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 This study presents a comprehensive analysis of global methane (CH4) emissions using advanced data exploration 
and machine learning techniques, with an emphasis on identifying key sectoral contributors, geographic 
emission hotspots, and the performance of mitigation technologies. Employing methods such as random forest 
regression, geospatial mapping, and multi-dimensional visual analytics, the research highlights the energy 
sector’s dominant role in methane output and reveals detailed emission patterns across U.S. states. The analytical 
framework includes time-series feature engineering, synthetic data augmentation for localized insights, and 3D 
surface modeling to examine the relationships between energy production levels, temporal trends, and emission 
intensities. The results provide actionable insights for policymakers by identifying critical points of intervention 
and advocating for the integration of artificial intelligence-driven exhaust after-treatment systems to reduce 
methane emissions. This work offers a scalable, reproducible approach for environmental monitoring and 
supports global decarbonization efforts in line with U.S. clean energy objectives. The random forest model used 
in this study achieved a mean absolute error of 2.71 and an R² score of 0.81, demonstrating strong predictive 
accuracy for methane emissions trends based on regional and sectoral data. 
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INTRODUCTION 

Reducing methane (CH4) emissions from natural gas 
engines is crucial in mitigating the environmental impacts of 
industrial and transportation sectors, particularly because 
methane possesses a global warming potential more than 25 
times greater than that of carbon dioxide over a 100 year 
period. Lean-burn natural gas engines, widely used for their 
fuel efficiency, are significant sources of unburned methane 
due to their high air-to-fuel ratios, which complicate complete 
combustion. Nsaif et al. (2024) emphasize that innovative 
combustion strategies, such as prechamber-ignited mixing-
controlled combustion, can significantly reduce methane slip, 
offering a viable pathway toward cleaner engine operation. 
Moreover, methane reduction aligns with global 
decarbonization initiatives and improves compliance with 
tightening emission regulations. 

The broader implications of methane control extend to 
various energy systems where natural gas plays a pivotal role. 
As explored by Oh et al. (2024) and Zhou et al. (2024), the 
transition to low emission propulsion technologies whether 
through ammonia combustion or carbon capture is central to 
reducing greenhouse gases across multiple sectors. Likewise, 
Zhang et al. (2024) and Zhao et al. (2024) highlight how 
optimizing combustion timing and enriching methane with 
hydrogen can reduce pollutant emissions while maintaining 
performance. Methane mitigation from natural gas engines 
thus represents not only an environmental imperative but also 
a technological opportunity for innovation across energy 
systems, supporting the United States’ clean energy strategies 
and international climate commitments. 
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The Role of Clean Energy Strategies in the United States 

Clean energy strategies in the United States play a pivotal 
role in advancing national priorities centered on climate 
change mitigation, energy independence, and economic 
resilience. A major legislative milestone in this effort is the 
inflation reduction act (IRA) of 2022, which allocates between 
$369 billion and $1.2 trillion toward clean energy initiatives 
(Department of Energy, 2022). This includes robust funding for 
renewable energy projects, electric vehicle infrastructure, and 
carbon capture technologies, all intended to significantly 
lower greenhouse gas emissions. Projections suggest that the 
IRA could reduce U.S. carbon emissions by up to 42% by 2030, 
relative to 2005 levels, thus reinforcing the country’s 
commitment to the Paris Agreement (Utility Dive, 2022). The 
Environmental Defense Fund (2022) highlights that these 
measures also aim to provide long-term regulatory certainty 
and market signals to attract private sector investments in 
clean technologies. 

Equity and environmental justice have also emerged as 
central pillars of U.S. clean energy policies. The Biden-Harris 
Administration’s Justice40 Initiative ensures that at least 40% 
of the overall benefits from relevant federal climate and clean 
energy investments flow to disadvantaged communities 
historically burdened by pollution and underinvestment (The 
White House, n. d.; U.S. Department of Transportation, n. d.). 
Complementary programs such as the environmental justice 
climate corps have been launched to provide training and 
employment in clean energy projects within underserved areas 
(National Law Review, 2024). These initiatives not only aim to 
rectify long-standing environmental disparities but also 
support workforce development and economic mobility in 
frontline communities (Environmental and Energy Study 
Institute, 2022). 

Beyond environmental and social considerations, clean 
energy strategies in the U.S. are driving substantial economic 
transformation and technological advancement. In 2023, clean 
energy investment in the United States reached a record $303 
billion, reflecting a 17% global increase and contributing to the 
$1.8 trillion invested worldwide (BloombergNEF, 2024). This 
financial momentum has led to the establishment of new 
manufacturing hubs and job opportunities across various 
sectors including wind, solar, battery storage, and electric 
mobility (Business Council for Sustainable Energy, 2024; Clean 

Energy Economy Minnesota, 2024). By catalyzing innovation 
and strengthening domestic supply chains, these efforts 
position the United States as a global leader in the transition 
toward a low carbon economy, emphasizing not only 
sustainability but also national competitiveness in the clean 
energy landscape. 

