,875,57630,0446.44.87E+1310,481,42215,4646.72.21E+131,038,252.34,690.618.36E+12-0.4854911.440264-0.0646122.0508994.9782211.6839662.53494616.789852.4043860.2815420.0002260.3005344.12E+086,488,672.1.19E+153.45E+133.85E+102.24E+27333333 | CO2_IN_HICCO2_IN_LICRGDP_HICRGDP_LIC12,472,37519,6626.43.59E+132.48E+1112,703,77419,0135.63.57E+132.08E+1113,875,57630,0446.44.87E+134.57E+1110,481,42215,4646.72.21E+131.59E+111,038,252.34,690.618.36E+129.27E+10-0.4854911.440264-0.0646120.9324142.0508994.9782211.6839662.4698262.53494616.789852.4043865.1681670.2815420.0002260.3005340.0754654.12E+086,488,672.1.19E+158.20E+123.45E+133.85E+102.24E+272.75E+2333333333 | CO2_IN_HICCO2_IN_LICRGDP_HICRGDP_LICFOSSIL_FUEL_CONS_12,472,37519,6626.43.59E+132.48E+1183.5937612,703,77419,0135.63.57E+132.08E+1183.1165213,875,57630,0446.44.87E+134.57E+1189.1614510,481,42215,4646.72.21E+131.59E+1181.108731,038,252.34,690.618.36E+129.27E+101.907725-0.4854911.440264-0.0646120.9324141.2924272.0508994.9782211.6839662.4698264.3821932.53494616.789852.4043865.16816711.813900.2815420.0002260.3005340.0754650.0027204.12E+086,488,672.1.19E+158.20E+122,758.5943.45E+133.85E+102.24E+272.75E+23116.4613333333333333 |

Note. SD:Standard deviation; SSD: Sum of squares deviation; Source: Compilations from Eviews 9

#### Table 2. ADF unit root test

| Variables        | s ADF unit root test (Schwarz inf. criterion) | @1 <sup>st</sup> differencing |        |
|------------------|-----------------------------------------------|-------------------------------|--------|
| For HIC          |                                               |                               |        |
| CO <sub>2t</sub> | Trend and intercept                           | -6.147537                     | 0.0000 |
| GDPt             | Trend and intercept                           | -6.179120                     | 0.0000 |
| FFC              | Intercept                                     | -3.406077                     | 0.0150 |
| For LIC          |                                               |                               |        |
| CO <sub>2t</sub> | Trend and intercept                           | -7.322588                     | 0.0000 |
| GDPt             | Trend and intercept                           | -3.728657                     | 0.0330 |
| FFC              | Intercept                                     | -6.235634                     | 0.0000 |
| Note Sou         | reas Compilation from Evigure 0               |                               |        |

Note. Source: Compilation from Eviews 9

Table 3. VAR lag order selection criterion

| Variables                   | Lag length         | LogL       |
|-----------------------------|--------------------|------------|
| $CO_2 \rightarrow RGDP HIC$ | 1                  | -2,136.921 |
| $CO_2 \rightarrow RGDP LIC$ | 1                  | -1,016.566 |
| FFC→RGDP HIC                | 1                  | -1,439.821 |
| FFC→RGDP LIC                | 1                  | -775.7102  |
| $CO_2 \rightarrow FFC HIC$  | 1                  | -720.4437  |
| $CO_2 \rightarrow FFC LIC$  | 0                  | -546.6210  |
| Note Courses Commile        | tion from Exious 0 |            |

Note. Source: Compilation from Eviews 9

# To What Extent Does Causality Exist Between FFC and CO<sub>2</sub>, CO<sub>2</sub> and RGDP, and FFC and RGDP?

#### CO<sub>2</sub> and RGDP nexus

This study considered the linkage between CO<sub>2</sub> emissions and RGDP conceptualized in the super-wicked problem hypothesis. The apriori expectation shows that since CO<sub>2</sub> is industry-based, and the industry contributes to RGDP, a reduction in CO<sub>2</sub> emissions would necessarily imply a decline in growth. Hence, there exists an increasing functional relationship in the CO<sub>2</sub> and RGDP nexus. However, data obtained from World Bank Development Indicator between 1960 and 2019 comparatively portrays a uniform relationship between HIC and LIC. The test result connotes that RGDP granger causes CO<sub>2</sub> in HIC and RGDP does not granger cause CO<sub>2</sub> in LIC with p-values of 0.8% and 80%, respectively. On the other hand, CO<sub>2</sub> emissions in HIC and LIC do not granger cause RGDP in HIC and LIC with p-values of 85.7% and 17.6%, respectively. Furthermore, whilst there exists a unidirectional causality in HIC, causality is the absence in LIC between the RGDP and CO<sub>2</sub> emissions nexus.

#### FFC and CO<sub>2</sub> nexus

The second issue in the super-wicked problem is to determine the role of FFC in determining the level of  $CO_2$  emissions in HIC and LIC. **Table 4** presents pairwise granger causality test results for HIC and LIC. The question, therefore, becomes whether FFC has a cause-and-effect relationship with  $CO_2$ ? From the result above, the study observed that no causality exists between FFC and  $CO_2$  in HIC and LIC. For HIC, the FFC granger causes  $CO_2$  and  $CO_2$  granger cause FFC has p-values of 80.0% and 17.9%, while the FFC granger cause  $CO_2$  and the  $CO_2$  granger cause FFC have p-values of 16.6% and 82.2%, respectively.

#### FFC and RGDP nexus

The time-series data is necessary to determine the entire industrial processes in HIC and LIC. FFC is an important production input. Hence, there is a positive apriori expectation between FFC and RGDP. In the third relationship, this study observed that there is no causality between FFC and RGDP in HIC and LIC. The p-values coefficients in **Table 4** showed that RGDP granger cause FFC and FFC granger cause RGDP in HIC is 81.3% and 90.9%, respectively. Also, in LIC, the p-values show that RGDP granger cause FFC and FFC granger cause RGDP is 63.7% and 17.6%, respectively.

# Does Climate Change (Growth) in HIC Affect Growth (Climate Change) in LIC Vice Versa?

#### Mixed inter-region causality for HIC and LIC

Another debate in the economics of climate change, is whether  $CO_2$  and GDP in HIC and LIC are related? This debate revolves around the  $CO_2$  concentration argument. On the other hand, the debate whether growth spillover in HIC fairly impacts the growth in LIC through technology transfer, etc. This debate is addressed in **Table 4**.

