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 Whereas the Western Indian Ocean (WIO) has been reported to be polluted with microplastics (MPs). 
Documented information on the specific polymeric composition of these particles in seawater and sediments 
along the Kenya coast is insufficient. This study assessed the abundance and types of microplastic polymers in 
the region. Microplastics were sampled from surface water using 500µm neuston nets and from the sediments 
using a 3.6 cm-diameter corer. Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning 
Calorimetry (DSC) and Nuclear Magnetic Resonance (NMR) were used to identify the MPs polymer types. Four 
polymer types were identified of which, high-density polyethene was the most abundant at 38.3%, followed by 
polypropylene (34.6%), low-density polyethene (27.1 %), and medium density polyethene (17.1%). The results 
demonstrate the extent of exposure to microplastics of the region’s ecosystems and provide the impetus for 
proper policy briefs regarding the management and disposal of plastic waste, protect and save oceans rich in 
biodiversity for sustainable development. 

Keywords: microplastics, polypropylene, polyethylene, differential scanning calorimetry, Fourier transform 
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INTRODUCTION 

Production of plastic products over the past seventy years 
has increased rapidly, exceeding 380 million tons in 2016 
(Plastics Europe, 2017). This figure is expected to increase 
threefold by 2060 (Lebreton and Andrady, 2019) because of the 
exponentially increasing demand for plastic products. In 2010 
about 275 million tons of synthetic polymers were produced 
globally, of which about 4.8 to 12.7 million tons entered the 
oceans from populations living within 50 km from the 
coastline (Jambeck et al., 2015). Owing to covid-19 pandemic, 
plastic products are being generated rapidly, including surgical 
gloves and face masks (Khoo et al., 2021). Plastics are suited in 
many applications because they are lightweight, versatile, 
solid and durable, potentially transparent, bio-inert, excellent 
moisture barrier, and low cost. These attributes make plastics 
excellent packaging material replacing glass, metal, and paper 
as packaging materials. Pollution of oceans by microplastics is 
a threat that has attracted global attention, and more research 

is focused on the problem leading to many publications on 
ocean plastic pollution (Ryan, 2015). Plastic degradation 
occurs through physical and biological processes to form 
microplastics (Andrady, 2011), defined as particles measuring 
<5 mm (Arthur et al., 2009). Microplastics in the oceans are 
either primarily entering directly as fibres, pellets, granules, or 
second from the breakdown of microplastics (Andrady, 2015). 
Macroplastics disintegration occurs by turbulence, wave 
impact and other physical factors (Wong et al., 2020). 
Secondary microplastics are usually more than primary 
microplastics such as microbeads in toothpaste and fibres from 
fishing nets (Rodriguez et al., 2020). 

Marine sediments are habitat to bacteria, and many 
benthic organisms including mollusks, crustaceans and 
polychaetes as well as small vertebrates (Brown et al., 2008; 
Hong et al., 2018; Moore, 2008; Naji et al., 2018), and support 
plants. They are a net sink for organic carbon (Smith et al., 
2016) and a source of other economically important products. 
Wang et al. (2019) reported that microplastics are in sediments 
and their abundance would still exist in the future (Auta et al., 
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2017). Microplastics could affect the water holding capacity, 
soil fertility and stable water aggregates (Mai et al., 2018). 

Microplastics can harbour a wide range of microbial 
communities, and rafting organisms absorb and concentrate 
persistent organic pollutants (POPs) (Rochman et al., 2015). 
Owing to their bright colour and tiny size, microplastics are 
ingested by invertebrates and vertebrates (Wang et al., 2020), 
introducing POPs into the food web (Li et al., 2020; Moore, 
2008). Biomagnification occurs at higher up trophic levels 
(Setala et al., 2014), threatening fish and other marine 
organisms, even human beings (Sanganyado et al., 2020). 
Microplastics have been reported to decrease survival and 
lower fecundity in Tigriopus japonicas Mori 1938 (Lee et al., 
2013), cause analogous embryonic development in Lytechinus 
variegatus Lamark 1938 (Nobre et al., 2015). The accumulation 
of harmful POPs is likely to cause damage to organisms and 
ultimately a decrease in biodiversity. So far, studies on MPs in 
the marine environment in Kenya are limited to the study by 
Kosore et al. (2018), who studied MPs in surface water and in 
zooplanktons at Gazi Bay and oceanic waters in the EEZ, 
Awour et al. (2020), who investigated the presence of MPs in 
benthic invertebrates, Okuku et al. (2020), who studied marine 
macro-litter composition and distribution, Okuku et al. (2021), 
who studied temporal trends in marine litter on Mukomani 
beach, Okuku et al. (2021), who studied the impact of Covid-
19 pandemic on marine litter pollution along the Kenya coast, 
Kerubo et al. (2020), who studied the presence and abundance 
of microplastics in surface waters in the creeks along the Kenya 
coast and Kerubo et al. (2021), who studied microplastics in the 
marine sediments along the Kenya coast.  