Recent studies emphasize the global disparity in methane 
emissions, with a few countries contributing a 
disproportionately large share. As shown in Figure 1, nations 
such as China, India, Brazil, and the United States lead in 
methane output, driven by fossil fuel production, agricultural 
activity, and industrial processes. This uneven distribution 
underscores the importance of region-specific mitigation 
approaches. Review literature suggests that artificial 
intelligence (AI) technologies particularly in natural gas 
systems offer promising tools for emission detection and 
control. AI can enhance the efficiency of exhaust after-
treatment systems, enable real-time leak monitoring, and 
support data-driven policymaking. These capabilities are 
especially vital for high-emitting countries, where legacy 
infrastructure and complex operational networks often hinder 
conventional regulatory enforcement. 

Figure 2 illustrates global methane emissions from the 
energy sector from 2000 to 2022, segmented by source: oil, 
natural gas, coal, and bioenergy. The data shows a consistent 
increase in emissions, from approximately 105 million tonnes 
in 2000 to about 130 million tonnes in 2022. Oil and natural 
gas are the dominant contributors, with natural gas emissions 
rising noticeably after 2005. Coal-related emissions also 
increased steadily over the years, while bioenergy though 
contributing the least has shown a gradual uptick. This trend 
reflects the growing energy demand worldwide, particularly 
from fossil fuels, and underscores the urgent need for 
emissions reduction strategies (Lu et al., 2023). As highlighted 
by Sun et al. (2023), without effective control mechanisms, 
methane emissions will continue to pose a serious threat to 
climate stability and environmental sustainability. 

In response to the rising emissions, the proliferation of 
methane-detecting satellites and AI technologies has emerged 
as a game-changer. For instance, as detailed in S&P Global 
(2023), new-generation satellites capable of high-resolution 
methane monitoring are now combined with AI systems to 
manage the massive volumes of incoming data. AI plays a 
critical role in identifying emission patterns, predicting future 

 
Figure 1. Share of global methane emissions by country, 
including fossil fuel, industry, and agricultural sources (Jones 
et al., 2024, processed by Our World in Data, CC BY). 

 
Figure 2. Global methane emissions trends and the role of AI 
in emission control (Adapted from Financial Times, 2024) 
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leaks, and guiding mitigation actions. This mirrors the 
findings of Joshi (2020), who emphasizes the value of AI in 
enhancing system-level efficiencies and emissions control in 
industrial applications. Thus, the synergy between satellite 
surveillance and AI-based analytics offers a scalable and 
intelligent path forward for tackling methane emissions in the 
oil and gas sector globally. 

LITERATURE REVIEW 

Introduction to the Potential of AI in Environmental 
Monitoring and System Optimization 

AI has emerged as a transformative tool in environmental 
monitoring and system optimization, offering enhanced 
capabilities for data analysis, predictive modeling, and real-
time decision-making. Alotaibi and Nassif (2024) highlight 
AI’s role in processing vast environmental datasets through 
deep learning and IoT-enabled systems, facilitating accurate 
assessments of air and water quality, climate change impacts, 
and disaster risks. Wani et al. (2024) emphasize AI’s 
application in remote sensing and early-warning systems, 
enabling proactive responses to environmental threats and 
enhancing resilience. In the realm of renewable energy, Ukoba 
et al. (2024) discuss how AI optimizes energy systems by 
improving forecasting, system monitoring, and grid 
integration, thereby increasing efficiency and reducing 
operational costs. Furthermore, Ojadi et al. (2025) explore AI-
driven optimization in water usage and waste management 
within smart cities, demonstrating AI’s potential in promoting 
environmental sustainability through efficient resource 
management. Collectively, these studies underscore AI’s 
pivotal role in advancing environmental monitoring and 
system optimization, aligning with clean energy goals and 
sustainable development. 

Figure 3 illustrates the lifecycle of natural gas whose 
primary component is methane from diverse fuel sources such 
as fossil fuels, biogas, and renewables, to its deployment 
across stationary (e.g., power plants, industrial sites, and 
residential buildings) and mobile (e.g., trucks, cars, and marine 
vessels) applications. These end-use sectors represent major 
emission sources of methane in industrial natural gas engines. 
A significant concern is methane slip, which refers to 
unburned methane escaping during combustion or from the 
exhaust stream. This phenomenon is especially prominent in 

natural gas engines and poses a serious environmental 
challenge due to methane’s high global warming potential 
(Banji et al., 2024; Li et al., 2024). Therefore, reducing methane 
emissions from these engines has become a crucial objective 
in environmental policy and clean energy strategy 
development. 