#### Table 4. Empirical result from pairwise granger causality for HIC and LIC

| Date: 04/02/21 Time: 02:48           Sample: 1960 2021           Lags: 1           Null hypothesis         Obs         F-statistic         Probability           D(C02 IN LIC) does not Granger Cause D(C02 IN HIC)         55         0.77278         0.7884           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         55         7.53960         0.0083           D(RGDP HIC) does not Granger Cause D(C02 IN HIC)         55         7.53960         0.0083           D(RGDP LIC) does not Granger Cause D(C02 IN HIC)         33         5.82154         0.0222           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         54         0.05377         0.8085           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         4.43160         0.0438           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         4.44100         0.1799           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         4.2         0.07295         0.7885           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         55         0.07410         0.7865           D(C02 IN HIC) does not Granger Cause D(C02 IN LIC)         55         0.07410         0.7865           D(C02 IN LIC) does not Granger Cause D(C02 IN LIC)         55         0.07440         0.4048           D(RGDP HIC) does not Granger Cause D(C02 IN LIC)                                                                                                                                                          | Pairwise granger causality tests                                       |     |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|-------------|-------------|
| Sample: 1960 2021           Lags: 1           Null hypothesis         Obs         F-statistic         Probability           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_HIC)         55         0.07278         0.7884           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         55         0.63823         0.4280           D(RGDP_HIC) does not Granger Cause D(CO2 IN_HIC)         55         7.53960         0.00824           D(CO2 IN_HIC) does not Granger Cause D(RGP_HIC)         0.05264         0.8573           D(CO2 IN_HIC) does not Granger Cause D(RGP_HIC)         4.43160         0.0438           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         54         0.05937         0.8085           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         42         0.07295         0.7885           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         42         0.07295         0.7885           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         42         0.07295         0.7885           D(CO2 IN_HIC) does not Granger Cause D(CO2 IN_HIC)         0.02572         0.8732           D(CO2 IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732           D(CO2 IN_LIC) does not Granger Cause D(RGDP_HIC)         1.91558         0.1768           D(FOSSIL, FUEL, CONS_HIC) des not                                                                                                                                                | Date: 04/02/21 Time: 02:48                                             |     |             |             |
| Lags: 1         Null hypothesis         Obs         F-statistic         Probability           D(CO2 IN LIC) does not Granger Cause D(CO2 IN HIC)         55         0.07278         0.7884           D(CO2 IN LIC) does not Granger Cause D(CO2 IN HIC)         0.63823         0.4280           D(CO2 IN LIC) does not Granger Cause D(CO2 IN HIC)         0.63823         0.4280           D(CO2 IN HIC) does not Granger Cause D(ROP HIC)         0.05324         0.08573           D(RGDP LIC) does not Granger Cause D(ROP LIC)         33         5.82134         0.0222           D(CO2 IN HIC) does not Granger Cause D(ROP LIC)         54         0.05937         0.8085           D(CO2 IN HIC) does not Granger Cause D(CO2 IN HIC)         54         0.07295         0.7788           D(CO2 IN HIC) does not Granger Cause D(CO2 IN HIC)         4.43160         0.0438           D(CO2 IN HIC) does not Granger Cause D(CO2 IN HIC)         4.43160         0.0438           D(CO2 IN HIC) does not Granger Cause D(CO2 IN HIC)         1.84910         0.1799           D(CO2 IN HIC) does not Granger Cause D(CO2 IN HIC)         42         0.07275         0.7885           D(CO2 IN LIC) does not Granger Cause D(CO2 IN LIC)         0.02572         0.8732         0.8732           D(CO2 IN LIC) does not Granger Cause D(ROP HIC)         0.02563         0.01768         0.1768                                                                                                                       | Sample: 1960 2021                                                      |     |             |             |
| Null hypothesis         Obs         F-statistic         Probability           D(C02 IN, LIC) does not Granger Cause D(C02 IN, LIC)         55         0.07278         0.63823           D(C02 IN, HIC) does not Granger Cause D(C02 IN, HIC)         55         7.53960         0.0083           D(RGDP HIC) does not Granger Cause D(C02 IN, HIC)         55         7.53960         0.03264         0.8573           D(RGDP LIC) does not Granger Cause D(RGDP, HIC)         33         5.82134         0.02220           D(C02 IN, HIC) does not Granger Cause D(RGDP, LIC)         4.43160         0.04384           D(C02 IN, HIC) does not Granger Cause D(RGDP, LIC)         4.43160         0.04384           D(FOSSIL FUEL, CONS_ LIC) does not Granger Cause D(CO2 IN, HIC)         54         0.05977         0.80855           D(C02 IN, HIC) does not Granger Cause D(CO2 IN, HIC)         42         0.07295         0.7885           D(CO2 IN, HIC) does not Granger Cause D(CO2 IN, LIC)         0.07944         0.4048           D(RGDP, HIC) does not Granger Cause D(CO2 IN, LIC)         0.07944         0.4048           D(CO2 IN, LIC) does not Granger Cause D(CO2 IN, LIC)         0.07944         0.4048           D(CO2 IN, LIC) does not Granger Cause D(RGDP, HIC)         0.07944         0.4048           D(CO2 IN, LIC) does not Granger Cause D(RGDP, HIC)         0.07644 <t< th=""><th>Lags: 1</th><th></th><th></th><th></th></t<>                                                          | Lags: 1                                                                |     |             |             |
| D(C02 IN LIC) does not Granger Cause D(C02 IN HIC)         55         0.07278         0.7884           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         55         7.75960         0.0083           D(RGDP HIC) does not Granger Cause D(C02 IN HIC)         55         7.75960         0.0083           D(C02 IN HIC) does not Granger Cause D(RGDP HIC)         0.03264         0.8573           D(RGDP HIC) does not Granger Cause D(RGDP HIC)         4.43160         0.0438           D(FOSSIL FUEL CONS_HIC) does not Granger Cause D(C02 IN HIC)         54         0.05937         0.8085           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         54         0.07295         0.7885           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         42         0.07295         0.7885           D(C02 IN HIC) does not Granger Cause D(C02 IN HIC)         42         0.07295         0.7885           D(C02 IN HIC) does not Granger Cause D(C02 IN LIC)         55         0.07410         0.7865           D(RGDP HIC) does not Granger Cause D(C02 IN LIC)         53         0.0644         0.8007           D(C02 IN LIC) does not Granger Cause D(C02 IN LIC)         54         0.82022         0.5694           D(C02 IN LIC) does not Granger Cause D(C02 IN LIC)         54         0.82022         0.5694           D(C02 IN LIC) does not Granger Cause                                                                                                                       | Null hypothesis                                                        | Obs | F-statistic | Probability |
| D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)         0.65823         0.4280           D(RGDP_HIC) does not Granger Cause D(CO2_IN_HIC)         55         7.53960         0.0085           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_HIC)         33         5.82134         0.0222           D(CO2_IN_HIC) does not Granger Cause D(RGDP_HIC)         33         5.82134         0.0222           D(CO2_IN_HIC) does not Granger Cause D(RGDP_LIC)         4.43160         0.4388           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)         54         0.05937         0.8085           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)         0.002572         0.8732         0.8732           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         53         0.06484         0.8007           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSI_IFUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSI_IFUEL_CONS_H                                                                                                                       | D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_HIC)                     | 55  | 0.07278     | 0.7884      |
| D(RGDP_HIC) does not Granger Cause D(CO2_IN_HIC)         55         7.53960         0.0083           D(CO2_IN_HIC) does not Granger Cause D(RGDP_HIC)         0.05264         0.8573           D(RGDP_LIC) does not Granger Cause D(RGDP_IIC)         33         5.82134         0.0222           D(CO2_IN_HIC) does not Granger Cause D(RGDP_LIC)         4.45160         0.0438           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)         54         0.05937         0.8085           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)         0.0084         0.4048           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)         0.70944         0.4048           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         53         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732         0.66484           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.5694           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL FUEL CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42 <td>D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)</td> <td></td> <td>0.63823</td> <td>0.4280</td> | D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)                     |     | 0.63823     | 0.4280      |
| D(CO2 IN HIC) does not Granger Cause D(RGDP_HIC)         0.03264         0.8573           D(RGDP_LIC) does not Granger Cause D(CO2 IN_HIC)         33         5.82134         0.0222           D(CO2 IN HIC) does not Granger Cause D(RGDP_LIC)         4.43160         0.0438           D(FOSSIL FUEL CONS_HIC) does not Granger Cause D(CO2 IN_HIC)         54         0.05937         0.8085           D(CO2 IN HIC) does not Granger Cause D(FOSSIL, FUEL CONS_HIC)         1.84910         0.1799           D(FOSSIL FUEL CONS_LIC) does not Granger Cause D(CO2 IN_HIC)         42         0.07295         0.7885           D(CO2 IN HIC) does not Granger Cause D(CO2 IN_HIC)         55         0.07410         0.7865           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         0.02572         0.8732           D(RGDP HIC) does not Granger Cause D(CO2 IN_LIC)         1.91558         0.1768           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         1.91558         0.1768           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         1.91558         0.1768           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         54         0.82022         0.3694           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         1.91558         0.1768           D(CO2 IN_LIC) does not Granger Cause D(CO2 IN_LIC)         0.05082         0.8228                                                                                                                    | D(RGDP_HIC) does not Granger Cause D(CO2_IN_HIC)                       | 55  | 7.53960     | 0.0083      |
| D(RGDP_LIC) does not Granger Cause D(CO2_IN_HIC)         33         5.82134         0.0222           D(CO2_IN_HIC) does not Granger Cause D(RGDP_LIC)         4.43160         0.0438           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)         54         0.05937         0.8085           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL FUEL_CONS_HIC)         1.84910         0.1799           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Grange                                                                                            | D(CO2_IN_HIC) does not Granger Cause D(RGDP_HIC)                       |     | 0.03264     | 0.8573      |
| D(CO2_IN_HIC) does not Granger Cause D(RGDP_LIC)         4.43160         0.0438           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)         54         0.05937         0.8085           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.84910         0.1799           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(ROD_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732           D(RGDP_LIC) does not Granger Cause D(RGDP_LIC)         1.91558         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.05082         0.8228         0.83282                                                                                              | D(RGDP_LIC) does not Granger Cause D(CO2_IN_HIC)                       | 33  | 5.82134     | 0.0222      |
| D(FOSSIL FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)         54         0.05937         0.8085           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.84910         0.1799           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(CO2_IN_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         0.02572         0.8732           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(ROSP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(ROSP_HIC)         36         0.4308         0.4508           D(ROSP_HIC) does not Granger                                                                                                     | D(CO2_IN_HIC) does not Granger Cause D(RGDP_LIC)                       |     | 4.43160     | 0.0438      |
| D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.84910         0.1799           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.05082         0.8228         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGD                                                                                                     | D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_HIC)           | 54  | 0.05937     | 0.8085      |
| D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_HIC)         42         0.07295         0.7885           D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732           D(RGDP_LIC) does not Granger Cause D(RGDP_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.01305         0.9095           D(RGDP_HIC) does not Gr                                                                                                              | D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)           |     | 1.84910     | 0.1799      |
| D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.70944         0.4048           D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(RGDP_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         42         0.05082         0.8228           D(RODP_HIC) does not Granger Cause D(RGDP_HIC)         36         0.05443         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(ROSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(RODP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.10696         0.7454                                                                                                               | D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_HIC)           | 42  | 0.07295     | 0.7885      |
| D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)         55         0.07410         0.7865           D(CO2_IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732           D(RGDP_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(CO2_IN_LIC)         0.05082         0.8228         0.0823         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582         0.8605         0.8130         0.4308         0.4308         0.4308         0.4308         0.60555         0.8130         0.60555         0.8130         0.80555         0.8130         0.80555         0.8130         0.80555 <td>D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)</td> <td></td> <td>0.70944</td> <td>0.4048</td>                     | D(CO2_IN_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)           |     | 0.70944     | 0.4048      |
| D(C02_IN_LIC) does not Granger Cause D(RGDP_HIC)         0.02572         0.8732           D(RGDP_LIC) does not Granger Cause D(C02_IN_LIC)         33         0.06484         0.8007           D(C02_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91558         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(C02_IN_LIC)         54         0.82022         0.3694           D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         42         1.98690         0.1666           D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.82828           D(RGDP_LIC) does not Granger Cause D(RODP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01305         0.9095           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_HIC) does not Granger C                                                                                                     | D(RGDP_HIC) does not Granger Cause D(CO2_IN_LIC)                       | 55  | 0.07410     | 0.7865      |
| D(RGDP_LIC) does not Granger Cause D(CO2_IN_LIC)         33         0.06484         0.8007           D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.01305         0.9095           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.10696         0.7454           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.10696         0.7454           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUE                                                                                   | D(CO2_IN_LIC) does not Granger Cause D(RGDP_HIC)                       |     | 0.02572     | 0.8732      |
| D(C02_IN_LIC) does not Granger Cause D(RGDP_LIC)         1.91358         0.1768           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         0.63618         0.4308           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01305         0.9095           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)         42         0.01567         0.9013           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC                                                                                                     | D(RGDP_LIC) does not Granger Cause D(CO2_IN_LIC)                       | 33  | 0.06484     | 0.8007      |
| D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)         54         0.82022         0.3694           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         0.63618         0.4308           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.01305         0.9095           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.10696         0.7454           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         31         0.22698         0.6375           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         1.91980         0.1768           D(FOSSIL_FUEL_CONS_LIC) doe                                                                                   | D(CO2_IN_LIC) does not Granger Cause D(RGDP_LIC)                       |     | 1.91358     | 0.1768      |
| D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.02646         0.3158           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(C02_IN_LIC)         42         1.98690         0.1666           D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         0.63618         0.4308           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.01305         0.9095           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         31         0.22698         0.6375           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)         31         0.22698         0.6375           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         1.91980         0.1768           D(FOSSIL_FUEL_CONS_LI                                                                                            | D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(CO2_IN_LIC)           | 54  | 0.82022     | 0.3694      |
| D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)         42         1.98690         0.1666           D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.05082         0.8228           D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         0.63618         0.4308           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01305         0.9095           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01305         0.9095           D(RGDP_HIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         31         0.22698         0.6375           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         1.91980         0.1768           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)         31         0.22698         0.6375           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         1.91980         0.1768           D(FOSSIL_FUEL_CONS_LIC) does not Grange                                                                                                     | D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONSHIC)            |     | 1.02646     | 0.3158      |
| D(C02_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.050820.8228D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)360.032430.8582D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)0.636180.4308D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)540.056550.8130D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.013050.9095D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)420.015570.9013D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.56890.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(CO2_IN_LIC)           | 42  | 1.98690     | 0.1666      |
| D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)         36         0.03243         0.8582           D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)         0.63618         0.4308           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)         54         0.05655         0.8130           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.01305         0.9095           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)         42         0.01557         0.9013           D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.10696         0.7454           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)         32         0.22566         0.6383           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         0.33208         0.5689           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)         31         0.22698         0.6375           D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         1.91980         0.1768           D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)         42         0.40894         0.5262           D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)         0.06925         0.7938                                                                                                                                                                                                                        | D(CO2_IN_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)           |     | 0.05082     | 0.8228      |
| D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)0.636180.4308D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)540.056550.8130D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.013050.9095D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)420.015570.9013D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D(RGDP_LIC) does not Granger Cause D(RGDP_HIC)                         | 36  | 0.03243     | 0.8582      |
| D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)540.056550.8130D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.013050.9095D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)420.015570.9013D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D(RGDP_HIC) does not Granger Cause D(RGDP_LIC)                         |     | 0.63618     | 0.4308      |
| D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.013050.9095D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)420.015570.9013D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_HIC)             | 54  | 0.05655     | 0.8130      |
| D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)420.015570.9013D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)             |     | 0.01305     | 0.9095      |
| D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.106960.7454D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_HIC)             | 42  | 0.01557     | 0.9013      |
| D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)320.225660.6383D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D(RGDP_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)             |     | 0.10696     | 0.7454      |
| D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)0.332080.5689D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(RGDP_LIC)             | 32  | 0.22566     | 0.6383      |
| D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)310.226980.6375D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONSHIC)              |     | 0.33208     | 0.5689      |
| D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)1.919800.1768D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(RGDP_LIC)             | 31  | 0.22698     | 0.6375      |
| D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC)420.408940.5262D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)0.069250.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D(RGDP_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC)             |     | 1.91980     | 0.1768      |
| D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC) 0.06925 0.7938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D(FOSSIL_FUEL_CONS_LIC) does not Granger Cause D(FOSSIL_FUEL_CONS_HIC) | 42  | 0.40894     | 0.5262      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D(FOSSIL_FUEL_CONS_HIC) does not Granger Cause D(FOSSIL_FUEL_CONS_LIC) |     | 0.06925     | 0.7938      |