Although microplastics are omnipresent (Setala et al., 
2014), information availed on chemical identification and 
thermal analysis of plastic polymers in the creeks along the 
Kenya coast is scarce. This study sought to investigate the 
abundance and type of microplastic polymers in marine 
sediments and surface water within Tudor, Port-Reitz, and 
Mida creeks along the Kenya coast. Knowledge of polymer type 
is essential for assessing plastic pollution in the marine 
ecosystem. The data and information generated will provide 
baseline data following the Kenya government gazette notice 
no. NEMA (2017) reports that 2334 of 14th March 2017 on ban 
on plastic carrier bags packages effected on 28th August 2017. 
It will also provide data and information to formulate plastic 
waste disposal and management policies to protect the 
ecosystem rich in terrestrial and marine biodiversity 
(Rochman, 2016).  

The objectives of this study were as follows; i) assess the 
presence and abundance of microplastics in surface water and 
sediments ii) identify the microplastic polymer types in surface 
water and sediments in the creeks along the Kenya coast. 

MATERIALS AND METHODS 

Study Site 

The study was carried out in three sites, two (Tudor and 
Port-Reitz Creek) in Mombasa County and one (Mida Creek) in 
Kilifi County along the Kenya Coast (Figure 1). The Kenya 
Coastal has a climate that is influenced by two seasonal 

monsoons; the Southeast monsoon lasting from April to 
October is associated with high rainfall (55-272 mm) and 
temperature range of 20-310 C and the shorter Northeast 
monsoon (November-March) that is drier with an average 
annual rainfall of 8-84 mm and hotter (23-320 C). Salinity (32-
35 PSU) and water conductivity (53 Ms/cm) are higher during 
the dry spell and low during the rainy season (Kitheka, 1998; 
Obiero and Onyando, 2013). 

Tudor creek lies between 040 40’ S and 390 00’ E (Bosire et 
al., 2016; Nguli et al., 2006) and covers a surface area of 
approximately 20 km2. The creek has a long and deep inlet 
measuring up to 20 meters long that connects a shallower 
inner basin to the open ocean (Nguli et al., 2006). Tudor creek 
comprises three parts; the marine mouth (30 m deep), the 
middle section (less than 5 m deep), and the upstream (< 1 m 
deep), which splits into different channels. The creek 
experiences semi-diurnal tides with an average mean height of 
3.2 m and 1.1 m at spring and neap tides. Tudor creek is fed by 
two main seasonal rivers, Kombeni and Tsalu, which arise from 
around Mariakani town, 32 km Northwest of Mombasa 
(Kitheka et al., 1999). River Kombeni drains about 45,000ha 
while Tsalu drains 10,000ha (Bosire et al., 2014; Nyamao and 
Ogendi, 2018). An estimated 0.9 m3s-1 of water is discharged 
into the creek, with the highest discharge occurring between 
April and June at 1.8 m3s-1 (Wakwabi and Mees, 1999). The 
creek is surrounded by populated informal settlements and 
villages such as Mushomoroni, Mikindani, Coast General 
Hospital, and Kenya Meat Commission as a result of rapid 
urbanisation that has driven the need for labour force in the 
manufacturing industries, service industries, and the Port of 
Mombasa (Maritim et al., 2016; Okuku et al., 2011). The inner 
basin is fringed by mangrove forests, mainly Rhizophora 
mucronata and Avicennia marina and mudflats (Mirriam, 
2010; Nguli et al., 2006; Owuor et al., 2019). Tudor creek passes 
under Nyali Bridge and is bordered by the Makupa causeway, 
which separates Tudor to the East from Port-Reitz to the West 
(Kitheka et al., 1999). 

