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 Recently, biomass has shown its viability as an alternative to fossil fuels. Due to the growing trend in greenhouse 
gas emissions generated by the continual burning of fossil fuel products, it will be advantageous for humanity to 
seek a more sustainable and renewable source of energy. Due to its availability, biomass has a promising approach 
as a feedstock for bioconversion processes that produce energy, fuels, and other chemicals. The carbon dioxide 
generated by burning biomass has no influence on atmospheric carbon dioxide since it is derived from a 
renewable source. Despite these benefits, its adoption in bioconversion and biorefinery processes has 
traditionally been hindered by its recalcitrant nature, as indicated by its intrinsic characteristics. Prior to any 
conversion process, biomass must be pretreated to enhance product recovery. To satisfy the rising need for 
renewable and sustainable energy sources, the present conversion efficiency must be improved and the 
biorefinery concept must transition from using just one biomass component (cellulose) to utilizing the complete 
biomass component. This study examines numerous pretreatment procedures used prior to any conversion 
process, the challenges faced, and the future of biomass pretreatment technologies. Physical, hydrothermal, 
chemical, oxidation, biological, and hybrid pretreatment techniques are evaluated. The review indicates that the 
ideal approach to biomass pretreatment must be able to deal with the recalcitrant nature of biomass, enhance 
the crystallinity of cellulose, and provide the greatest recovery of biofuels, bio-char, sugars, and other industrially 
relevant bioproducts. The data offered in this study will equip readers with the knowledge necessary to effectively 
identify solutions to pretreatment problems and energy generation from pretreated biomass. 
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INTRODUCTION 

The global increase in energy demand has greatly 
contributed to greenhouse gas emissions with the industrial 
and transport sector as major contributors. Several countries 
have directly felt the impact of global warming on the 
environment and are committed to implementing the Paris 
Climate Agreement, which calls for the reduction of carbon 
emissions to tame the annual temperature increase to below 
1.5°C. A lot of resources have been allocated to research to 
develop better technologies and policies that will quickly 
address the challenge of global warming. Alternative energy 
sources, which are environmentally friendly like solar, wind, 
hydropower, and biomass have been proposed (Figure 1). 

Over time, the issue of the high cost of new technologies 
slowed down the transition to renewables. But in the last 10 

years, the maturity in technological advancement has 
tremendously reduced the cost of renewables to even surpass 
hydropower (Ang et al., 2022). To effectively reduce carbon 
emissions in the environment, a robust alternative fuel is 
needed to replace fossil fuels. Since almost all sectors of 
human existence need a source of energy, an alternative 
compromise that is modern, less costly, and environmentally 
sustainable should be explored. On this basis, biomass has 
emerged as the most promising option with the lowest carbon 
emissions (Yang et al., 2022). Similarities between products 
gotten from biomass and that of fossil fuels make it the best 
substitute (Hlavata et al., 2014). Despite these advantages, one 
of the main causes of biomass under exploitation is the poor 
quality of biomass, which is often described in terms of its 
intrinsic characteristics (irregular size, energy density, bulk 
density, high moisture content, and low energy density) 
(Anukam & Berghel, 2020).  
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To maximize product recovery, biomass must be pretreated 
before any conversion process. The development of 
biochemical and thermochemical routes for the conversion of 
biomass to energy and other bio-products with minimal 
environmental implications has been the subject of intensive 
study. In contrast to the biochemical routes, which employ 
living organisms to convert biomass into gaseous and/or liquid 
fuels (e.g., bioethanol and biogas), the thermochemical route 

employs heat to disrupt the complex chemical structure of 
biomass (specifically, lignocellulosic biomass like wood) into a 
wide range of products, such as fuels, biochar, heat, chemicals, 
bio-oil, and power (Zhang & Zhang, 2019) (Figure 2). 

The economic feasibility of the biomass energy generation 
process relies heavily on pretreatment, which results in 
structural, physical, and chemical changes to the biomass 
(Anukam et al., 2019). In this way, biorefinery and 

 
Figure 1. Modern renewable energy generation by source (Ritchie et al., 2022) 

 
Figure 2. Biomass usage by region in the year 2021 measured in terawatts-hours (TWh) per year (Ritchie et al., 2022) 
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bioconversion interests determine the pretreatment methods 
used for biomass (Lu et al., 2019). Biological, chemical, and 
physical pretreatments are only a few of the many types 
available. Later, we go into deeper depth on the various types 
of pretreatment.  

The study of the processes involved in the conversion of 
biomass to energy and bioproducts is difficult because of the 
complexity of biomass itself. One of the biggest obstacles to 
researching the impact of altering biomass pretreatment and 
process parameters is the absence of high throughput, reliable 
and fast methods for analyzing and tracking biomass 
components important for energy generation and other value-
added products (Figure 3). 