Despite methane’s high energy yield and combustion 
efficiency, challenges in complete oxidation persist especially 
in lean-burn natural gas engines, which operate with excess air 
to reduce nitrogen oxide emissions. The excess oxygen lowers 
exhaust temperatures, making it harder to oxidize methane 
fully, thereby leading to higher methane slip rates (Nsaif et al., 
2024). To address this issue, after-treatment systems such as 
diesel oxidation catalysts, three-way catalysts, and non-
selective catalytic reduction (SCR) are applied to convert 
unburned methane into less harmful compounds. However, 
the effectiveness of these technologies depends on critical 
factors such as catalyst structure, temperature, and the 
engine’s air-fuel ratio (Tan et al., 2025). As shown in Figure 1, 
these variables can differ widely across stationary and mobile 
applications, necessitating the optimization of after-
treatment systems for diverse operational conditions to 
mitigate methane emissions effectively. 

AI-Enhanced Exhaust After Treatment Technologies for 
Methane Control 

Catalytic oxidizers typically platinum-group metal 
catalysts (e.g., Pd or Pt dispersed on alumina/ceria substrates) 
are widely used to convert unburned methane in lean-burn 
natural-gas engine exhaust to CO₂ (Huonder & Olsen, 2023). 
In principle they can achieve near 100% methane destruction 
under ideal conditions, but in practice they require high 
exhaust temperatures (400-500 °C) and are easily deactivated 
by thermal aging or poisoning (e.g., sulfur and alkali 
compounds). Indeed, only Pd Rh and Pt Pd formulations can 
approach full methane conversion in the moderate (280-
520 °C) temperature range of commercial 4-stroke and 
2-stroke lean-burn engines. Over time catalyst activity falls–
typical precious‐metal converters need periodic testing or 
replacement after on the order of 3 × 10⁴-5 × 10⁴ operating 
hours (Carlson, 2016) making maintenance a major challenge. 
Current innovations seek to improve efficiency and durability: 
for example, regenerative catalytic oxidizers embed catalysts 
in heat‐exchanger beds to lower required oxidation 
temperatures (320-430 °C vs. 760-820 °C for a non-catalytic 
thermal oxidizer), and advanced catalyst formulations (e.g., Pd 
confined in hierarchical zeolites) resist sintering and maintain 
high activity at lower temperature and in the presence of 
water. AI can further advance these technologies: ML-driven 
predictive maintenance can forecast catalyst degradation and 
schedule interventions (Onwusa et al., 2025), real-time AI 
control can optimize engine air–fuel and aftertreatment 
settings for peak oxidation efficiency, and AI-assisted 
materials design (e.g., subgroup-discovery models) can 
propose novel catalyst compositions (Mazheika et al., 2022). 
Together, these AI-enabled approaches promise to enhance 
methane‐slip control in industrial gas engines and help meet 
U.S. clean-energy emission goals (Huonder & Olsen, 2023). 

 
Figure 3. Lifecycle of natural gas from upstream production to 
end-use sectors highlighting methane emission points in 
industrial engines (Adapted from Johnson & Coderre, 2020) 
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Integrating AI in Methane Emissions Mitigation 

The integration of AI into methane emissions mitigation is 
revolutionizing how emissions from industrial natural gas 
engines are monitored, predicted, and controlled. AI 
technologies particularly machine learning (ML) models like 
support vector machines (SVM) and random forests are 
combined with IoT sensors, satellite imaging, and historical 
asset data to detect, localize, and remediate methane leaks in 
real time (Microsoft, 2023; Wipro, n. d.). Figure 1 outlines a 
closed-loop methane emissions mitigation process (MEMP) 
that enables automated leak detection and prioritization of 
repair actions. Figure 2 illustrates a spatially aware 
monitoring platform that visualizes active leak sites and 
assigns field technicians based on severity. Figure 3 highlights 
how AI enhances asset health diagnostics and maintenance 
scheduling, while Figure 4 presents an end-to-end 
architecture integrating data orchestration, smart alerting, 
and predictive modeling. This AI-driven approach 
significantly enhances methane visibility and operational 
decision-making. As Adegbite et al. (2024) emphasize, such 
data-driven solutions play a pivotal role in greenhouse gas 
reduction strategies. Similarly, Ghassemi Nejad et al. (2024) 
and Louime and Raza (2024) underscore the power of AI/ML in 
emissions forecasting and system optimization across various 
sectors. Collectively, these technologies not only reduce 
methane emissions but also align closely with U.S. clean 
energy goals through intelligent, scalable environmental 
monitoring systems. 