Note. Source: Compilation from Eviews 9

The outcome of the result depicts that RGDP in LIC granger causes CO<sub>2</sub> in HIC and CO<sub>2</sub> in HIC granger cause RGDP in LIC. Thus, there exists a bi-directional causality between RGDP and CO2 in HIC and LIC. The p-values coefficient showed that RGDP in LIC granger cause  $CO_2$  in HIC is 2.2% and  $CO_2$  in HIC granger cause RGDP in LIC is 4.3%, respectively. Similarly, the coefficient in Table 4 showed that increasing contribution of CO<sub>2</sub> in HIC does not necessarily affect the CO<sub>2</sub> in LIC vice versa with p-values of 78.8% and 42.8% in HIC and LIC. Hence the CO<sub>2</sub> concentration debate does not hold for HIC and LIC. Hence, from Figure 1, the result implies that CO<sub>2</sub> emission in HIC does not determine the CO<sub>2</sub> emissions level in LIC. This also could imply that each region is an independent contributor to CO<sub>2</sub> emissions. Also, the RGDP relationship in HIC and LIC showed no pairwise, and the inter-regional causality amongst FFC and CO<sub>2</sub> in HIC and LIC is basically unrelated and there is no causality. From the result, this study may be far-fetched to determine the technology transfergrowth argument in that HIC does not granger cause growth in LIC with p-values of 85.8% and 43.0%, respectively.

The policy implication of the results in **Table 4** remains that the GDP-climate change nexus is still a subject of contention. The global economy could achieve jointly achieve a low carbon economy as well as high economic growth this is based on their mutually non-exclusive nature. A drastic effort through a robust conscious energy conservation plan and energy-efficient technology is required to insulate the global economy from the inevitable super-wicked phenomenon in order to guarantee an inclusive and sustainable environmenteconomic growth path. It is obvious that the result does not undermine the existence of either the super-wicked problem or the threat of climate change-time is running out. The study captured the possibilities of achieving high growth with a low carbon economy regime. Hence, the study recommends a new global techno-economic paradigm model that could achieve a high growth rate and low carbon economy simultaneously.

# What Is the Long-Run Relationship Between Climate Change and Growth in HIC and LIC?

#### **Co-integration**

Johansen system co-integration test was further employed to investigate the existence of a long-run relationship between CO<sub>2</sub>, RGDP, and FFC in HIC and LIC. **Table 5** provides a summary of the long-run relationship existing pairwise,  $CO_2 \rightarrow RGDP$  HIC,  $CO_2 \rightarrow RGDP$  LIC, FFC $\rightarrow RGDP$  HIC, FFC $\rightarrow RGDP$  LIC, and  $CO_2 \rightarrow FFC$  LIC.

From **Table 5**, the coefficient of the trace statistic and max-eigen and its corresponding p-values showed that long-

| Variables                      | Trace statistic | Probability | Max-eigen statistic | Probability |
|--------------------------------|-----------------|-------------|---------------------|-------------|
|                                | 10.72120        | 0.4136      | 8.418371            | 0.5572      |
| CO <sub>2</sub> →RGDP HIC      | 2.302834        | 0.1291      | 2.302834            | 0.1291      |
|                                | 12.82744        | 0.2520      | 12.01787            | 0.2389      |
| CO2→RGDP LIC                   | 0.809562        | 0.3682      | 0.809562            | 0.3682      |
|                                | 8.723401        | 0.6084      | 5.933146            | 0.8230      |
| $CO_2HIC \rightarrow CO_2 LIC$ | 2.790254        | 0.0948      | 2.790254            | 0.0948      |
|                                | 18.18726        | 0.0535      | 14.20245            | 0.1277      |
| FFC→RGDP HIC                   | 3.984810        | 0.0459      | 3.984810            | 0.0459      |
|                                | 5.019888        | 0.9342      | 4.995498            | 0.9029      |
| FFC→RGDP LIC                   | 0.024391        | 0.8758      | 0.024391            | 0.8758      |
|                                | 6.309485        | 0.8439      | 5.099993            | 0.8950      |
| $CO_2 \rightarrow FFC$ HIC     | 1.209492        | 0.2714      | 1.209492            | 0.2714      |
|                                | 10.95863        | 0.3927      | 8.436678            | 0.5552      |
| $CO_2 \rightarrow FFC LIC$     | 2.521955        | 0.1123      | 2.521955            | 0.1123      |

#### Table 5. Co-integration

Note. Source: Compilation from Eviews 9

run relationship is absent. The p-values in **Table 5** were greater than 5%. Thus, the study accepts the null hypothesis of the non-existence of cointegration. The policy implication of this result in **Table 5** connotes that reduction in  $CO_2$  cannot truncate long-run RGDP goal and fossil fuel energy consumption.

# CONCLUSION, POLICY IMPLICATION AND RECOMMENDATION

Firstly, this paper observes unidirectional causality between RGDP and CO<sub>2</sub> in HIC. Conversely, there is an absence of causality between RGDP and CO<sub>2</sub> in LIC. Secondly, this study accepts the null hypothesis that FFC does not granger cause CO2 in HIC and LIC. Thirdly, the paper rejects the null hypothesis that RGDP in LIC does not granger cause CO<sub>2</sub> in HIC and vice versa. The result showed a bi-directional as well as an inter-country relationship between RGDP and CO<sub>2</sub>. Fourthly, based on the findings of this paper, the inter-regional causality between CO<sub>2</sub> in HIC and CO<sub>2</sub> in LIC could not be empirically ascertained. Fifthly, the study found mixed inter-regional and a unidirectional causality between FFC and CO<sub>2</sub>. Specifically, the result showed that CO<sub>2</sub> in HIC granger causes FFC in LIC. In terms of interregional causality, there are empirical evidence that showed that RGDP in HIC granger cause RGDP in LIC.

Based on the foregoing empirical evidence, this paper showed that the nexus between FFC,  $CO_2$ , and RGDP is weak in HIC and LIC except for inter-regional evidence. The weak existence of casualty between FFC,  $CO_2$  emissions, and RGDP implies that altering the global energy mix, i.e., transmission from fossil-fuel dependency to a green economy should be sensitive without a drastic disruption in the productive structure (model) of the global economy, especially the developing economies.

This study aligns with the conclusion of Kasperowicz (2015), which posits that there is a long-run negative relationship between GDP and  $CO_2$ , but only results from HIC support the short-run positive relationship between GDP and  $CO_2$ . In this study, the RGDP granger causes  $CO_2$  in HIC. Thus, higher RGDP leads to higher  $CO_2$  in HIC. But the short-run positive relationship between GDP and  $CO_2$  does not hold for LIC.

Evidence provided by Lv et al. (2019) suggestively implies that the connecting link between FFC, CO<sub>2</sub>, and RGDP remains a regional problem. The theoretical implication of the result is that the EKC theory based on the result is regional. The paper showed that in HIC, CO<sub>2</sub>, and RGGP as an increasing relationship. Unlike in LIC, in the strictest sense, EKC could not hold. Hence, the policy implication is that the superwicked phenomenon is somewhat regional. Perhaps a countryspecific issue. This implies that heterogeneity issues should be properly understood in designing mitigation and NDCs targets.

This paper, therefore, recommends that inclusive mitigation (climate change) policy that supports the heterogeneous structure of the global economy should be enforced to deepen the campaign on meeting the net-zero emission target of 2050. Whilst, mitigation, and adaptation are often a challenge for the global economy, especially for LIC, the traces of inter-regional causality between RGDP in LIC and  $CO_2$  in HIC is a precondition to a long-run presence of a regional super-wicked problem.

This study, therefore, supports IPCC and WMO direction for climate change targeting and policy design to secure the future environment and achieve a sustainable, inclusive, and green economy. Also, this study, recommends, inclusive mitigation and adaptation that would not threaten the shortterm growth model but that guarantee global economic stability should be conceptualized and administered. This study is limited by adequate data for a robust regionalmathematical simulation of the causality that sustains the FFC, CO<sub>2</sub>, and RGDP nexus.

We encourage to consider a sectoral composition in the FFC,  $CO_2$ , and RGDP linkage. In this paper, we assumed away the activities of the sectors in the HIC and LIC. Thus, in the future, scholars should consider nation-wide shocks and causality questions to foster the FFC,  $CO_2$  emission, and RGDP nexus and the debate surrounding the super wicked problem.

**Author contributions:** All co-authors have involved in all stages of this study while preparing the final version. They all agree with the results and conclusions.

Funding: No external funding is received for this article.

**Declaration of interest:** The authors declare that they have no competing interests.

**Ethics approval and consent to participate:** Not applicable. **Availability of data and materials:** All data generated or analyzed during this study are available for sharing when appropriate request is directed to corresponding author.