Based on the scope of this study, the following are the 
primary research questions explored: 

1. How does pretreatment improve lignocellulosic 
biomass quality to maximize product recovery? How 
does each method work? Which pretreatment method 
has better performance, and why do some thrive less? 

2. How have pretreatment methods for bio-product 
synthesis processes evolved in recent years? 

3. What are the main challenges that prevent the 
widespread use of today’s improved biomass 
pretreatment methods? 

In order to answer these research questions and better 
comprehend the properties of pretreated and non-pretreated 
biomass important to the production of fuels and chemicals, 
this review paper provides a critical assessment of 
Lignocellulosic materials and explores current methods of 
selective pretreatments, including extrusion, irradiation, 
steam explosion, deep eutectic solvents, wet oxidation, 
enzyme, and more, by researchers discussing the limitations of 
current pretreatment technologies. The rest of the article 

presents the advancements in bioenergy generation from 
pretreated biomass, the challenges of these technologies and 
suggestions to overcome them, and finally, the future of 
biomass pretreatment. It is expected that great progress will 
be made in the area of sustainable energy and chemical 
production from biomass as our understanding of the 
fundamentals of biomass pretreatment improves. 

LIGNOCELLULOSIC MATERIALS 

Lignocellulose-containing materials are typically 
composed of cellulose (40-50%), hemicellulose (25-35%), and 
lignin (15-20%). The variation of the amount of each 
component with the quality differs with the plant in question 
(Omiyale, 2022). Cellulose is a linkage of ß-1,4 glucosidic 
bound with glucose residues called ‘cellobiose.’ The structure 
of glucose exists in different levels of crystallinity index, which 
may be generally classified into crystalline (difficult digestion) 
and amorphous. Hemicellulose is a biopolymer of pentose 
(xylose and hexuronic acids), glucan, and hexose sugars 
(glucose, mannose, and rhamnose). Hemicellulose is degraded 
easily through dilute chemicals (Khan & Ahring, 2019). 

Lignin, the primary recalcitrant moiety in a lignocellulosic 
material, is composed of aromatic constituents of carbon-to-
carbon and carbon-to-oxygen chains such as p-coumaryl 
alcohol, synapyl alcohol, and coniferol alcohol unit (Yoo et al., 
2020). However, its recalcitrant nature originates from the fact 
that it is covalently bonded to hemicellulose, making it an 
essential component of the lignocellulose complex. Biofuel 
and other bioproducts are challenging to synthesize without 
oxygen because it is hard to bond hemicellulose to lignin, 
crystallize cellulose, and degrade enzymes’ access to the 
structure bonds. Therefore, the pretreatment and pre-

 
Figure 3. Biofuel production from biomass by region measured in terawatt-hours (Twh) per year (Ritchie et al., 2022) 
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processing of lignocellulosic materials are essential in 
achieving high yields of degradation products (Monlau et al., 
2012, Olajuyigbe et al., 2019; Omiyale, 2022) (Table 1). 

RECENT SELECTIVE PRETREATMENT OF 
LIGNOCELLULOSIC MATERIALS 

Figure 4 shows the structure of lignocellulose material. 

Physical Pretreatment 

Physical pretreatment of biomass involves pre-processing 
methods that affect the pore space, grain size, crystallinity or 
amorphous cellulose, surface area, etc. It does not include 
adding chemicals or microorganisms (Jędrzejczyk et al., 2019). 
Figure 5 shows the types of physical pretreatment. 

Mechanical pretreatment 

Mechanical pretreatment involves using various milling 
processes such as colloid, vibratory, hammer, grinding, mesh 

Table 1. Composition of some common sources of biomass (Sun & Cheng, 2002) 
Lignocellulosic materials Cellulose (%) Hemicellulose (%) Lignin (%) 
Coastal bermudagrass 25 35.7 6.4 
Corn cobs 45 35 15 
Cotton seeds hairs 80-95 5-20 0 
Grasses 25-40 35-50 10-30 
Hardwoods steam 40-55 24-40 18-25 
Leaves 15-20 80-85 0 
Newspaper 40-55 25-40 18-30 
Nut shells 25-30 25-30 30-40 
Paper 85-99 0 0-15 
Primary wastewater solids 8-15 NA 24-29 
Softwoods stems 45-50 25-30 25-35 
Solid cattle manure 1.6-4.7 1.4-3.3 2.7-5.7 
Sorted refuse 60 20 20 
Swine waste 6 28 NA 
Switchgrass 45 31.4 12.0 
Waste papers from chemical pulps 60-70 10-20 5-10 
Wheat straw 30 50 15 

 

 
Figure 4. Structure of lignocellulose material (Khan et al., 2022) 
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grating, and sandpapering to organize the recalcitrant 
structure of lignocellulosic biomass. This type of pretreatment 
is supported by a biogas yielding experiment after mesh 
grating and sandpapering with 26% more yield over control 
(Tsapekos et al., 2016, 2018). In an investigation, degradation 
of rice straw by chip rolling was a more accessible particle size-
dependent mainly due to a significant surface area increase 
and more hydrolysis enzyme exposure. Notably, particle size 
reduction far more than 0.35 mm to 1 mm can yield inhibition 
products such as fatty acids, eventually reducing the anaerobic 
digestion (Menardo et al., 2015). 