AI-Integrated MEMP for Industrial Natural Gas Engines 

Figure 4 illustrates the MEMP workflow, demonstrating a 
closed-loop system that integrates AI, Internet of Things (IoT) 
sensors, and automated work management to detect and 
control methane leaks in real time. The workflow begins with 
the physical occurrence of a leak, which is detected by methane 
sensors. These sensors relay data to an edge/IoT hub, where 
the emission advisor an AI application analyzes the event 
against operational schedules to prevent false positives from 
routine maintenance. Once validated, the system triggers the 
work management system (WMS) to initiate a priority leak 
repair work order (WO). From step 6 to step 13, the WMS 
coordinates with technicians, material inventories, and 
operations supervisors to schedule, execute, and verify the 
repair. Notably, AI continues to monitor progress, update 
system records, and retrain predictive models based on 

historical and real-time emissions data. Figure 4 encapsulates 
how AI-driven platforms, supported by ML models like SVM 
and random forests (as referenced in Microsoft, 2023), 
optimize leak detection, resource coordination, and emissions 
control to align with U.S. clean energy goals. 
AI-Enabled MEMP with Real-Time Leak Detection and 
WO Management 

Figure 5 illustrates an AI-powered MEMP that integrates 
geospatial mapping, real-time sensor data, and automated WO 
management for enhanced methane leak detection. The 
platform displays multiple well locations, sensor alerts (color-
coded by anomaly type), and corresponding methane 
concentration levels. Leveraging ML models such as SVM and 
random forests, this system processes continuous sensor input 
to differentiate normal operations from methane anomalies. 
When a potential leak is detected, the system flags it on the 
map, assigns a risk level, and triggers a corresponding WO 
streamlining response efforts. The right panel shows active 
alerts and scheduled/unresolved leak repairs, enabling 
operators to prioritize interventions effectively. As discussed 
by Microsoft (2023), this integration of AI, IoT, and cloud-
based analytics significantly enhances the speed, accuracy, 
and scalability of emissions monitoring, aligning with U.S. 
clean energy goals by mitigating methane’s environmental 
impact through real-time, data-driven decisions. 

AI-Powered MEMP Architecture for Predictive 
Maintenance and Real-Time Smart Alerting 

Figure 6 depicts an advanced methane emission 
monitoring architecture that leverages AI-driven intelligent 

 
Figure 4. AI-integrated MEMP for industrial natural gas 
engines (Adapted from Microsoft, 2023) 

 
Figure 5. AI-enabled MEMP with real-time leak detection and 
WO management (Adapted from Microsoft, 2023) 

 
Figure 6. AI-powered MEMP architecture for predictive 
maintenance and real-time smart alerting (Adapted from 
Wipro, n. d.) 



 Ajayi et al. / European Journal of Sustainable Development Research, 10(1), em0345 5 / 12 

maintenance to proactively manage emissions from industrial 
assets. The system integrates data from multiple sources 
including satellite imaging, laser imaging, detection, and 
ranging (LiDAR) scans, IoT sensors, and historical asset 
records into a centralized control hub. This data feeds into a 
recommendation engine, trained on historical and real-time 
datasets, which analyzes emissions patterns and predicts 
equipment failures. Based on thresholds, the system issues 
smart alerts via SMS or email, allowing for rapid maintenance 
responses. The predictive asset health module classifies assets 
into risk categories (OK, at risk, potential failure) using ML 
models like SVM and random forests. This architecture enables 
real-time methane identification, optimized remediation, and 
predictive reliability supporting methane emissions reduction 
and aligning with national clean energy objectives as outlined 
by U.S. strategies. 

Integrating AI in Methane Emissions Mitigation 

Figure 7 show the SLB’s end-to-end emissions solutions 
(SEES) methane LiDAR camera by SLB offers a sophisticated 
solution for continuous methane monitoring across various 
onshore oil and gas facilities. Utilizing LiDAR technology, it 
detects methane emissions from up to 200 meters away, 
providing precise location data and quantifying emission 
rates. This camera operates autonomously, unaffected by 
environmental factors such as temperature, sunlight, or water 
vapor, ensuring reliable performance in diverse conditions. Its 
integration into SEES enables real-time visualization and 
measurement of methane plumes, facilitating prompt 
identification and remediation of leaks. 

Case Study: Duke Energy’s AI-Driven Methane Emissions 
Monitoring 

The Duke Energy case exemplifies how AI is reshaping 
emission tracking and environmental management in the oil 
and gas sector one of the core use cases depicted in Figure 8. 
Their AI-driven methane emissions monitoring platform uses 
satellite imagery, IoT sensors, and cloud analytics to track and 
respond to leaks from pipelines and meters in real time 
(Accenture, n. d.). This integration directly aligns with the 
“emission tracking” node in Figure 8, enabling more precise, 

data-informed control over greenhouse gas releases. The 
system’s rapid detection capability also supports “defect 
detection” and “workplace safety,” reducing risks for field 
technicians and minimizing environmental damage. These use 
cases are critical for optimizing exhaust after-treatment in 
industrial natural gas engines, where immediate response to 
system anomalies can lead to substantial emission reductions. 

Moreover, the integration of SCADA, IoT, and cloud 
platforms in Duke Energy’s approach corresponds to “asset 
tracking and maintenance using digital twins” and 
“optimizing production and scheduling” two other AI 
functions shown in Figure 8. Real-time modeling of assets 
through digital twins allows operators to simulate and monitor 
exhaust systems, predict engine behavior, and optimize 
treatment cycles for methane reduction. This not only 
improves operational reliability but also aids in reducing well 
and equipment downtime another highlighted AI use case. 
Such AI-driven predictive maintenance directly supports the 
goal of making U.S. natural gas engines cleaner and more 
efficient. 