## REFERENCES

- Barabasi, A.-L. (2003). *Linked: How everything is connected to everything else and what it means for business, science, and everyday life.* USA: Plume.
- Cederborg, J. and Snobohm, S. (2016). Is there a relationship between economic growth and carbon dioxide emissions? Available at: https://www.diva-portal.org/smash/get/diva2 :1076315/FULLTEXT01.pd#:~:text=The%20empirical%20r esult%20of%20the,to%20increasing%20carbon%20dioxid e%20emissions
- Conklin, J. (2006). *Wicked problems and social complexity*. Available at: https://cognexus.org/wpf/wickedproblems. pdf
- Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. *Econometrica*, 37(3), 424-438. https://doi.org/10.2307/ 1912791
- Grobman, G. M. (2005). Complex theory: A new way to look at organizational change. *Public Administration Quarterly*, 29(3/4), 350-382.
- Gupta, J. (2014). The history of global climate governance. Cambridge University Press. https://doi.org/10.1017/ CBO9781139629072
- Hallegate, S., Fay, M. and Vogt-Schilb, A. (2013). Green industrial: When and how. *The World bank* 6677. https://doi.org/10.1596/1813-9450-6677
- Head, B. W. (2008). Wicked problems in public policy. *Public Policy*, 3(2), 101-118.
- Hertel, T. W. and Rosch, S. D. (2010). Climate change, agriculture, and poverty. *Applied Economic Perspectives and Policy*, 32(3), 355-385. https://doi.org/10.1093/aepp/ ppq016
- Incropera, F. P. (2015). *Climate change: A wicked problem*. Cambridge University Press https://doi.org/10.1017/ CBO9781316266274
- IPCC. (2022). *Intergovernmental Panel on Climate Change*. Available at: https://www.ipcc.ch/
- Kasperowicz, R. (2015). Economic growth and CO<sub>2</sub> emissions: The ECM analysis. *Journal of International Studies*, 8(3), 91-98.
- Lazarus, R. J. (2009). Super wicked problems and climate change: Restraining the present to liberate the future. *Georgetown Law Faculty Publications and Other Works. 159.* Available at: https://scholarship.law.georgetown.edu/ facpub/159
- Leichenko, R. and Silva, J. A. (2014). Climate change and poverty: Vulnerability, impacts, and alleviation strategies. *Wiley Interdisciplinary Review: Climate Change*, 5(4), 539-556. https://doi.org/10.1002/wcc.287

- Levin, K., Cashore, B., Bernstein, S. and Auld, G. (2012). Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change. *Policy Sciences*, 45(2), 123-152. https://doi.org/10. 1007/s11077-012-9151-0
- Lv, Z., Chu, A., McAleer, M. and Wong, W. K. (2019). Modelling economic growth, carbon emissions, and fossils fuel consumption in China: Cointegration and multivariate causality. *International Journal of Environment Research and Public Health*, 16(21), 4176. https://doi.org/10.3390/ ijerph16214176
- NASA. (2021). Direct observations confirm that humans are throwing earth's energy budget off balance. Available at: https://climate.nasa.gov/
- Peters, B. G., Jordan, A. and Tosun, J. (2017). Over-reaction and under reaction in climate policy: An institutional analysis. *Journal of Environmental Policy and Planning*, 19(6), 612-624. https://doi.org/10.1080/1523908X.2017.1348225
- Peters, G. B. (2017). What is so wicked about wicked problems? A conceptual analysis and a research program. *Policy and Society*, 36(3), 385-396. https://doi.org/10.1080/14494035. 2017.1361633
- Reid, H. and Swiderska, K. (2008). *Biodiversity, climate change and poverty: Exploring the links*. Available at: https://www.jstor.org/stable/resrep01413?seq=1
- Rittel, H.W.J. and Webber, M. M. (1973). Dilemmas in a general theory of planning. *Policy Sciences*, 4, 155-169. https://doi.org/10.1007/BF01405730
- Rozenberg, J. and Hallegate, S. (2015). The impacts of climate change on poverty in 2030 and the potential from rapid, inclusive, and climate-informed development. *Policy Research Working Paper; No. 7483. World Bank, Washington, DC.* https://doi.org/10.1596/1813-9450-7483
- Simon, H. A. (1962). The architecture of complexity. *Proceedings of the American Philosophical Society*, 106(6), 467-482.
- Skoufias, E. (ed.) (2012). The poverty and welfare impacts of climate change: Quantifying the effects, identifying the adaptation strategies. Washington, DC: The World Bank. https://doi.org/10.1596/978-0-8213-9611-7
- Sun, J. and Yang, K. (2016). The wicked problem of climate change: A new approach based on social mess and fragmentation. *Sustainability*, 8(12), 1312. https://doi.org/ 10.3390/su8121312
- Thornton, P. K., Jones, P. G. and Owiyo, T. (2008). Climate change and poverty in Africa: Mapping hotspots of vulnerability. *African Journal of Agricultural and Resource Economics*, 2, 24-44.
- UNFCCC. (2021). The seeding of climate smart health care. *Bull World Health Organ*, 99, 81-82. https://doi.org/10.2471/ BLT.21.020221
- Unruh, G. C. (2000). Understanding carbon lock-in. *Energy Policy*, 28(12), 817-830. https://doi.org/10.1016/S0301-4215(00)00070-7

Whelton, M. and Ballard, G. (2002). Wicked problems in project definition. In *Proceeding of the X Annual Conference on International Group for Lean Construction*. Porto Alegre, Brazil.

# **APPENDIX** A

## **Table A1.** ADF unit root test – 1

| Null hypothesis: D(CO2_IN_HIC) has a un     | it root     |            |             |              |
|---------------------------------------------|-------------|------------|-------------|--------------|
| Exogenous: Constant, linear trend           |             |            |             |              |
| Lag length: 0 (Automatic-based on SIC, n    | naxlag=10)  |            |             |              |
|                                             |             |            | t-Statistic | Prob.*       |
| Augmented Dickey-Fuller test statistic      |             |            | -6.147537   | 0.0000       |
| Test critical values:                       | 1% level    |            | -4.133838   |              |
|                                             | 5% level    |            | -3.493692   |              |
|                                             | 10% level   |            | -3.175693   |              |
| *MacKinnon (1996) one-sided p-values        |             |            |             |              |
| Augmented Dickey-Fuller test equation       |             |            |             |              |
| Dependent variable: D(CO2_IN_HIC,2)         |             |            |             |              |
| Method: Least squares                       |             |            |             |              |
| Date: 03/31/21 Time: 21:47                  |             |            |             |              |
| Sample (adjusted): 1962 2016                |             |            |             |              |
| Included observations: 55 after adjustments |             |            |             |              |
| Table A2, ADF unit root test – 2            |             |            |             |              |
| Null hypothesis: D(CO2_IN_LIC) has a uni    | t root      |            |             |              |
| Exogenous: Constant, linear trend           |             |            |             |              |
| Lag length: 0 (Automatic-based on SIC, n    | naxlag=10)  |            |             |              |
|                                             | •           |            | t-Statistic | Prob.*       |
| Augmented Dickey-Fuller test statistic      |             |            | -7.322588   | 0.0000       |
| Test critical values:                       | 1% level    |            | -4.133838   |              |
|                                             | 5% level    |            | -3.493692   |              |
|                                             | 10% level   |            | -3.175693   |              |
| *MacKinnon (1996) one-sided p-values        |             |            |             |              |
| Augmented Dickey-Fuller test equation       |             |            |             |              |
| Dependent variable: D(CO2 IN LIC,2)         |             |            |             |              |
| Method: Least squares                       |             |            |             |              |
| Date: 03/31/21 Time: 21:49                  |             |            |             |              |
| Sample (adjusted): 1962 2016                |             |            |             |              |
| Included observations: 55 after adjustments |             |            |             |              |
| Variable                                    | Coefficient | Std. Error | t-Statistic | Prob.        |
| D(CO2_IN_LIC(-1))                           | -1.016439   | 0.138809   | -7.322588   | 0.0000       |
| Table A3 ADE unit root test - 3             |             |            |             |              |
|                                             |             |            |             |              |
| Null hypothesis: D(CO2_IN_HIC) has a un     | it root     |            |             |              |
| Exogenous: Constant, linear trend           | 1 10        |            |             |              |
| Lag length: 0 (Automatic-based on SIC, n    | haxlag=10)  |            |             | <b>D</b> 1 4 |
|                                             |             |            | t-Statistic | Prob.*       |
| Augmented Dickey-Fuller test statistic      |             |            | -6.179120   | 0.0000       |
| Test critical values:                       | 1% level    |            | -4.124265   |              |
|                                             | 5% level    |            | -3.489228   |              |
|                                             | 10% level   |            | -3.173114   |              |
| *MacKinnon (1996) one-sided p-values        |             |            |             |              |
| Augmented Dickey-Fuller test equation       |             |            |             |              |
| Dependent variable: D(CO2_IN_HIC,2)         |             |            |             |              |

Method: Least squares

Date: 03/31/21 Time: 21:52 Sample (adjusted): 1962 2019

Included observations: 58 after adjustments

# **Table A4.** ADF unit root test – 4

| Null Hypothesis: D(RGDP_LIC) has a u     | ınit root    |            |             |        |
|------------------------------------------|--------------|------------|-------------|--------|
| Exogenous: Constant, linear trend        |              |            |             |        |
| Lag length: 0 (Automatic-based on SI     | C, maxlag=9) |            |             |        |
|                                          |              |            | t-Statistic | Prob.* |
| Augmented Dickey-Fuller test statistic   |              |            | -3.728657   | 0.0330 |
| Test critical values:                    | 1% level     |            | -4.234972   |        |
|                                          | 5% level     |            | -3.540328   |        |
|                                          | 10% level    |            | -3.202445   |        |
| *MacKinnon (1996) one-sided p-values     |              |            |             |        |
| Augmented Dickey-Fuller test equation    |              |            |             |        |
| Dependent variable: D(RGDP_LIC,2)        |              |            |             |        |
| Method: Least squares                    |              |            |             |        |
| Date: 03/31/21 Time: 21:53               |              |            |             |        |
| Sample (adjusted): 1984 2019             |              |            |             |        |
| Included observations: 36 after adjustme | ents         |            |             |        |
| Variable                                 | Coefficient  | Std. Error | t-Statistic | Prob.  |
| D(RGDP_LIC(-1))                          | -0.585119    | 0.156925   | -3.728657   | 0.0007 |