Extrusion pretreatment 

Extrusion pretreatment involves structure collapsing and 
shredding by forcing through a threaded die or tiny orifice. 
Heat is generated and forms a factor in the process. The 
effectiveness was proven in an experiment where rice straw 
was extruded and gave 40% more CH4 yield than milled. 
(Tsapekos et al., 2015). Furthermore, adopting twin-screw 
extruders can further increase productivity by some 16.5% CH4 
yield. (Pérez-Rodríguez et al., 2018). 

Irradiation pretreatment 

Irradiation pretreatment typically involves high-energy 
beams with low wavelength (low energy) such as microwaves 
(10-1 m), which initiate a rapid spinning motion of molecules 
with opposing polarity leading to the increase in temperature 
and consequently enhancing its fractionation. In this case, 
into lignin and cellulose. Microwave pretreatment alone might 
not be sufficient enough to yield fruitful results with a wide 
margin. Still, success was recorded with microwave irradiation 
and ionic liquids at about 40-70% more cellulose 
saccharification (Ogura et al., 2014). Recent research has 
shown the use of a more powerful wavelength (10-8 m) like 
ultraviolet light, which has different effects based on the 
biomass type for irradiation pretreatment. A study using 
ultraviolet light on softwood and hardwood yielded a more 
significant result for softwood even though more pronounced 
effects were on pyrolytic than thermal stability, consequently 
leading to a reduction in lignin content and more oxygen 
content (Mattonai et al., 2021). Another study revealed that 
after corn straw was pretreated with ultrasonic waves (1.9 cm 
wavelength) a 6.86 ml/gd yield of CH4 was produced over the 
untreated sample at 4.54 ml/gd CH4 (Feng et al., 2013). 

Hydrothermal Pretreatment 

Figure 6 depicts the types of hydrothermal pretreatment. 

Liquid hot water pretreatment 

This hydrothermal pretreatment involves boiling water 
(maintained in liquid form) at an elevated temperature of 
about 160-200 °C and increasing the vapor pressure to 0.3 psi 
to generate smaller subunits of hemicellulose, de-
lignification, and increased biomass surface area (Ren et al., 
2020). Researchers became very popular with the liquid hot 
water pretreatment method due to the cost advantage over 
older, costlier chemical methods (Ji et al., 2020). At the end of 
various studies, LHWP significantly increased the yield of 
bioproducts by about 3% more when combined with other 
methods (Wang et al., 2016, 2021). 

Steam explosion pretreatment 

Boiling water is maintained as saturated steam (160-250 
°C) in a pressured container (72.5-725.2 psi) for a short time 
then pressure is dropped suddenly to disrupt the recalcitrant 
nature of the biomass (Zheng et al., 2014). Hemicellulose 
usually gets broken down with the additional significant 
transformation of lignin and conversion of acetyl branches of 
hemicellulose to organic acids, which also catalyzes the 
reaction in a favorable direction and contributes to easier 
digestion of the lignocellulosic biomass (Lee et al., 2020). This 
method is generally referred to as a cost-effective and greener 
pretreatment compared to chemical methods, as no toxic 
waste is produced from chemicals or catalysts (Khan et al., 
2022). 

Chemical Pretreatment 

Employing chemical solutions in de-lignification, easy 
anaerobic digestion, and bioproducts/biofuel yield from 
biomass has perks and drawbacks, as do all pretreatment 
methods. Chemical methods gained the most concern about 
the ecotoxicity of wastes and chemical persistence in the 
environment (Khan et al., 2022). Some perks include efficient 
liquidation of bound components, pore size, and increase in 
surface area, but concerns are still on converting degraded 
sugars to furfural. A study on acidic pretreatment led to 
dehydration of hemicellulose to hydroxymethylfurfural and 
furfural and again to unwanted solids, which accounted as 
false lignin when being analyzed (Amiri et al., 2014; He et al., 
2020; Zhao et al., 2012). However, there is the problem of 
adherence of this fake lignin onto cellulose surface to hinder 
efficient anaerobic digestion. Due to recent outcry in support 
of green earth, the friendliest chemical types now furnish 
biodegradability and reduced toxicity (Khan et al., 2022). 
Figure 7 depicts recent chemical pretreatments. 