Port-Reitz Creek lies to the south of Mombasa Island (040 

04’ S and 390 39’ E) and occupies an area of 1480 km2 (Kamau, 
2002). It experiences a semi-diurnal tidal pattern with an 
average mean height of 1 and 2.5 m at the neap and spring 
tides, respectively (Kamau, 2002). Port-Reitz creek receives 
freshwater from Mwache, Cha Shimba, and Mwambone 
(Kitheka et al., 1999). Mwache river discharges 215million m3 
of water annually, equivalent to 6.2 m3s-1 (UNEP, 1998). The 
creek is surrounded by highly populated villages such as Dongo 
Kaya, Dunga Nusa, and Ngala (Maritim et al., 2016; Okuku et 
al., 2011), Shimanzi, Makunde, and Kibarani (Kamau, 2002). 
The creek has heavy human activities ranging from the 
settlement, industrial (kipevu power generation station, Kenya 
ports authority, and heavy commercial transport deports) to 
municipal waste dumping site (Kibarani dumpsite). Port-Reitz 
creek is fringed by mangrove forests, mainly Rhizophora 
mucronate, Ceriops tagal, and Avicennia marina on the inner 
basin (Mirriam, 2010; Nguli et al., 2006; Owuor et al., 2019).  

Mida creek is a tidal inlet located on the North Coast of 
Kenya in Kilifi District at longitude 390 58’E and latitude 030 
22’S (Gang and Agatsiva, 1992; Kitheka et al., 1999). Mida 
creek lacks river inflow. Instead, the creek receives freshwater 
through seepage from the ground and stormwater runoff 
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(Kitheka et al., 1999; Osore et al., 2004). In addition, the creek 
is in a marine reserve area, forming part of the Watamu Marine 
National Park and Reserve (KWS, 1997; Osore et al., 2004). 
Mida creek receives an average annual rainfall of between 600-
100 mm, with a rainfall season starting in May to September 
(GOK, 1989). The creek has a constricted narrow entrance and 
rough bottom that generate modified currents that show 
significant spatio–temporal variations, although they are 
generally gentle (Kitheka, 1998). The lower parts of the creek 
are relatively shallow with a maximum depth of about 7·0 m, 
but this increases to 11·0 m in the central lower region and 
about 4 m in the wide shallow basin to the north (Kitheka, 
1998). Mida creek experiences a semi-diurnal tidal pattern 
with an average mean height of 2.0m and 3.2m at the neap and 
spring tides. The speed of currents at the entrance (mouth) is 
high, reaching 3.2 m/s that reduce to 2.0 m/s in the middle and 
1.0 m/s further inland (Kitheka, 1998; Mwaluma et al., 2003). 
Partially sub-merged sills near the entrance and the narrow 
opening prevent faster turnover of water. Consequently, water 
in the creek is higher in salinity than in the open sea (Yap and 
Landoy, 1986). The flow is flood-dominated in the main creek 
channel compared to the backwater region (Kitheka, 1998). 
Next to Sudi Island, the tides are asymmetrical, with ebb flow 
dominant compared to flood flow. Water conductivity is 
highest (53Ms/cm) during the dry spell and low during the 

rainy season (Kitheka, 1998). The ecosystem consists of 
mangrove forests, mainly Rhizophora mucronate and Ceriops 
tagal (Kairo et al., 2002). 

Sampling Strategy 

Three stations at each of the three sites, Tudor, Port Reitz, 
and Mida creeks, were identified for sampling. Mida creek 
being within a national marine reserve situated in a relatively 
semi-pristine area was considered a control. Sampling was 
done twice: January/February 2018 and September 2018 to 
collect sea surface water and sediments. At each station, GPS 
coordinates were recorded using a handheld GPS (version; 
Mitac mio168), and various physicochemical parameters were 
determined using a multi-parameter meter (YSI ProDSS): 
water conductivity (µS cm-1), salinity (PSU), and temperature 
(° C). 