# **Table A5.** ADF unit root test – 5

| Null Hypothesis: D(FOSSIL_FUEL_CONS_HIC) has a u  | unit root   |            |              |           |
|---------------------------------------------------|-------------|------------|--------------|-----------|
| Exogenous: Constant                               |             |            |              |           |
| Lag length: 0 (Automatic-based on SIC, maxlag=10) |             |            |              |           |
|                                                   |             |            | t-Statistic  | Prob.*    |
| Augmented Dickey-Fuller test statistic            |             |            | -3.406077    | 0.0150    |
| Test critical values:                             | 1% level    |            | -3.557472    |           |
|                                                   | 5% level    |            | -2.916566    |           |
|                                                   | 10% level   |            | -2.596116    |           |
| *MacKinnon (1996) one-sided p-values              |             |            |              |           |
| Augmented Dickey-Fuller test equation             |             |            |              |           |
| Dependent variable: D(FOSSIL_FUEL_CONS_HIC,2)     |             |            |              |           |
| Method: Least squares                             |             |            |              |           |
| Date: 04/01/21 Time: 21:50                        |             |            |              |           |
| Sample (adjusted): 1962 2015                      |             |            |              |           |
| Included observations: 54 after adjustments       |             |            |              |           |
| Variable                                          | Coefficient | Std. Error | t-Statistic  | Prob.     |
| D(FOSSIL_FUEL_CONS_HIC(-1))                       | -0.502850   | 0.147633   | -3.406077    | 0.0013    |
| C                                                 | -0.160852   | 0.067553   | -2.381104    | 0.0210    |
| R-squared                                         | 0.182407    | Mean dep   | endent var   | -0.036828 |
| Adjusted R-squared                                | 0.166685    | S.D. depe  | endent var   | 0.458040  |
| S.E. of regression                                | 0.418127    | Akaike inf | o criterion  | 1.130272  |
| Sum squared resid                                 | 9.091186    | Schwarz    | criterion    | 1.203938  |
| Log likelihood                                    | -28.51736   | Hannan-Q   | uinn criter. | 1.158683  |
| F-statistic                                       | 11.60136    | Durbin-W   | atson stat   | 1.686204  |
| Prob(F-statistic)                                 | 0.001278    |            |              |           |

# **Table A6.** ADF unit root test – 6

| Null Hypothesis: D(FOSSIL_FUEL_CONS_LIC) has a   | a unit root |            |              |           |
|--------------------------------------------------|-------------|------------|--------------|-----------|
| Exogenous: Constant, linear trend                |             |            |              |           |
| Lag length: 0 (Automatic-based on SIC, maxlag=9) |             |            |              |           |
|                                                  |             |            | t-Statistic  | Prob.*    |
| Augmented Dickey-Fuller test statistic           |             |            | -6.235634    | 0.0000    |
| Test critical values:                            | 1% level    |            | -4.192337    |           |
|                                                  | 5% level    |            | -3.520787    |           |
|                                                  | 10% level   |            | -3.191277    |           |
| *MacKinnon (1996) one-sided p-values             |             |            |              |           |
| Augmented Dickey-Fuller test equation            |             |            |              |           |
| Dependent variable: D(FOSSIL_FUEL_CONS_LIC,2)    |             |            |              |           |
| Method: Least squares                            |             |            |              |           |
| Date: 04/01/21 Time: 21:52                       |             |            |              |           |
| Sample (adjusted): 1973 2014                     |             |            |              |           |
| Included observations: 42 after adjustments      |             |            |              |           |
| Variable                                         | Coefficient | Std. Error | t-Statistic  | Prob.     |
| D(FOSSIL_FUEL_CONS_LIC(-1))                      | -1.003265   | 0.160892   | -6.235634    | 0.0000    |
| C                                                | 1.639120    | 1.230909   | 1.331634     | 0.1907    |
| @TREND("1960")                                   | -0.061731   | 0.035015   | -1.762971    | 0.0857    |
| R-squared                                        | 0.499300    | Mean dep   | endent var   | -0.130644 |
| Adjusted R-squared                               | 0.473623    | S.D. depe  | endent var   | 3.651308  |
| S.E. of regression                               | 2.649091    | Akaike inf | o criterion  | 4.855060  |
| Sum squared resid                                | 273.6897    | Schwarz    | criterion    | 4.979179  |
| Log likelihood                                   | -98.95625   | Hannan-Q   | uinn criter. | 4.900554  |
| F-statistic                                      | 19.44547    | Durbin-W   | latson stat  | 1.985791  |
| Prob(F-statistic)                                | 0.000001    |            |              |           |
|                                                  |             |            |              |           |

# Table A7. VAR lag order selection criteria – 1

| Endogenous va     | riables: D(CO2_IN                 | _HIC) D(RGDP_HIC)       |           |           |           |           |  |
|-------------------|-----------------------------------|-------------------------|-----------|-----------|-----------|-----------|--|
| Exogenous vari    | Exogenous variables: C            |                         |           |           |           |           |  |
| Date: 04/02/21    | Time: 02:10                       |                         |           |           |           |           |  |
| Sample: 1960 2    | 021                               |                         |           |           |           |           |  |
| Included obser    | vations: 51                       |                         |           |           |           |           |  |
| Lag               | LogL                              | LR                      | FPE       | AIC       | SC        | HQ        |  |
| 0                 | -2146.905                         | NA                      | 1.36e+34  | 84.27077  | 84.34652  | 84.29972  |  |
| 1                 | -2136.921                         | 18.79177*               | 1.08e+34* | 84.03613* | 84.26341* | 84.12298* |  |
| 2                 | -2135.149                         | 3.196688                | 1.17e+34  | 84.12350  | 84.50229  | 84.26825  |  |
| 3                 | -2133.794                         | 2.337847                | 1.31e+34  | 84.22723  | 84.75754  | 84.42988  |  |
| 4                 | -2132.839                         | 1.573448                | 1.48e+34  | 84.34663  | 85.02845  | 84.60718  |  |
| 5                 | -2131.872                         | 1.517188                | 1.67e+34  | 84.46557  | 85.29890  | 84.78401  |  |
| *Indicates lag or | rder selected by the              | criterion               |           |           |           |           |  |
| LR: sequential n  | nodified LR test stat             | tistic (each test at 5% | level)    |           |           |           |  |
| FPE: Final predi  | ction error                       |                         |           |           |           |           |  |
| AIC: Akaike info  | AIC: Akaike information criterion |                         |           |           |           |           |  |
| SC: Schwarz info  | ormation criterion                |                         |           |           |           |           |  |
| HQ: Hannan-Qu     | inn information cr                | iterion                 |           |           |           |           |  |
|                   |                                   |                         |           |           |           |           |  |

**Table A8.** VAR lag order selection criteria – 2

| Endogenous                                     | variables: D(CO2_IN_LIC) l    | D(RGDP_LIC)            |           |           |           |
|------------------------------------------------|-------------------------------|------------------------|-----------|-----------|-----------|
| Exogenous va                                   | ariables: C                   |                        |           |           |           |
| Date: 04/02/2                                  | 1 Time: 02:15                 |                        |           |           |           |
| Sample: 1960                                   | 2021                          |                        |           |           |           |
| Included obs                                   | ervations: 29                 |                        |           |           |           |
| Lag                                            | LogL                          | LR                     | FPE       | AIC       | SC        |
| 0                                              | -1029.873                     | NA                     | 2.76e+28  | 71.16364  | 71.25794  |
| 1                                              | -1016.566                     | 23.86055*              | 1.46e+28* | 70.52179* | 70.80468* |
| 2                                              | -1015.210                     | 2.244587               | 1.76e+28  | 70.70413  | 71.17561  |
| 3                                              | -1010.497                     | 7.150103               | 1.69e+28  | 70.65499  | 71.31506  |
| 4                                              | -1009.935                     | 0.776081               | 2.20e+28  | 70.89204  | 71.74071  |
| 5                                              | -1004.357                     | 6.924079               | 2.04e+28  | 70.78324  | 71.82049  |
| *Indicates lag                                 | order selected by the criteri | on                     |           |           |           |
| LR: sequential                                 | modified LR test statistic (e | each test at 5% level) |           |           |           |
| FPE: Final pre                                 | diction error                 |                        |           |           |           |
| AIC: Akaike in                                 | formation criterion           |                        |           |           |           |
| SC: Schwarz in                                 | nformation criterion          |                        |           |           |           |
|                                                |                               |                        |           |           |           |
| Table A9. VAR lag order selection criteria – 3 |                               |                        |           |           |           |
| Endogenous                                     | variables: D(CO2_IN_HIC)      | D(FOSSIL_FUEL_CONS_    | HIC)      |           |           |
| Exogenous va                                   | ariables: C                   |                        |           |           |           |

| Date: 04/03/2  | 21 Time: 16:53         |                         |           |           |           |           |  |  |
|----------------|------------------------|-------------------------|-----------|-----------|-----------|-----------|--|--|
| Sample: 1960   | Sample: 1960 2021      |                         |           |           |           |           |  |  |
| Included obs   | ervations: 50          |                         |           |           |           |           |  |  |
| Lag            | LogL                   | LR                      | FPE       | AIC       | SC        | HQ        |  |  |
| 0              | -727.1275              | NA                      | 1.59e+10  | 29.16510  | 29.24158* | 29.19422  |  |  |
| 1              | -720.4437              | 12.56547*               | 1.43e+10* | 29.05775* | 29.28719  | 29.14512* |  |  |
| 2              | -718.6832              | 3.168930                | 1.56e+10  | 29.14733  | 29.52973  | 29.29295  |  |  |
| 3              | -714.2705              | 7.589797                | 1.54e+10  | 29.13082  | 29.66619  | 29.33469  |  |  |
| 4              | -713.8733              | 0.651510                | 1.79e+10  | 29.27493  | 29.96326  | 29.53705  |  |  |
| 5              | -709.1071              | 7.435257                | 1.75e+10  | 29.24428  | 30.08557  | 29.56465  |  |  |
| *Indicates lag | order selected by the  | criterion               |           |           |           |           |  |  |
| LR: sequentia  | l modified LR test sta | tistic (each test at 5% | level)    |           |           |           |  |  |
| FPE: Final pre | ediction error         |                         |           |           |           |           |  |  |
| AIC: Akaike in | nformation criterion   |                         |           |           |           |           |  |  |
| SC: Schwarz i  | nformation criterion   |                         |           |           |           |           |  |  |
| HQ: Hannan-    | Quinn information cr   | iterion                 |           |           |           |           |  |  |
|                |                        |                         |           |           |           |           |  |  |

# **Table A10.** VAR lag order selection criteria – 4

| Endogenous va                     | Endogenous variables: D(CO2_IN_LIC) D(FOSSIL_FUEL_CONS_LIC) |                         |           |           |           |           |  |
|-----------------------------------|-------------------------------------------------------------|-------------------------|-----------|-----------|-----------|-----------|--|
| Exogenous var                     | iables: C                                                   |                         |           |           |           |           |  |
| Date: 04/03/21                    | Time: 16:54                                                 |                         |           |           |           |           |  |
| Sample: 1960 2                    | 021                                                         |                         |           |           |           |           |  |
| Included obser                    | vations: 40                                                 |                         |           |           |           |           |  |
| Lag                               | LogL                                                        | LR                      | FPE       | AIC       | SC        | HQ        |  |
| 0                                 | -546.6210                                                   | NA*                     | 2.81e+09* | 27.43105* | 27.51549* | 27.46158* |  |
| 1                                 | -545.5715                                                   | 1.941529                | 3.25e+09  | 27.57858  | 27.83191  | 27.67017  |  |
| 2                                 | -542.9024                                                   | 4.671004                | 3.49e+09  | 27.64512  | 28.06734  | 27.79778  |  |
| 3                                 | -542.4915                                                   | 0.677992                | 4.19e+09  | 27.82457  | 28.41568  | 28.03830  |  |
| *Indicates lag or                 | rder selected by the                                        | criterion               |           |           |           |           |  |
| LR: sequential n                  | nodified LR test stat                                       | tistic (each test at 5% | level)    |           |           |           |  |
| FPE: Final prediction error       |                                                             |                         |           |           |           |           |  |
| AIC: Akaike information criterion |                                                             |                         |           |           |           |           |  |
| SC: Schwarz infe                  | ormation criterion                                          |                         |           |           |           |           |  |
| HQ: Hannan-Qu                     | inn information cri                                         | iterion                 |           |           |           |           |  |