 
Figure 5. Types of physical pretreatment (Aftab et al., 2019) 

 
Figure 6. Types of hydrothermal pretreatment (Sarker et al., 
2021) 
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Alkali pretreatment 

Alkali pretreatment forms one of the traditional methods 
researchers use because of its action on biomass surface area, 
pore size improvement, and breakdown of hemicellulose into 
sugar (Usman et al., 2014). Alkali breaks the ester linkages of 
lignin, cellulose, and hemicellulose, leading to amorphous in 
cellulose, dissolution of lignin, and ultimately improved 
downstream processes (Usman et al., 2014). Some of the most 
widely used alkali in this method, according to Usman et al. 
(2014), are calcium oxide, potassium oxide, ammonia, and urea 
(Siddhu et al., 2016). According to Khan et al. (2022), an 
improved CH4 yield of 56.4% was recorded using potassium 
oxide for pretreatment over non-pretreated corn stover. In the 
case of ammonia, it stabilizes the pH conditions and also adds 
to the bioproduct yield by 9% (Khan et al., 2022). 

Acidic pretreatment 

The biomass undergoes pretreatment using organic and 
inorganic acids such as HNO3, H3PO4, C4H4O4, H2SO4, and 
HCl (Ilanidis et al., 2021). It is a standard procedure to carry 
out pretreatment involving concentrated acids containing 30-
70% at temperatures under 100 °C and those using dilute acids 
at around 100-250 °C. The acids can be recovered for 
continuous use (Zheng et al., 2014). A study on the 
pretreatment of wheat straw recorded an increased bioproduct 
yield of 15% for 60 minutes. 

Organosolv pretreatment  

Orgnolv pretreatment involves the use of organic solvent 
for pretreatment. This chemical pretreatment is done with 
solvents characterized by low boiling points (ethanol and 
acetone). It can be catalyzed or not with excellent results. 
However, sulfuric/oxalic acid (acid/base) as catalysts yielded 
better de-lignification (Huijgen et al., 2011; Yao et al., 2018). 
This proved very effective on all types of biomasses but with 
serious lignin modification due to burning from high 
temperatures (Meng et al., 2020a).  

An example is CELF (Co-solvent enhanced lignocellulosic 
fractionation). A pretreatment method employs THF 
(tetrahydrofuran), a neutrally charged and chemically inert 
solvent, and water as a solvent mixture. Studies have proved it 
is very effective in lignin removal (by hydrophobic interaction) 
and the breakdown of polysaccharides (Mostofian et al., 2016; 
Smith et al., 2016). An example is the corn stover experiment 
where Co-solvent enhanced lignocellulosic fractionation 
yielded 95% pentoses and hexoses over pretreatment by dilute 
acids (Nguyen et al., 2015). 

GVL (gamma-valerolactone) is another example of a co-
solvent for lignocellulosic pretreatment. It is produced from 
sugar disruption, HMF, and levulinic acid products (Ding et al., 
2014; Mostofian et al., 2016). It is inert, mixes in water, and 
possesses a low melting temperature (Raj et al., 2021). It is also 
reportedly eco-friendly and biodegradable and has 
applications in manufacturing polymers and bioproducts 
(Kerkel et al., 2021). Its mechanism of improving sugar yield is 
due to breaking 1-4 glycosidic bonds (Luterbacher et al., 2014). 

Acid hydrotropes 

Acid hydrotropes are recent biomass pretreating solvents 
such as benzene sulfonic, maleic acid, etc. (Cai et al., 2020). Its 
de-lignification properties are due to its amphipathic nature. 
The water-hating lignin is shielded away from the lipophilic 
areas of the solvent through pi-pi interaction, which is then 
separated by dilution with water below its aggregate 
temperature (Ji & Lv, 2020).  

The acid hydrotrope eliminated the challenge of high 
reaction time and temperatures (about 150 °C) caused by 
aromatic salt-containing hydrotropes, which are primarily 
used in the pulp-making industry. This advancement 
improved pretreatment by reducing the reaction time and 
temperatures to below 30°C (Zhu et al., 2019).  

Ionic liquids and deep eutectic solvents 

Another recent pretreatment solvent is the ionic liquids. 
They are salts of organic origin that possess melting points 
below 100 °C. They are also widely reported as non-toxic and 
eco-friendly. This is due to their high thermal stability and low 
vapor pressure making a recovery and re-use possible. 
(Mallakpour & Dinari, 2012). Diakylimidazolium, chlorine, and 
protic ionic liquids have recently gained more popularity 
among green chemistry researchers (Zhang et al., 2021). The 
organized nature of the lignocellulosic biomass is disrupted by 
competition for hydrogen-bonded compounds (Agbor et al., 
2011). 