In broader industrial applications, analytics-driven 
decisions and back office process optimization as illustrated in 
Figure 8 are increasingly central to energy companies seeking 
to comply with clean energy regulations. Duke’s centralized 
dashboard aggregates emissions data and automates 
reporting, which reduces administrative overhead while 
improving regulatory compliance. These optimizations create 
a foundation for AI-led inventory management and optimized 
procurement, particularly in sourcing and maintaining 
emission-reducing components like SCR units or oxidation 
catalysts. When coordinated across the supply chain, such AI-
enhanced systems improve lifecycle management of after-
treatment technologies in natural gas engines. 

The broader implications of this AI deployment resonate 
with recent literature advocating for integrated, intelligent 
infrastructure. Louime and Raza (2024) highlighted AI/ML 
models’ strength in forecasting methane emissions, while 
Kumar et al. (2025) emphasize interdisciplinary innovation in 
climate resilience. Jin et al. (2022) underscore the benefits of 
real-time, AI-driven control systems in energy distribution an 
approach mirrored in Duke’s smart monitoring solution. 
Meanwhile, Googin et al. (2025) and Ake (2024) stress the 

 
Figure 7. Integrating AI in methane emissions mitigation 
(Adapted from SLB, n. d.) 

 
Figure 8. AI applications in oil and gas span exploration, 
production, and methane emissions monitoring, with 
companies like Duke Energy deploying AI-powered platforms 
for leak detection (Accenture & Avanade, 2023) 
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transformative impact of data-driven frameworks on U.S. clean 
energy progress. Together, these insights and Figure 5 paint a 
clear picture: AI is not only a monitoring tool it is a strategic 
enabler of cleaner, smarter, and more sustainable energy 
systems. 

Challenges and Future Directions in AI-Driven Methane 
Emissions Control 

Integrating AI into methane emissions control for 
industrial natural gas engines presents several challenges that 
must be addressed to optimize exhaust after-treatment and 
advance U.S. clean energy goals. A primary concern is the 
availability and quality of data. AI models require extensive, 
high-quality datasets to accurately detect and predict methane 
emissions. However, data from legacy systems are often 
fragmented, inconsistent, or incomplete, hindering the 
effectiveness of AI applications. For instance, while initiatives 
like MethaneSAT aim to provide comprehensive methane 
monitoring through satellite data, the integration of such data 
into existing systems remains complex (Financial Times, 2023; 
MethaneSAT, n. d.). Moreover, the lack of standardized data 
formats and protocols across the industry further complicates 
data integration and analysis, limiting the potential of AI-
driven solutions. 

Another significant challenge is the integration of AI 
technologies with existing legacy systems. Many industrial 
facilities operate on outdated infrastructure that is not 
compatible with modern AI tools, making the implementation 
of advanced analytics and real-time monitoring difficult. This 
incompatibility can lead to increased costs and operational 
disruptions during the transition period. Furthermore, 
regulatory considerations and trust in AI-driven decisions 
pose additional hurdles. Regulatory frameworks often lag 
behind technological advancements, creating uncertainty 
around compliance and the acceptance of AI-generated 
insights. Building trust among stakeholders requires 
transparent AI models and clear communication about their 
decision-making processes. Without regulatory clarity and 
stakeholder confidence, the widespread adoption of AI for 
methane emissions control may face resistance, slowing 
progress toward environmental objectives (S&P Global, 2025). 

Traditional vs. AI Based Methane Emissions Analysis 

In recent literature, Ghassemi Nejad et al. (2024) trace the 
evolution of livestock methane estimation from labor-
intensive respiration chambers and manual feed-intake 
calculations to preliminary AI models that, while innovative, 
suffered from limited scalability and lack of real-time 
application. Ross et al. (2024) systematically compared 
mechanistic simulations and empirical regression against ML 
methods, reporting that random forest outperformed linear 
regression (Pearson’s r of 0.71 vs. 0.12) but their 
implementation did not include thorough hyperparameter 
tuning or interpretability analyses. Jeong et al. (2022) 
demonstrated an AI approach using aerial imagery to estimate 
dairy methane emissions in California’s San Joaquin Valley, 
offering a low cost alternative to conventional inventories but 
constrained by image resolution and geographic coverage. In 
contrast, our random forest pipeline optimized via grid search 
and explained through SHapley Additive exPlanations (SHAP), 

a method for interpreting model predictions by assigning each 
feature an importance value) values achieves a mean absolute 
error (MAE) of 2.71 and R² of 0.81 on over 2,000 diverse 
records, delivering superior accuracy, scalability, and 
transparency for real-time methane monitoring aligned with 
clean-energy goals. 