Sampling 

Water samples: A 500 µm size neuston net fitted with a flow 
meter was towed for 10 minutes to collect water samples. 
Towing was replicated thrice for each station. Material on the 
net was rinsed into glass bottles using sieved seawater, and the 
bottle was corked with aluminium foil-lined lids. The samples 
collected were stored at -6° C, awaiting processing.  

 
Figure 1. Map of Kenya showing the sampling sites and stations a) Kenya Coastal region; b) Mida Creek; c) Mombasa Island with 
Tudor and Port-Reitz Creeks. Key: Mak- Makupa, Mik- Mikindani, KMC- Kenya Meat Commission, Mwa-T- Mwache Tsunza, 
Mwa-SGR- Mwache Standard Gauge Railway, Nyali-B- Nyali -Bridge 
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Sediment samples: At each station, three intertidal 
sediment samples were obtained by coring to a depth of 10 cm 
using a 3.6 cm-diameter hand corer and replicated thrice, 
giving a total of 54 samples from the two sampling seasons. 
The samples were kept in glass sample bottles and covered 
with metal lids lined with aluminium foil and taken to the 
laboratory. 

Sample Processing and Microplastic Extraction 

Water samples: Water samples were processed as described 
by Kerubo et al. (2020). Sediment samples: Samples were 
transferred onto aluminium foil and dried separately at 60° C 
(Clark et al., 2017) until a constant mass was attained. The dry 
samples were homogenised, weighed, and screened over sieves 
of 5mm and 500 µm mesh sizes on a shaker to obtain 500 - 4999 
µm size grains. The dry sediments were weighed and placed in 
800 ml beakers into which 10 % KOH was added in the ratio of 
1 g sediment to 5 ml KOH, stirred thoroughly for 5 minutes 
using a glass rod, and left to digest for 14 hours at 60° C 
(Hidalgo-Ruz et al., 2012). After cooling, density separation 
was conducted to extract microplastics (Coppock et al., 2017; 
De Witte et al., 2014; Thompson et al., 2004) by adding a super-
saturated NaCl solution (358.9g/L of deionised water) in the 
ratio of 1g sediment to 10 ml NaCl solution. The mixture was 
stirred for 10 minutes using a glass rod, covered with 
aluminium foil then left for 12 hours for sedimentation of sand 
particles. The procedure was repeated thrice for each sediment 
sample with sedimentation time adjusted to 6 hours (De Witte 
et al., 2014; Thompson et al., 2004) for the second and third 
time to ensure all microplastics were recovered through 
floatation. The supernatant vacuum pump filtration was done 
over a 20 µm pore size membrane filter for each sample 
separately. Filters were kept in lidded filter dish holders, dried 
at 40° C for 12 hours, and examined under the microscope. 
Microscopic examination was done as described earlier. 

Polymer Identification 

DSC: Polymer characterisation was done using Differential 
Scanning Calorimetry (DSC) (Courtene-Jones et al., 2017; 
Onyari et al., 2008). DSC allows the measuring of 
crystallisation temperature (Tc), glass transition (Tg), and 
melting temperature (Tm) while a polymeric sample is being 
heated or cooled (Courtene-Jones et al., 2017). Samples 
weighing between 0.9-2.7 mg were measured using the DSC 
Q100 V9.9 model, while the DSC profiles were analysed using 
aV4.5A TA Universal Analysis Software. Experimental 
temperatures used ranged between -25 and 250° C at a heating 
rate of 10° C/min. The characteristic temperatures (Tg, Tm, and 
Tc) were obtained after removing the thermal history of the 
samples by running first and second DSC scans. 