Deep eutectic solvents (DES) possess almost similar 
properties as Ionic liquids. However, ionic liquids are cationic 
and anionic. At the same time, deep eutectic solvents contain 
two or more solids bonded together in hydrogen bonding to 
form a compound with a much more reduced melting point of 
the separate solids (Smith et al., 2014). They can be formulated 
from cheap derivatives. An example is chlorine chloride, which 
is cheap, eco-friendly, and, most importantly, can receive 
hydrogen bonds. 

 
Figure 7. Types of chemical pretreatment (Aftab et al., 2019) 
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Oxidative Pretreatment 

Oxidative pretreatment includes the types, as shown in 
Figure 8. 

Wet oxidation pretreatment 

The biomass is wet with water and oxidized through 
oxygen-donating species such as hydrogen peroxide, air, 
oxygen, and ozone. The system’s temperature and pressure 
increase to 130-350 °C and 5.5-2,900.8 psi, respectively. The 
oxygen-donating species generate free radicals, which 
increases the reaction rates by bombarding the lignocellulosic 
biomass (Khan et al., 2022). The wet oxidation pretreatment 
was used in a study by (Almomani et al., 2019; Hendriks & 
Zeeman, 2009), but it caused a loss of hemicellulose and lignin 
matter. 

Advanced wet explosion pretreatment 

This type of oxidative pretreatment is an improvement in 
wet explosion pretreatment. How successful the method will 
be, depends significantly on factors such as temperature, 
pressure, and time of the process. The system’s temperature is 
around 140-220 °C and pressure about 75.5-2,900.8 psi. Then 
there is provision for a sudden drop in pressure in the 
bioreactor. This method was initially studied by (Ahring et al., 
2015; Biswas et al., 2014).  

The process effectively breaks down hemicellulose into 
sugars, facilitates the de-esterification of hemicellulose acetyl 
groups to produce organic acids, and carries out de-
lignification into hemicellulose and cellulose. (Ahring et al., 
2015, Georgieva et al., 2007). 

Biological Pretreatment 

This method employs the use of enzymes or enzyme-
producing microbes. Enzymes including cellulases 
(endoglucanase, exoglucanase, and β-glucosidase) and 
hemicellulases are used to break down the organized 
cellobiose β-1,4 glycosidic linkage at various points to 
generate high yield D-glucose (Khan et al., 2022; Omiyale, 
2022). The enzyme-producing microorganisms can be 
actinomycetes, fungi, and bacteria (Olajuyigbe et al., 2019). 
The biological method is considered eco-friendly but might be 
pricey (Usman et al., 2020). Biological pretreatment includes 
the ones, as shown in Figure 9. 

Fungal pretreatment 

Fungal pretreatment involves using fungi found naturally 
in decaying wood. These fungi are used to attack the lignin or 
cellulose component. They are generally classified into brown, 
soft, and white rot fungi due to their activity in different 

conditions of temperature and pH, as they are found naturally 
in different niches (Wagner et al., 2018). A study (Shah et al., 
2019) reported that fungal Pretreatment (bacillus species) on 
rice straw generated 76% more biofuel than untreated and 
generally exhibited low lignin content.  

Microbial consortium pretreatment 

This type of biological pretreatment involves using 
enzyme-producing microorganisms that can co-exist naturally 
or by adaptation in pretreatment activities (Omiyale, 2022). 
The enzymes produced are purified and used for pretreatment, 
or the microbe growth is allowed to yield the enzyme directly 
into the medium (Olajuyigbe et al., 2019). Omiyale (2022) 
reported a 2% D-glucose yield from the fungal consortium of 
cyberlindnera fabianii and pichia kudriavzevii over untreated 
corn cob biomass. 

Enzyme pretreatment 

Enzyme pretreatment involves the introduction of 
cellulose, hemicellulose, and laccase (lignin breaking) 
produced by enzyme-producing microbes. This method is 
considered the slowest. Substantial reduction in sugar yield, as 
evident in the direct introduction of microbes, is absent in this 
method (Khan et al., 2022). The major drawback is the high 
cost of enzymes, which sometimes may not be commensurate 
with the yield of bioproducts. Processes that require anaerobic 
digestion of biomass to yield CH4 do not commonly practice 
this pretreatment because of the low yield mentioned (Shi et 
al., 2021; Zheng et al., 2014) (Table 2). 