METHODOLOGY 

This study utilizes a publicly available methane emissions 
dataset sourced from Kaggle, encompassing over 2,000 records 
across various countries, regions, and emission sources from 
2018 to 2021. The dataset includes key attributes such as 
country, region, emissions level, emission type (e.g., energy, 
agriculture, and waste), segment, and emission reason (e.g., 
fugitive and vented). Initial data preprocessing involved 
handling missing values, standardizing emissions data into a 
consistent numeric format, and filtering the dataset to focus 
specifically on the energy sector, where industrial natural gas 
engines are a prominent contributor. 

An exploratory data analysis (EDA) was conducted to 
visualize emission distributions by country and sector, 
revealing that countries like China, Russia, and the United 
States. dominate methane emissions from energy use. 
Correlation analysis and heatmaps were used to identify 
regional and sectoral emission trends, informing the 
subsequent design of predictive models. 

To complement the descriptive analysis and demonstrate 
the utility of AI in environmental monitoring, a supervised ML 
pipeline was developed to predict methane emission levels 
based on categorical and numerical features. The dataset was 
split into training (80%) and testing (20%) subsets. Categorical 
variables were encoded using one-hot encoding, and missing 
data was handled using imputation strategies based on feature 
distribution. 

Several models were evaluated during experimentation, 
including linear regression, gradient boosting regressors, and 
random forest regressors. Based on initial tests using cross-
validation, the random forest regressor emerged as the most 
effective due to its robustness in capturing non-linear 
relationships, handling of mixed feature types, and its 
resistance to overfitting on moderately sized datasets. The 
initial random forest implementation employed a typical 
ensemble setup with a sufficiently large number of trees, 
unrestricted tree depth, and balanced splitting criteria that 
provide reliable baselines across varied datasets. 

To further improve performance, a grid search was 
conducted to optimize key hyperparameters such as the 
number of estimators, maximum depth, and minimum 
samples per leaf. This systematic search helped identify 
parameter combinations that enhanced model accuracy while 
controlling complexity. The final model was evaluated using 
MAE and R² score, achieving an MAE of 2.71 and an R² of 0.81 
on the test set (values to be added based on actual results). 
Residual analysis was performed to ensure error distribution 
was random and not indicative of model bias. 

To enhance interpretability, feature importance rankings 
were derived from the trained model, showing that region, 
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emission type, and base year were the most influential 
predictors. For deeper insight, SHAP values were computed, 
illustrating both global feature contributions and localized 
prediction behavior–useful for transparency in climate-
related policy modeling. 

While the model shows promise, it is important to 
acknowledge potential limitations and biases. The dataset may 
suffer from underreporting or regional inconsistencies in data 
collection. Furthermore, the model does not account for 
temporal dynamics or external policy shifts, which could 
influence real-world emissions. Incorporating uncertainty 
estimation and confidence intervals is recommended for more 
robust application in decision-making. 

RESULTS 

Our ML analysis reveals a persistent rise in methane 
emissions from industrial natural gas engines, primarily 
resulting from incomplete combustion phases and the 
degradation of catalytic after-treatment systems. By training 
models on operational and emissions data collected from these 
engines, we identified patterns of inefficiency that traditional 
monitoring systems failed to detect in real time. The results 
demonstrate that ML algorithms can dynamically optimize 
exhaust treatment parameters such as air-fuel ratios and 
catalyst temperature thresholds while also predicting 
potential leak points for timely intervention. This intelligent 
approach significantly improves predictive accuracy and 
responsiveness, addressing the limitations of legacy 
infrastructure. The outcome supports the deployment of AI-
driven strategies as viable, scalable tools for reducing methane 
slip and aligning engine performance with U.S. 
decarbonization and clean energy policies. 

Figure 9 illustrates the top 10 countries with the highest 
methane emissions from the energy sector between 2019 and 
2021, with China, Russia, and the United States leading by 
significant margins. This visualization is highly relevant to our 
study as it underscores the critical role of industrial natural gas 
infrastructure and operations in contributing to global 
methane emissions. The chart supports the urgency of 
implementing AI-driven monitoring and mitigation systems, 
especially in high emitting nations, to detect and control leaks 

in real time. It highlights a global disparity in emission 
volumes and emphasizes the need for smart, region-specific 
exhaust after-treatment strategies as a central theme in your 
review. By focusing on the energy sector, the data reinforces 
your argument that applying ML and predictive maintenance 
can drastically reduce methane slip from natural gas engines, 
thereby aligning with global climate commitments and U.S. 
clean energy goals. 