## Table A11. VAR lag order selection criteria – 5

| Endogenou                                                 | s variables: D(RGDP_l                  | HIC) D(FOSSIL_FUEL      | _CONS_HIC) |           |           |           |  |
|-----------------------------------------------------------|----------------------------------------|-------------------------|------------|-----------|-----------|-----------|--|
| Exogenous                                                 | variables: C                           | · · · –                 |            |           |           |           |  |
| Date: 04/03                                               | /21 Time: 16:59                        |                         |            |           |           |           |  |
| Sample: 196                                               | 50 2021                                |                         |            |           |           |           |  |
| Included ob                                               | servations: 50                         |                         |            |           |           |           |  |
| Lag                                                       | LogL                                   | LR                      | FPE        | AIC       | SC        | HQ        |  |
| 0                                                         | -1444.867                              | NA                      | 4.67e+22   | 57.87469  | 57.95117* | 57.90381* |  |
| 1                                                         | -1439.821                              | 9.487852*               | 4.48e+22*  | 57.83282* | 58.06226  | 57.92019  |  |
| 2                                                         | -1437.720                              | 3.780105                | 4.84e+22   | 57.90882  | 58.29122  | 58.05444  |  |
| 3                                                         | -1434.361                              | 5.777522                | 4.98e+22   | 57.93446  | 58.46982  | 58.13833  |  |
| 4                                                         | -1433.570                              | 1.297910                | 5.69e+22   | 58.06280  | 58.75113  | 58.32492  |  |
| 5                                                         | -1432.730                              | 1.310992                | 6.50e+22   | 58.18919  | 59.03048  | 58.50955  |  |
| *Indicates la                                             | g order selected by the                | criterion               |            |           |           |           |  |
| LR: sequenti                                              | al modified LR test stat               | tistic (each test at 5% | level)     |           |           |           |  |
| FPE: Final p                                              | rediction error                        |                         |            |           |           |           |  |
| AIC: Akaike                                               | information criterion                  |                         |            |           |           |           |  |
| SC: Schwarz                                               | information criterion                  |                         |            |           |           |           |  |
| HQ: Hannan                                                | HQ: Hannan-Quinn information criterion |                         |            |           |           |           |  |
|                                                           |                                        |                         |            |           |           |           |  |
| Table A12. VAR lag order selection criteria – 6           |                                        |                         |            |           |           |           |  |
| Endogenous variables: D(RGDP_LIC) D(FOSSIL_FUEL_CONS_LIC) |                                        |                         |            |           |           |           |  |

FPE

6.54e+20

1.47e+20\*

1.65e+20

AIC

53.60469

52.11401\*

52.22217

SC

53.69811

52.39425\*

52.68924

HQ

53.63458

52.20366\*

52.37159

SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

LogL

-802.0704

-775.7102

-773.3326

LR: sequential modified LR test statistic (each test at 5% level)

\*Indicates lag order selected by the criterion

LR

NA

47.44845\*

3.962643

Exogenous variables: C Date: 04/03/21 Time: 17:00

FPE: Final prediction error AIC: Akaike information criterion

Sample: 1960 2021 Included observations: 30

Lag

0

1

2

# **Table A13.** Cointegration test – 1

| Date: 04/03/21 Time: 16         | 5:07                                  |                |                |         |
|---------------------------------|---------------------------------------|----------------|----------------|---------|
| Sample (adjusted): 1962         | 2016                                  |                |                |         |
| <b>Included observations: 5</b> | 5 after adjustments                   |                |                |         |
| Trend assumption: Quad          | lratic deterministic trend            |                |                |         |
| Series: CO2_IN_HIC RGD          | P_HIC                                 |                |                |         |
| Lags interval (in first dif     | ferences): 1 to 1                     |                |                |         |
| Unrestricted co-integratio      | n rank test (trace)                   |                |                |         |
| Hypothesized                    |                                       | Trace          | 0.05           |         |
| No. of CE(s)                    | Eigenvalue                            | Statistic      | Critical value | Prob.** |
| None                            | 0.141923                              | 10.72120       | 18.39771       | 0.4136  |
| At most 1                       | 0.041005                              | 2.302834       | 3.841466       | 0.1291  |
| Trace test indicates no co-     | integration at the 0.05 level         |                |                |         |
| *Denotes rejection of the h     | hypothesis at the 0.05 level          |                |                |         |
| **MacKinnon-Haug-Miche          | elis (1999) p-values                  |                |                |         |
| Unrestricted co-integratio      | ntion rank test (maximum eigenval     | ue)            |                |         |
| Hypothesized                    |                                       | Max-Eigen      | 0.05           |         |
| No. of CE(s)                    | Eigenvalue                            | Statistic      | Critical value | Prob.** |
| None                            | 0.141923                              | 8.418371       | 17.14769       | 0.5572  |
| At most 1                       | 0.041005                              | 2.302834       | 3.841466       | 0.1291  |
| Max-eigenvalue test indica      | ates no co-integration at the 0.05 le | evel           |                |         |
| *Denotes rejection of the h     | nypothesis at the 0.05 level          |                |                |         |
| **MacKinnon-Haug-Miche          | elis (1999) p-values                  |                |                |         |
| Unrestricted co-integratin      | g coefficients (normalized by b'*S1   | 1*b=I):        |                |         |
| CO2_IN_HIC                      | RGDP_HIC                              |                |                |         |
| 5.49E-07                        | 1.00E-12                              |                |                |         |
| 1.13E-06                        | -1.24E-13                             |                |                |         |
| Unrestricted adjustment co      | oefficients (alpha):                  |                |                |         |
| D(CO2_IN_HIC)                   | -48742.84                             | -42813.16      |                |         |
| D(RGDP_HIC)                     | -1.59E+11                             | -1.98E+10      |                |         |
| 1 Co-integrating equation       | (\$):                                 | Log likelihood | -2290.123      |         |
| Normalized co-integrating       | g coefficients (standard error in par | entheses)      |                |         |
| CO2_IN_HIC                      | RGDP_HIC                              |                |                |         |
| 1.000000                        | 1.82E-06                              |                |                |         |
|                                 | (6.0E-07)                             |                |                |         |
| Adjustment coefficients (s      | tandard error in parentheses)         |                |                |         |
| D(CO2_IN_HIC)                   | -0.026775                             |                |                |         |
|                                 | (0.01888)                             |                |                |         |
| D(RGDP_HIC)                     | -87368.47                             |                |                |         |
|                                 | (31319.4)                             |                |                |         |

# Table A14. Low-income countries

| Date: 04/03/21 Tin    | me: 16:10                     |                    |           |           |           |
|-----------------------|-------------------------------|--------------------|-----------|-----------|-----------|
| Sample: 1960 2021     |                               |                    |           |           |           |
| Included observati    | ons: 33                       |                    |           |           |           |
| Series: CO2_IN_LIC    | RGDP_LIC                      |                    |           |           |           |
| Lags interval: 1 to   | 1                             |                    |           |           |           |
| Selected (0.05 level* | ) number of co-integrating    | relations by model |           |           |           |
| Data Trend:           | None                          | None               | Linear    | Linear    | Quadratic |
| Test Type             | No intercept                  | Intercept          | Intercept | Intercept | Intercept |
|                       | No trend                      | No trend           | No trend  | Trend     | Trend     |
| Trace                 | 0                             | 0                  | 0         | 0         | 0         |
| Max-Eig               | 0                             | 0                  | 0         | 1         | 0         |
| *Critical values base | d on MacKinnon-Haug-Mic       | helis (1999)       |           |           |           |
| Information criteria  | by rank and model             |                    |           |           |           |
| Data trend:           | None                          | None               | Linear    | Linear    | Quadratic |
| Rank or               | No intercept                  | Intercept          | Intercept | Intercept | Intercept |
| No. of CEs            | No trend                      | No trend           | No trend  | Trend     | Trend     |
| Log likelihood by rat | nk (rows) and model (colum    | ns)                |           |           |           |
| 0                     | -1157.525                     | -1157.525          | -1155.840 | -1155.840 | -1150.170 |
| 1                     | -1153.607                     | -1153.564          | -1153.220 | -1145.816 | -1144.161 |
| 2                     | -1153.510                     | -1151.241          | -1151.241 | -1143.756 | -1143.756 |
| Akaike information    | criteria by rank (rows) and r | nodel (columns)    |           |           |           |
| 0                     | 70.39548                      | 70.39548           | 70.41453  | 70.41453  | 70.19210  |
| 1                     | 70.40041                      | 70.45845           | 70.49818  | 70.11005  | 70.07035* |
| 2                     | 70.63696                      | 70.62069           | 70.62069  | 70.28824  | 70.28824  |
| Schwarz criteria by a | cank (rows) and model (colu   | mns)               |           |           |           |
| 0                     | 70.57687                      | 70.57687           | 70.68662  | 70.68662  | 70.55489* |
| 1                     | 70.76320                      | 70.86659           | 70.95167  | 70.60888  | 70.61453  |
| 2                     | 71.18114                      | 71.25557           | 71.25557  | 71.01382  | 71.01382  |

D(CO2\_IN\_LIC)