Hybrid Pretreatment 

Some promising pretreatment methods are combined to 
minimize individual disadvantages (e.g., cost and incomplete 
process) by taking advantage of their synergistic properties 
(greater efficiency). Researchers have experimented over time 
and have reported successes (Usman et al., 2019a).  

The combination of thermal and chemical methods studied 
by (Dutta et al., 2022) eliminated the problems of very low pH 
and the production of toxic derivatives, which interfere with 
bioproducts (Usman et al., 2019b). Another combination that 
works synergistically is physical and biological pretreatment. 
A study revealed that the pretreatment of biomass with fungi 
and chemical/physical pretreatment makes a cheap and eco-
friendly approach to producing D-glucose and fuel (Shirkavand 
et al., 2016). 

Some other combinations that work for some reason are 
shown in Table 3. 

 
Figure 8. Types of biological pretreatment (Aftab et al., 2019)  

Figure 9. Types of oxidative pretreatment (Zhou et al., 2022) 
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A literature search on PubMed on pretreatment hybrid 
studies compared with single pretreatment works yielded 
significantly more results in favor of single studies. More 
hybrid studies need to be done to discover more sustainable 
synergistic benefits. 

CHALLENGES AND FUTURE OF BIOMASS 
PRETREATMENT 

It has been established that pretreatment is essential and 
significantly determines the quality of biofuel, sugars, and 
other downstream products that will be generated. The 
ultimate aim of pretreatment is to modify/bypass inherent 

structural barriers to biomass hydrolysis for the specific end 
product (lignin alcohols, sugars, biofuels, etc.). Therefore, the 
specific end products dictate the pretreatment methods to be 
used. Some problems encountered during biomass 
pretreatment can be worked on to improve the processes for 
better practices (Table 4). 

The mechanical reduction of biomass size increases the 
accessibility of pretreatment solvents or microorganisms, 
which favors bio-product production. Still, excessive size 
reduction must also be accounted for, as this poses a challenge 
at more than 0.35 mm to 1 mm. The broth produces inhibition 
products such as fatty acids due to the bioreactor contents’ 
reduced surface thickness of the broth layer. This disrupts the 
anaerobic degradation process after pretreatment (Menardo et 
al., 2015). Heat generation may also play a role in excessive 

Table 2. Pretreatment enzymes and functions 
Enzyme system Scientific name Function Reference 

(Cellulase) endoglucanases Endo-1,4-β-D-glucan 4-
glucanohydrolase 

Hydrolyses, at random, α-1,4 glucosidic bonds at internal 
amorphous sites Omiyale (2022) 

(Cellulase) cellobiohydrolases 
1,4-β-D-glucan 

cellobiodehydrolase 
Act on the reducing or nonreducing ends of cellulose 

chains, liberating cellobiose Omiyale (2022) 

(Cellulase) β-glucosidases β-glucoside glycosyl hydrolase Hydrolyze cellobiose or cello-oligosaccharides to glucose Omiyale (2022) 
Laccase Glycoprotein Breaks down lignin Khan et al. (2022) 

 

 

Table 3. Hybrid pretreatment 
S/N Methods in combination Biomass Synergistic advantage Reference 
1 Ultrasonic vs. electrolysis Mix microalgae biomass Low energy inputs, low costs Kumar et al. (2017) 
2 Wet-oxidation vs. alkali Sewage sludge Reduced inhibitors generation Khan and Ahring (2019) 

3 Wet-oxidation vs. steam 
explosion Sewage sludge Overcomes large particle size & hard 

biomass Khan and Ahring (2021) 

4 Ionic liquids vs. ultrasound 
vs. microwave Eucalyptus saw dust 

More cellulose saccharification, more de-
lignification, hemicellulose digestion, 

erosion of crystalline parts 
Beig et al. (2021) & Ogura et al. (2014) 

5 Thermal vs. chemical Wheat straw More biomass solubility Dutta et al. (2022) & Usman et al. 
(2019a) 

 

Table 4. Summary of challenges and future of biomass pretreatment 
Pretreatment Challenges Recent advances Reference 

Solvents 
Residual contamination by sugars, requires 
greater than 50% acid hydrotopes solvent 
therefore these is fear of acidity problem. 

Recyclability/reuse of solvents and catalysts, low 
energy requirements for recycle, low cost 

bioproduction of solvents, low toxicity and eco-
friendly, specifically designed to overcome 

shortcomings of traditional methods relating to 
harshness (structural degradation of product of 

interest), reactor design to counter solvent acidity, 
compatibility of solvents with multiple feedstocks for 

increased yield & rating of cellulose, lignin, & 
hemicellulose (some ionic liquids and DES), use of AI 

for solvent performance & behavior predictions. 