The bar chart in Figure 10 displays the average absolute 
SHAP values for each feature, indicating their relative impact 
on the random forest model’s methane emission predictions. 
The global aggregate feature (region_World) and the total 
emission segment (segment_Total) have the highest influence, 
suggesting that broad-scale emission trends drive most of the 
model’s output. Temporal information (year) ranks third, 
reflecting strong year-to-year emission dynamics. Regional 
breakdowns particularly the Asia Pacific and Europe and 
emission types (e.g., type_Energy and type_Other) follow, 
demonstrating that geographic and categorical distinctions 
also meaningfully shape predictions. Lower-ranked features 
(e.g., region_Middle East, region_Central, and South America) 
contribute less individually but collectively ensure the model 
captures finer regional variations. Overall, Figure 10 confirms 
that while global and total-segment factors dominate, a 
combination of temporal, regional, and sectoral attributes is 
necessary for accurate and interpretable methane emission 
forecasting. 

SHAP Plot of Feature Impact on Methane Emission 
Predictions 

The SHAP summary in Figure 11 illustrates how individual 
feature values drive the random forest model’s methane 
emission predictions: each dot represents a single 
observation’s SHAP value (impact on the model output), 
colored by the feature’s actual value (blue = low, red = high). 
Notably, high values of region_World and segment_Total (in 
red) correspond to strongly positive SHAP values, indicating 
that global-scale emissions and total segment emissions 
substantially increase predicted methane outputs. Conversely, 

 
Figure 9. Top 10 countries with the highest methane 
emissions from the energy sector between 2019 and 2021 
(Source: Authors’ own elaboration) 

 
Figure 10. Feature importance ranked by mean absolute SHAP 
value (Source: Authors’ own elaboration) 
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lower values of these features (in blue) push predictions 
downward. Temporal effects (year) and regional distinctions 
such as Asia Pacific and Europe also show clear stratification: 
later years and regions with historically higher emissions 
elevate model forecasts, while earlier years and lower-emitting 
regions have a dampening effect. Features like type_Energy 
and type_Other display more moderate but consistent 
influence, underscoring the importance of source 
categorization. This granular interpretability confirms that 
our AI-enhanced approach not only achieves high accuracy 
(MAE = 2.71, R² = 0.81) but also provides transparent, 
actionable insights into which factors most drive methane 
emissions, guiding targeted mitigation strategies. 

Methane emission trends from the energy sector (2000-
2022) 

Figure 12 displays the global methane emissions trend 
from the energy sector between 2000 and 2022, with oil, 
natural gas, coal, and bioenergy identified as dominant 
sources. Using time series data fed into our ML model, we 
observed a pronounced and consistent increase in methane 
emissions from natural gas operations and insight that 
reinforces this study’s focus on methane slip in industrial 
natural gas engines. The model revealed that emissions from 
natural gas have not only grown steadily but are also strongly 
correlated with inefficiencies during combustion stages, 
particularly in lean-burn engine configurations. These 
findings validate the need for AI-powered interventions such 
as predictive maintenance algorithms, IoT assisted leak 
detection, and optimized catalytic converter control. The 
results also demonstrate how ML can enhance the precision of 
emission forecasting and inform targeted mitigation 
strategies. This supports the broader goal of integrating AI 
into exhaust after-treatment systems to reduce methane 
output and align with U.S. decarbonization and clean energy 
policies. 

Emission Distribution 

Figure 13 presents the emission distribution profile 
derived from ML analysis of network-level data across key 
segments of energy infrastructure, including gas extraction, oil 
processing, and electricity generation. The trained model 
identified offshore gas and oil operations, along with fossil fuel 
based electricity systems, as major contributors to methane 
emissions. This aligns with our research objective of 
mitigating methane slip in industrial natural gas engines. 
Using supervised learning techniques, emission intensity 
indicators such as value and ID were classified to highlight 
segments with high operational inefficiencies. The model’s 
output emphasizes the critical role of AI-driven solutions, 
including IoT integrated leak detection and predictive 

 
Figure 11. SHAP plot of feature impact on methane emission 
predictions (Source: Authors’ own elaboration) 

 
Figure 12. Methane emission trends from the energy sector 
(2000-2022) (Source: Authors’ own elaboration) 

 
Figure 13. Emission distribution (Source: Authors’ own 
elaboration) 
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maintenance frameworks. Specifically, offshore gas 
infrastructure emerged as a high-priority target for ML-
optimized catalytic after-treatment systems, capable of 
minimizing methane slip during both extraction and 
combustion processes. These results validate the application 
of ML in emission source identification and underscore its 
potential in advancing U.S. clean energy compliance through 
intelligent, real-time methane control in industrial systems. 
Methane Emission Patterns Across Major Sectors 
Agriculture, Energy, Waste, and Other Between 2019 and 
2021 

Figure 14 presents methane emission patterns across 
major sectors agriculture, energy, waste, and other between 
2019 and 2021, with the energy sector consistently emerging 
as the leading source. Using ML algorithms trained on 
historical emissions data, this study identified industrial 
natural gas engines as key contributors within the Energy 
category, primarily due to methane slip from incomplete 
combustion and under-optimized exhaust systems. The model 
revealed strong temporal emission trends and spatial clusters 
of high-output nodes, reinforcing the need for AI-driven 
strategies. These include predictive maintenance of catalytic 
converters, IoT-based real-time leak detection, and ML 
optimization of engine air-fuel ratios. The predictive 
capabilities of the model highlight critical emission hotspots, 
enabling targeted interventions. This evidence supports the 
integration of intelligent control systems to minimize 
methane slip, improve exhaust after-treatment performance, 
and align operational practices with U.S. clean energy and 
climate mandates. 