D(RGDP\_LIC)

| Table A15. Cointegration tes       | st – 2                         |                |                |         |
|------------------------------------|--------------------------------|----------------|----------------|---------|
| Date: 04/03/21 Time: 16:12         |                                |                |                |         |
| Sample (adjusted): 1984 2016       |                                |                |                |         |
| Included observations: 33 afte     | r adjustments                  |                |                |         |
| Trend assumption: Quadratic        | deterministic trend            |                |                |         |
| Series: CO2_IN_LIC RGDP_LIC        |                                |                |                |         |
| Lags interval (in first difference | ces): 1 to 1                   |                |                |         |
| Unrestricted co-integration rank   | test (trace)                   |                |                |         |
| Hypothesized                       |                                | Trace          | 0.05           |         |
| No. of CE(s)                       | Eigenvalue                     | Statistic      | Critical value | Prob.** |
| None                               | 0.305232                       | 12.82744       | 18.39771       | 0.2520  |
| At most 1                          | 0.024234                       | 0.809562       | 3.841466       | 0.3682  |
| Trace test indicates no co-integr  | ation at the 0.05 level        |                |                |         |
| *Denotes rejection of the hypoth   | esis at the 0.05 level         |                |                |         |
| **MacKinnon-Haug-Michelis (19      | 999) p-values                  |                |                |         |
| Unrestricted co-integration rank   | test (maximum eigenvalue)      |                |                |         |
| Hypothesized                       |                                | Max-Eigen      | 0.05           |         |
| No. of CE(s)                       | Eigenvalue                     | Statistic      | Critical value | Prob.** |
| None                               | 0.305232                       | 12.01787       | 17.14769       | 0.2389  |
| At most 1                          | 0.024234                       | 0.809562       | 3.841466       | 0.3682  |
| Max-eigenvalue test indicates no   | o co-integration at the 0.05 l | evel           |                |         |
| *Denotes rejection of the hypoth   | esis at the 0.05 level         |                |                |         |
| **MacKinnon-Haug-Michelis (19      | 999) p-values                  |                |                |         |
| Unrestricted co-integrating coef   | ficients (normalized by b'*S   | 1*b=I):        |                |         |
| CO2_IN_LIC                         | RGDP_LIC                       |                |                |         |
| -3.98E-05                          | 1.79E-11                       |                |                |         |
| -2.65E-06                          | -2.74E-11                      |                |                |         |
| Unrestricted adjustment coefficie  | ents (alpha):                  |                |                |         |
| D(CO2_IN_LIC)                      | 9851.554                       | 1412.961       |                |         |
| D(RGDP_LIC)                        | 46963527                       | 7.07E+08       |                |         |
| 1 Co-integrating equation(s):      |                                | Log likelihood | -1144.161      |         |
| Normalized cointegrating coeffic   | cients (standard error in pare | entheses)      |                |         |
| CO2_IN_LIC                         | RGDP_LIC                       |                |                |         |
| 1.000000                           | -4.50E-07                      |                |                |         |
|                                    | (2.0E-07)                      |                |                |         |
| Adjustment coefficients (standar   | d error in parentheses)        |                |                |         |

-0.391610 (0.13083)

-1866.850 (34123.5)

# Table A16. CO<sub>2</sub> in HIC and CO<sub>2</sub> in LIC

| Date: 04/03/21 Time: 16:1        | 14                                  |                |                |         |
|----------------------------------|-------------------------------------|----------------|----------------|---------|
| Sample (adjusted): 1963 20       | 016                                 |                |                |         |
| <b>Included observations: 54</b> | after adjustments                   |                |                |         |
| Trend assumption: Quadra         | atic deterministic trend            |                |                |         |
| Series: CO2_IN_HIC CO2_IN        | N_LIC                               |                |                |         |
| Lags interval (in first diffe    | rences): 1 to 2                     |                |                |         |
| Unrestricted co-integration      | rank test (trace)                   |                |                |         |
| Hypothesized                     |                                     | Trace          | 0.05           |         |
| No. of CE(s)                     | Eigenvalue                          | Statistic      | Critical value | Prob.** |
| None                             | 0.104052                            | 8.723401       | 18.39771       | 0.6084  |
| At most 1                        | 0.050359                            | 2.790254       | 3.841466       | 0.0948  |
| Trace test indicates no co-in    | tegration at the 0.05 level         |                |                |         |
| *Denotes rejection of the hy     | pothesis at the 0.05 level          |                |                |         |
| **MacKinnon-Haug-Micheli         | s (1999) p-values                   |                |                |         |
| Unrestricted co-integration      | rank test (maximum eigenvalue)      |                |                |         |
| Hypothesized                     |                                     | Max-Eigen      | 0.05           |         |
| No. of CE(s)                     | Eigenvalue                          | Statistic      | Critical value | Prob.** |
| None                             | 0.104052                            | 5.933146       | 17.14769       | 0.8230  |
| At most 1                        | 0.050359                            | 2.790254       | 3.841466       | 0.0948  |
| Max-eigenvalue test indicate     | es no co-integration at the 0.05 le | evel           |                |         |
| *Denotes rejection of the hy     | pothesis at the 0.05 level          |                |                |         |
| **MacKinnon-Haug-Micheli         | s (1999) p-values                   |                |                |         |
| Unrestricted co-integrating      | coefficients (normalized by b'*S1   | 1*b=I):        |                |         |
| CO2_IN_HIC                       | CO2_IN_LIC                          |                |                |         |
| -9.35E-07                        | 2.92E-05                            |                |                |         |
| 1.17E-06                         | 2.82E-06                            |                |                |         |
| Unrestricted adjustment coe      | fficients (alpha):                  |                |                |         |
| D(CO2_IN_HIC)                    | -9084.738                           | -56399.99      |                |         |
| D(CO2_IN_LIC)                    | -5419.727                           | -432.4728      |                |         |
| 1 Co-integrating equation(s)     | ):                                  | Log likelihood | -1346.422      |         |
| Normalized cointegrating co      | efficients (standard error in pare  | ntheses)       |                |         |
| CO2_IN_HIC                       | CO2_IN_LIC                          |                |                |         |
| 1.000000                         | -31.22021                           |                |                |         |
|                                  | (11.2465)                           |                |                |         |
| Adjustment coefficients (sta     | ndard error in parentheses)         |                |                |         |
| D(CO2_IN_HIC)                    | 0.008495                            |                |                |         |
|                                  | (0.03447)                           |                |                |         |
| D(CO2_IN_LIC)                    | 0.005068                            |                |                |         |
|                                  | (0.00219)                           |                |                |         |

# Table A17. FFC and RGDP in HIC

| Date: 04/03/21 Time: 16:37                   |                             |                |                |         |
|----------------------------------------------|-----------------------------|----------------|----------------|---------|
| Sample (adjusted): 1963 2015                 |                             |                |                |         |
| Included observations: 53 after adjustme     | ents                        |                |                |         |
| Trend assumption: Quadratic determini        | stic trend                  |                |                |         |
| Series: FOSSIL FUEL CONS HIC RGDP 1          | HIC                         |                |                |         |
| Lags interval (in first differences): 1 to 2 | 2                           |                |                |         |
| Unrestricted co-integration rank test (trace |                             |                |                |         |
| Hypothesized                                 |                             | Trace          | 0.05           |         |
| No. of CE(s)                                 | Eigenvalue                  | Statistic      | Critical value | Proh.** |
| None                                         | 0.235070                    | 18,18726       | 18.39771       | 0.0535  |
| At most 1 *                                  | 0.072428                    | 3 984810       | 3 841466       | 0.0459  |
| Trace test indicates no co-integration at th | e 0.05 level                | 5.701010       | 5.011100       | 0.0107  |
| *Denotes rejection of the hypothesis at the  | 0.05 level                  |                |                |         |
| **MacKinnon-Haug-Michelis (1999) n-valu      |                             |                |                |         |
| Unrestricted co-integration rank test (maxi  | mum eigenvalue)             |                |                |         |
| Hypothesized                                 |                             | Max-Eigen      | 0.05           |         |
| No. of CE(s)                                 | Eigenvalue                  | Statistic      | Critical value | Prob.** |
| None                                         | 0.235070                    | 14.20245       | 17.14769       | 0.1277  |
| At most 1 *                                  | 0.072428                    | 3,984810       | 3.841466       | 0.0459  |
| Max-eigenvalue test indicates no co-integr   | ation at the 0.05 level     |                |                |         |
| *Denotes rejection of the hypothesis at the  | 0.05 level                  |                |                |         |
| **MacKinnon-Haug-Michelis (1999) p-valu      | les                         |                |                |         |
| Unrestricted co-integrating coefficients (no | ormalized by b'*S11*b=I):   |                |                |         |
| FOSSIL FUEL CONS HIC                         | RGDP HIC                    |                |                |         |
| -0.747645                                    | 1.33E-12                    |                |                |         |
| 0.362615                                     | 7.09E-13                    |                |                |         |
| Unrestricted adjustment coefficients (alpha  | a):                         |                |                |         |
| D(FOSSIL_FUEL_CONSHIC)                       | 0.176043                    | -0.045568      |                |         |
| D(RGDP HIC)                                  | -4.06E+10                   | -1.14E+11      |                |         |
| 1 Co-integrating equation(s):                |                             | Log likelihood | -1513.343      |         |
| Normalized cointegrating coefficients (star  | ndard error in parentheses) |                |                |         |
| FOSSIL_FUEL_CONSHIC                          | RGDP_HIC                    |                |                |         |
| 1.000000                                     | -1.77E-12                   |                |                |         |
|                                              | (4.3E-13)                   |                |                |         |
| Adjustment coefficients (standard error in j | parentheses)                |                |                |         |
| D(FOSSIL_FUEL_CONS_HIC)                      | -0.131618                   |                |                |         |
|                                              | (0.03967)                   |                |                |         |
| D(RGDP_HIC)                                  | 3.04E+10                    |                |                |         |
|                                              | (4.8E+10)                   |                |                |         |

# Table A18. FFC and RGDP in LIC

| Date: 04/03/21 Time: 16:41                      |                           |                |                |         |
|-------------------------------------------------|---------------------------|----------------|----------------|---------|
| Sample (adjusted): 1984 2014                    |                           |                |                |         |
| Included observations: 31 after adjustment      | S                         |                |                |         |
| Trend assumption: Quadratic deterministic       | c trend                   |                |                |         |
| Series: FOSSIL_FUEL_CONS_LIC RGDP_LIC           |                           |                |                |         |
| Lags interval (in first differences): 1 to 1    |                           |                |                |         |
| Unrestricted co-integration rank test (trace)   |                           |                |                |         |
| Hypothesized                                    |                           | Trace          | 0.05           |         |
| No. of CE(s)                                    | Eigenvalue                | Statistic      | Critical value | Prob.** |
| None                                            | 0.148831                  | 5.019888       | 18.39771       | 0.9342  |
| At most 1                                       | 0.000786                  | 0.024391       | 3.841466       | 0.8758  |
| Trace test indicates no co-integration at the 0 | .05 level                 |                |                |         |
| *Denotes rejection of the hypothesis at the 0.0 | 05 level                  |                |                |         |
| **MacKinnon-Haug-Michelis (1999) p-values       |                           |                |                |         |
| Unrestricted co-integration rank test (maximu   | ım eigenvalue)            |                |                |         |
| Hypothesized                                    |                           | Max-Eigen      | 0.05           |         |
| No. of CE(s)                                    | Eigenvalue                | Statistic      | Critical value | Prob.** |
| None                                            | 0.148831                  | 4.995498       | 17.14769       | 0.9029  |
| At most 1                                       | 0.000786                  | 0.024391       | 3.841466       | 0.8758  |
| Max-eigenvalue test indicates no co-integration | on at the 0.05 level      |                |                |         |
| *Denotes rejection of the hypothesis at the 0.0 | 05 level                  |                |                |         |
| **MacKinnon-Haug-Michelis (1999) p-values       |                           |                |                |         |
| Unrestricted co-integrating coefficients (norm  | alized by b'*S11*b=I):    |                |                |         |
| FOSSIL_FUEL_CONSLIC                             | RGDP_LIC                  |                |                |         |
| -0.310031                                       | -1.72E-11                 |                |                |         |
| 0.122941                                        | -2.82E-11                 |                |                |         |
| Unrestricted adjustment coefficients (alpha):   |                           |                |                |         |
| D(FOSSIL_FUEL_CONS_LIC)                         | 0.945490                  | -0.039616      |                |         |
| D(RGDP_LIC)                                     | 3.59E+08                  | -1.11E+08      |                |         |
| 1 Co-integrating equation(s):                   |                           | Log likelihood | -793.8955      |         |
| Normalized co-integrating coefficients (standa  | ard error in parentheses) |                |                |         |
| FOSSIL_FUEL_CONSLIC                             | RGDP_LIC                  |                |                |         |
| 1.000000                                        | 5.54E-11                  |                |                |         |
|                                                 | (4.9E-11)                 |                |                |         |
| Adjustment coefficients (standard error in par  | entheses)                 |                |                |         |
| D(FOSSIL_FUEL_CONS_LIC)                         | -0.293131                 |                |                |         |
|                                                 | (0.16210)                 |                |                |         |
| D(RGDP_LIC)                                     | -1.11E+08                 |                |                |         |
|                                                 | (2.5E+08)                 |                |                |         |