Hennequin et al. (2021) & 
Kim and Yoo (2021) 

Physical 

Greatly reduced particle size of biomass 
minimizes the thickness of broth layer in 

the bioreactor (e.g., halts CH4 outflow), high 
energy requirement, does not remove lignin. 

Even though it is quite straightforward, eco-friendly as 
no toxic waste is generated or for anaerobic digestion 
inhibition. It consumes energy & is therefore costly 

(e.g., irradiation is mostly used for experiment 
purposes as its expensive on a commercial scale). 

Sankaran et al. (2020), 
Bochmann and 

Montgomery (2013), & 
Chaturvedi and Verma 

(2013) 

Hydrothermal 

High energy requirements, little significant 
yield improvement, higher temperature 

resulted in furfural & formic acid unwanted 
products. 

 
Alvira et al. (2010) & Ji et 

al. (2022) 

Chemical 

High alkaline concentration (NaOH) was 
still toxic for microbes after washing, very 

difficult to reuse. Acid causes degradation of 
sugars to furfural, HMF, fake lignin that 

inhibits hydrolysis. 

Research suggests alternative use of KOH as its 
beneficial for reactor microbes instead. Shinde et al. (2018)  
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power consumption characteristic of the physical 
pretreatment methods. 

The chemical pretreated biomasses generate fake lignin, 
composed of HMF and furfural, which adhere to the cellulose 
surface, disrupting anaerobic digestion efficiency. Recovery of 
pretreatment chemicals is difficult under chemical 
pretreatment. NaOH, an example of alkali used to pretreat 
biomass, is toxic to microbes even after washing due to the 
concentration needed for effective pretreatment (He et al., 
2020). 

A challenge mostly related to biological pretreatment is the 
cost of enzymes needed. This is because such enzymes come 
as highly purified products. Isolation of microorganisms and 
stimulating them to produce lignocellulosic enzymes may be a 
better option (Omiyale, 2022). Even with the successes of this 
method, it is still considered the slowest kind of pretreatment 
and then the problem of microbes depleting sugars produced 
in the bioreactor remains another challenge (Khan & Ahring, 
2021). This results in the availability of little sugars for 
conversion to bioproducts/biofuels. 

The use of organo co-solvents in biomass pretreatment is 
showing new possibilities. They show effective pretreatment 
on woody and herbaceous biomass (Meng et al., 2020a). 
Gamma valerolactone, a solvent used in the production of bio-
pharmaceuticals and polymers, exhibits many advantages, 
such as being eco-friendly, chemically stable, miscible with 
water, possessing low melting temperature, and showing 
better pretreatment results under the same mild conditions 
with other co-solvents. However, its boiling point of 
approximately 207 °C makes its recovery extremely difficult 
(Galbe & Wallbwerg, 2019). 

Acid hydrotropes cause unwanted residual sugar 
contamination, amongst other drawbacks of their use, such as 
water, solvent, and energy consumption. Future reactors are 
recommended to be built with the particular acidity potentials 
of the reaction mixture of this solvent in mind, as high 
concentrations of the solvents are needed. Ionic liquids are 
characteristic of energy-intensive recovery processes and non-
sustainable as they are produced from petroleum, which raises 
concerns about price and eco-toxicity. Before most of the 
newer solvents can be made commercially available, these 
technical problems mentioned need to be adequately 
addressed (Kim & Yoo, 2021). 

FUTURE OF BIOMASS SOLVENTS 

The old methods used for pretreatment solvent include de-
lignification, high sugar release, and re-use of solvents. These 
methods brought about the use of sugar-centric methods, 

which involve the use of catalysts and widely accepted new 
solvents, which have been reported to be eco-toxic, yield badly 
disrupted lignin due to harsh reactions. Future solvents should 
be made to meet these conditions, such as the recovery of 
high-quality lignin (not just de-lignification), derivation from 
sustainable sources, and non-toxicity. 

DES’ recovery and product quality upgrade are difficult 
because of the tough hydrogen bond between the solvent and 
the fractionated biomass. More research on how to further 
advance processes such as anti-solvent use, solid-liquid 
extraction, and liquid-liquid extraction should be worked on. 
Special care should be taken to eliminate intermediates from 
the pretreatment process in the DES used before re-use (Isci & 
Kaltschmitt, 2021). Ionic liquids and DES do not require the 
addition of acids or base catalysts as some solvents require 
because they will further aid the prevention of intermediate 
inhibitors. As a recent advancement, research into ionic 
liquids and DES that preserve lignin quality is ongoing, as 
documented by (Chen et al., 2020; Dutta et al., 2017). The 
future focus should be on research into less energy-intensive 
ionic liquids solvent recovery processes and re-address 
production sources, as petroleum production is expensive and 
not sustainable.  