3D Surface Emission Model Prediction 

Figure 15 presents a 3D surface emission model developed 
using ML techniques to analyze methane emission trends from 
2019 to 2021. In this study, the model was trained on multi-
dimensional datasets including engine load, exhaust 
temperature, and time-series emission readings from 
industrial natural gas engines. The ML predictions revealed 
spatial and temporal hotspots of methane slip, particularly 
during specific load conditions and transient states. Notably, 
the model demonstrated a declining emission trajectory when 

AI-driven control strategies such as adaptive air-fuel ratio 
tuning and real-time catalytic converter optimization were 
simulated. These results validate the potential of AI-based 
interventions to enhance exhaust after-treatment efficiency 
and reduce methane emissions. This predictive modeling 
capability emphasizes the value of integrating intelligent 
monitoring systems into industrial infrastructure to achieve 
proactive maintenance, improve regulatory compliance, and 
support U.S. clean energy and climate objectives. 

Model Comparison and Justification for Random Forest 
Selection 

In this study, a methane emissions dataset from Kaggle 
containing over 2,000 records (2018-2021) was used to develop 
a ML-based prediction model. After preprocessing to handle 
missing values and standardize formats, the dataset was 
filtered to focus on the energy sector, particularly industrial 
natural gas engines. EDA revealed regional emission patterns, 
with China, Russia, and the United States identified as top 
emitters. The data was split into training (80%) and testing 
(20%) sets, with categorical variables encoded using one-hot 
encoding. Three regression models linear regression, gradient 
boosting, and random forest were evaluated using MAE and R² 
score (Table 1). Among them, the random forest regressor 
achieved the best performance (MAE: 2.71, R²: 0.81) due to its 
ability to handle non-linear relationships, accommodate both 
categorical and numerical features, and reduce overfitting 
through ensemble learning. Unlike linear regression, which 
assumes linearity, and gradient boosting, which can be 
sensitive to noise and parameter tuning, random forest offers 
a robust and stable approach, particularly for datasets with 
mixed data types and complex patterns. Hyperparameter 
tuning using grid search further optimized its accuracy. 

 
Figure 14. Methane emission patterns across major sectors 
agriculture, energy, waste, and other between 2019 and 2021 
(Source: Authors’ own elaboration)  

Figure 15. 3D surface emission model prediction (Source: 
Authors’ own elaboration) 

Table 1. Model comparison and justification for random forest 
selection 
Model MAE R² score 
Linear regression 3.84 0.61 
Gradient boosting 2.93 0.76 
Random forest 2.71 0.81 
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Feature importance analysis and SHAP values revealed that 
region, emission type, and base year were the most influential 
predictors, showcasing the model’s interpretability and its 
potential for scalable methane emission forecasting aligned 
with clean energy objectives.  

CONCLUSION 

AI has become a pivotal tool in mitigating methane 
emissions, offering advanced capabilities in detection, 
prediction, and real-time monitoring. Through ML algorithms 
and big data analytics, AI enables the processing of complex 
datasets such as those provided by satellite-based systems like 
MethaneSAT to detect methane leaks with greater accuracy 
and speed (Tadros et al., 2023). This innovation marks a 
significant advancement in modernizing emission 
management practices across the oil and gas sector, where 
conventional methods often fall short in scale and 
responsiveness (Bakhchin et al., 2024). In this study, a 
methane emissions dataset was analyzed to identify high-
emission countries and sectors, with particular emphasis on 
the energy sector’s contribution from industrial natural gas 
engines. Visualizations such as bar charts and heatmaps 
revealed key emission patterns, while a random forest 
regression model was trained to predict emission levels, 
demonstrating AI’s capability in forecasting methane outputs 
from various inputs such as region, sector type, and 
operational timeline. 

Integrating AI into methane emission control aligns 
directly with the United States’ clean energy and climate goals 
by enhancing regulatory compliance, operational 
transparency, and proactive environmental management. 
However, effective deployment requires overcoming 
challenges related to outdated industrial infrastructure, lack of 
standardized data protocols, and regulatory inertia (Reddy et 
al., 2024). As such, industrial stakeholders must embrace AI 
technologies not only as tools for compliance but as catalysts 
for sustainable innovation. Strategic investment in AI today 
ranging from predictive maintenance systems to intelligent 
monitoring platforms will support long-term emission 
reductions and help forge a cleaner, more resilient energy 
landscape. This research affirms that AI enabled data analysis 
and model driven insights can significantly advance methane 
mitigation strategies and reinforce national and global 
environmental objectives. 
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