# Table A19. CO<sub>2</sub> and FFC in HIC

| Date: 04/03/21 Time: 16:44              |                                 |                |                |         |
|-----------------------------------------|---------------------------------|----------------|----------------|---------|
| Sample (adjusted): 1962 2015            |                                 |                |                |         |
| Included observations: 54 after adju    | istments                        |                |                |         |
| Trend assumption: Quadratic deter       | ministic trend                  |                |                |         |
| Series: CO2_IN_HIC FOSSIL_FUEL_CO       | ONS_HIC                         |                |                |         |
| Lags interval (in first differences): 1 | to 1                            |                |                |         |
| Unrestricted co-integration rank test ( | trace)                          |                |                |         |
| Hypothesized                            |                                 | Trace          | 0.05           |         |
| No. of CE(s)                            | Eigenvalue                      | Statistic      | Critical value | Prob.** |
| None                                    | 0.090122                        | 6.309485       | 18.39771       | 0.8439  |
| At most 1                               | 0.022149                        | 1.209492       | 3.841466       | 0.2714  |
| Trace test indicates no co-integration  | at the 0.05 level               |                |                |         |
| *Denotes rejection of the hypothesis a  | t the 0.05 level                |                |                |         |
| **MacKinnon-Haug-Michelis (1999) p      | -values                         |                |                |         |
| Unrestricted co-integration rank test ( | maximum eigenvalue)             |                |                |         |
| Hypothesized                            |                                 | Max-Eigen      | 0.05           |         |
| No. of CE(s)                            | Eigenvalue                      | Statistic      | Critical value | Prob.** |
| None                                    | 0.090122                        | 5.099993       | 17.14769       | 0.8950  |
| At most 1                               | 0.022149                        | 1.209492       | 3.841466       | 0.2714  |
| Max-eigenvalue test indicates no co-ir  | ntegration at the 0.05 level    |                |                |         |
| *Denotes rejection of the hypothesis a  | t the 0.05 level                |                |                |         |
| **MacKinnon-Haug-Michelis (1999) p      | -values                         |                |                |         |
| Unrestricted co-integrating coefficient | ts (normalized by b'*S11*b=I):  |                |                |         |
| CO2_IN_HIC                              | FOSSIL_FUEL_CONSHIC             |                |                |         |
| -7.87E-07                               | -0.441671                       |                |                |         |
| 1.03E-06                                | -0.473813                       |                |                |         |
| Unrestricted adjustment coefficients (a | alpha):                         |                |                |         |
| D(CO2_IN_HIC)                           | 66115.78                        | -19001.99      |                |         |
| D(FOSSIL_FUEL_CONSHIC)                  | 0.098880                        | 0.034542       |                |         |
| 1 Co-integrating equation(s):           |                                 | Log likelihood | -768.5738      |         |
| Normalized cointegrating coefficients   | (standard error in parentheses) |                |                |         |
| CO2_IN_HIC                              | FOSSIL_FUEL_CONSHIC             |                |                |         |
| 1.000000                                | 560906.0                        |                |                |         |
|                                         | (368133.)                       |                |                |         |
| Adjustment coefficients (standard error | or in parentheses)              |                |                |         |
| D(CO2_IN_HIC)                           | -0.052061                       |                |                |         |
|                                         | (0.02765)                       |                |                |         |
| D(FOSSIL_FUEL_CONSHIC)                  | -7.79E-08                       |                |                |         |
|                                         | (4.4E-08)                       |                |                |         |

# Table A20. CO<sub>2</sub> and FFC in LIC

| Date: 04/03/21 Time: 16:45            |                                      |                            |                |         |
|---------------------------------------|--------------------------------------|----------------------------|----------------|---------|
| Sample (adjusted): 1974 2014          |                                      |                            |                |         |
| Included observations: 41 after a     | djustments                           |                            |                |         |
| Trend assumption: Quadratic det       | terministic trend                    |                            |                |         |
| Series: CO2_IN_LIC FOSSIL_FUEL        | _CONS_LIC                            |                            |                |         |
| Lags interval (in first differences   | ): 1 to 2                            |                            |                |         |
| Unrestricted co-integration rank tes  | st (trace)                           |                            |                |         |
| Hypothesized                          |                                      | Trace                      | 0.05           |         |
| No. of CE(s)                          | Eigenvalue                           | Statistic                  | Critical value | Prob.** |
| None                                  | 0.185982                             | 10.95863                   | 18.39771       | 0.3927  |
| At most 1                             | 0.059657                             | 2.521955                   | 3.841466       | 0.1123  |
| Trace test indicates no cointegratio  | n at the 0.05 level                  |                            |                |         |
| *Denotes rejection of the hypothesi   | s at the 0.05 level                  |                            |                |         |
| **MacKinnon-Haug-Michelis (1999       | ) p-values                           |                            |                |         |
| Unrestricted co-integration rank test | st (maximum eigenvalue)              |                            |                |         |
| Hypothesized                          |                                      | Max-Eigen                  | 0.05           |         |
| No. of CE(s)                          | Eigenvalue                           | Statistic                  | Critical value | Prob.** |
| None                                  | 0.185982                             | 8.436678                   | 17.14769       | 0.5552  |
| At most 1                             | 0.059657                             | 2.521955                   | 3.841466       | 0.1123  |
| Max-eigenvalue test indicates no co   | o-integration at the 0.05 level      |                            |                |         |
| *Denotes rejection of the hypothesi   | s at the 0.05 level                  |                            |                |         |
| **MacKinnon-Haug-Michelis (1999       | ) p-values                           |                            |                |         |
| Unrestricted co-integrating coeffici  | ents (normalized by b'*S11*b=I):     |                            |                |         |
| CO2_IN_LIC                            | FOSSIL_FUEL_CONSLIC                  |                            |                |         |
| -4.44E-05                             | 0.148725                             |                            |                |         |
| 2.16E-05                              | -0.332238                            |                            |                |         |
| Unrestricted adjustment coefficient   | s (alpha):                           |                            |                |         |
| D(CO2_IN_LIC)                         | 7308.729                             | -1416.423                  |                |         |
| D(FOSSIL_FUEL_CONS_LIC)               | 0.492599                             | 0.521443                   |                |         |
| 1 Co-integrating equation(s):         |                                      | Log likelihood             | -549.3754      |         |
|                                       | Normalized cointegrating coefficient | s (standard error in parer | ntheses)       |         |
| CO2_IN_LIC                            | FOSSIL_FUEL_CONSLIC                  |                            |                |         |
| 1.000000                              | -3346.844                            |                            |                |         |
|                                       | (1888.97)                            |                            |                |         |
| Adjustment coefficients (standard e   | error in parentheses)                |                            |                |         |
| D(CO2_IN_LIC)                         | -0.324780                            |                            |                |         |
|                                       | (0.12463)                            |                            |                |         |
| D(FOSSIL_FUEL_CONS_LIC)               | -2.19E-05                            |                            |                |         |
|                                       | (1.8E-05)                            |                            |                |         |

# Table A21.

| Date: 04/03/21 Ti     | me: 16:02                   |                    |            |            |            |
|-----------------------|-----------------------------|--------------------|------------|------------|------------|
| Sample: 1960 2021     |                             |                    |            |            |            |
| Included observati    | ions: 54                    |                    |            |            |            |
| Series: CO2_IN_HI     | C RGDP_HIC                  |                    |            |            |            |
| Lags interval: 1 to   | 2                           |                    |            |            |            |
| Selected (0.05 level? | *) number of co-integrating | relations by model |            |            |            |
| Data trend:           | None                        | None               | Linear     | Linear     | Quadratic  |
| Test type             | No intercept                | Intercept          | Intercept  | Intercept  | Intercept  |
|                       | No trend                    | No trend           | No trend   | Trend      | Trend      |
| Trace                 | 2                           | 2                  | 0          | 0          | 0          |
| Max-Eig               | 2                           | 2                  | 0          | 0          | 0          |
| *Critical values base | ed on MacKinnon-Haug-Mic    | chelis (1999)      |            |            |            |
| Information criteria  | by rank and model           |                    |            |            |            |
| Data trend:           | None                        | None               | Linear     | Linear     | Quadratic  |
| Rank or               | No intercept                | Intercept          | Intercept  | Intercept  | Intercept  |
| No. of CEs            | No trend                    | No trend           | No trend   | Trend      | Trend      |
| Log likelihood by ra  | nk (rows) and model (colum  | ins)               |            |            |            |
| 0                     | -2268.3811                  | -2268.3811         | -2258.4186 | -2258.4186 | -2252.2463 |
| 1                     | -2257.2441                  | -2257.2419         | -2251.4071 | -2249.8720 | -2248.7097 |
| 2                     | -2255.0320                  | -2251.2727         | -2251.2727 | -2247.2632 | -2247.2632 |
| Akaike information    | criteria by rank (rows) and | model (columns)    |            |            |            |
| 0                     | 84.31041                    | 84.31041           | 84.01551   | 84.01551   | 83.86098*  |
| 1                     | 84.04608                    | 84.08304           | 83.90397   | 83.88415   | 83.87814   |
| 2                     | 84.11230                    | 84.04714           | 84.04714   | 83.97271   | 83.97271   |
| Schwarz criteria by   | rank (rows) and model (colu | imns)              |            |            |            |
| 0                     | 84.60508                    | 84.60508           | 84.38384   | 84.38384   | 84.30297*  |
| 1                     | 84.48808                    | 84.56187           | 84.941963  | 84.43665   | 84.46747   |
| 2                     | 84.170163                   | 84.71013           | 84.71013   | 84.70937   | 84.70937   |