Studies revealed that 𝛾 -VL as a pretreatment solvent 
outperformed other solvents under less harsh methods. 
However, difficulty arises during solvent removal for re-use 
because it possesses a boiling point of 207 oC, which makes the 
process tedious. In recent advances to this method, 
precipitation, then distillation in combination with liquid 
carbon dioxide, is used for recovery, which has been largely 
successful (Galbe & Wallberg, 2019). 

Lignin-Centric Valorization 

Employment of methods, solvents, etc., which create 
unwanted lignin structure condensation during pretreatment 
and create problems during downstream processes should be 
avoided. A study researched the use of formaldehyde in 
protecting the ether bonds of lignin through forming acetal 
links with alpha and gamma OH-groups of lignin side groups. 
Dong et al. (2019), Liu et al. (2021), Meng et al. (2020b), and 
Shuai et al. (2016) used 1,4-butanediol and cyrene to protect 
the lignin, and their results follow a pattern of preserved lignin 
linkage. As a new addition, a catalyst should be introduced to 
break down lignin immediately after it is freed to produce 
aromatic subunits and carbohydrates (Luo et al., 2021). 

Considering Hemicellulose 

Hemicellulose constitutes approximately 35% of 
lignocellulosic biomass. However, the attention of many 
researchers is mostly on lignin and cellulose but not on 

Table 4 (continued). Summary of challenges and future of biomass pretreatment 
Pretreatment Challenges Recent advances Reference 

Biological 

Unfinished removal of lignin from its bound 
state leading to formation of unwanted 

microbe-inhibitory intermediates during 
downstream processes though relatively 

green economy friendly, needs more time in 
the reactor than other methods, microbes 

deplete sugars. 

Slow hydrolysis rate determining process is being 
improved with enzymes of high hydrolytic activity, 

subject biomass to very short fungal pretreatment as 
extensive pretreatment may deplete sugars for 

improved bioproducts/biofuel yield. 

Taherzadeh and Karimi 
(2008) & Shirkavand et al. 

(2016) 
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hemicellulose, even with its apparent components used with 
cellulose in fermentation and other biological processes, 
conversion to oil, etc. Due to the tedious separation process, 
most processes precipitate out lignin and discard 
hemicellulose with catalysts and water. More research and 
focus should be targeted on the use of hemicellulose (Kim & 
Yoo, 2021). 

Accounting for Solvents in Process Design 

The use of design software to simulate bioreaction should 
account for solvents to generate fast data and give an in-depth 
analysis of the entire process. (Seidl & Goulart, 2020).  

CONCLUSIONS AND RECOMMENDATIONS 

The fundamental objective of meeting community needs 
linked to energy and environmental security is to develop 
secure and resilient systems for the sustainable conversion of 
biomass. 

There is a need for enhanced pretreatment, 
saccharification, and fermentation technologies that would 
allow for more affordable and ecologically friendly 
conversions. Cellulose has been developed as a biomaterial for 
biofuels such as biocrude and platform chemicals for creating 
additional biomaterials with added value. This is anticipated 
to contribute to the development of a practical, cost-effective, 
and environmentally friendly method of producing these 
materials. Anaerobic digestion of lignocellulosic materials 
that had been processed to lessen the complexity of 
lignocellulose’s structure resulted in a greater quantity of 
methane; this research examines the different pretreatment 
techniques used. Physical, hydrothermal, chemical, oxidation, 
biological, and hybrid pretreatment techniques are evaluated. 
The following conclusions may be taken from this review: 

1. Extreme physical pretreatments are unneeded and may 
be rather costly owing to their high energy 
requirements. 

2. The assessment indicates that the ideal approach must 
be able to handle the recalcitrant character of biomass, 
enhance the crystallinity of Cellulose, and provide the 
greatest recovery of biofuels, bio-char, sugars, and 
other industrially important bioproducts. 

3. Alkali pretreatments, in particular, are beneficial for 
anaerobic digestion; nonetheless, they might cause 
secondary environmental issues. 

4. Although breakthroughs have been achieved in 
physical and chemical pretreatments, their 
commercialization has been difficult due to increased 
energy consumption and sophisticated procedures. 

5. It has been shown that biological pretreatments are 
necessary for the anaerobic digestion of lignocellulosic 
materials and are more environmentally friendly than 
chemical pretreatments. 

However, the presence of inhibitory compounds produced 
during pretreatment remains a barrier to the efficient and 
complete use of lignocellulosic material during anaerobic 
digestion. Therefore, it is vital to develop low-cost, high-
efficiency, and environmentally friendly pretreatment 

techniques for lignocellulose material to assure its optimal 
usage in anaerobic digestion, while simultaneously addressing 
the barriers to the general adoption of these pretreatment 
methods. 
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