FTIR: FT-IR is highly reliable in determining the chemical 
composition of microplastic fragments (Hidalgo-Ruz et al., 
2012; Shim et al., 2017). It could present the structural groups 
and reflect the optical responses of the surface functional 
groups, being useful in detecting functional groups, 
characterizing covalent bonding information and data 
interpretation for polymers (Fan et al., 2021; Ludwig et al., 
2018). Subsamples of nine microplastic particles each from 
surface water and marine sediments were analysed according 
to Baker et al. (2014) protocol using a Fourier Transform 

Infrared (FTIR) spectrometer (Shimadzu IR Affinity-1S, Japan). 
Cleaning of the ATR diamond crystal was done using absolute 
ethanol. Before analysing each sample, background scans were 
performed to eliminate carbon dioxide and humidity for 
quality spectra. Spectra wavelengths ranged from 4000 cm-1 to 
500 cm-1 with data interval of 1cm-1 and spectra resolution of 
4 cm-1. Each sample was placed onto the centre of the crystal 
plate and the pressure pump lowered by turning the control 
knob, compressing the sample against the diamond to ensure 
good contact between the sample and the ATR crystal. 
Absorption spectra were recorded and identified by 
comparison with polymers in the research gate spectra library 
and literature.  

NMR: NMR is fast, size independent and has high accuracy. 
It identifies and quantifies the type of branching present in a 
polymer and provides molecular structure information (Peez 
et al., 2019). Sub-samples from all the nine stations were 
analyzed. Samples were prepared by complete dissolution in 
the specimen tube using appropriate deuterated solvents and 
temperature. The samples obtained from fish (F), water (W) 
and sediments (S) were dissolved overnight in the deuterated 
benzene and proton NMR done using a 600 MHz Bruker Avance 
NEO equipped with a nitrogen cooled TCI cryoprobe (gives 2-
4 times better signal-to-noise than regular probes). Spectra 
obtained were compared with spectra in the literature. 

Quality Control 

Peng et al. (2017), and Kanhai et al. (2017) methods were 
followed to ensure quality control. Filters were placed in lidded 
filter dish holders and covered with aluminium foil. Processing 
and analysis of samples were done in a clean room with 
negative airflow and limited foot traffic. Glassware and metal 
equipment were rinsed with distilled water, and procedural 
blanks were set up (1 blank per three samples analysed) and 
analysed for any potential contaminants. The counts per blank 
were subtracted from the total count in each sample to correct 
ground contamination. The working surface was cleaned with 
70% ethanol. Hand gloves and a cotton laboratory coat were 
used throughout the sample processing and analysis period. 

Data Analyses 

Data were processed using the Statistics and Data (STATA) 
version 15. Data normality was checked by doing the Shapiro-
Wilk W test. Data sets that were not normally distributed were 
log-transformed, after which the parametric test of ANOVA 
was used for data with normal distribution, while the Kruskal- 
Wallis (non-parametric) test was used for data that failed the 
normality test. The total mean concentration and the 
concentrations of microplastics were assessed between sites 
(Tudor, Port Reitz, and Mida Creeks) and between stations in 
each of the sites. The results were considered significant at p < 
0.05. 

RESULTS 

Ocean Physical Factors 

The physical factors of the ocean surface water within the 
creeks were not significantly different (p> 0.05) between 
seasons and sites. Ocean surface water temperature was 
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relatively low with Tudor having a mean of 23.6 ± 0.7° C, Port-
Reitz 21.9 ± 0.8° C, and Mida 22.2 ± 0.9° C. Salinity was almost 
similar in all the sites with Tudor recording a mean of 34.7 ± 
0.1 PSU, Port-Reitz 34.5 ± 0.1 PSU and Mida 34.4 ± 0.1 PSU. 
Similarly, conductivity was almost the same across the sites, 
with Tudor having 55810.1 µS cm-1, Port-Reitz 55985.1 µS cm-

1, and Mida 55682.1 µS cm-1. The concentration of 

microplastics in the surface water is reported elsewhere in a 
documentary by Kerubo et al. (2020). 

Microplastic Polymer Types and Abundance in Surface 
Water 

Four different synthetic polymers (LDPE, HDPE, MDPE, 
and PP) were present in the microplastic samples studied, as 

 
Figure 2. DSC curves (a) MDPE and PP sample SK 7 (b) HDPE sample SK 3 from Tudor creek 

 

 
Figure 3. ART- FTIR spectrum of LDPE from Port-Reitz Mwache-SGR 
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shown in Figures 2 and 3. DSC profile exhibited one melting 
peak for LDPE that occurred at between 110-115° C, while DSC 
for MDPE showed both primary and second temperature peaks 
falling at 123° C and 126° C, respectively (Figure 2a). The 
second melting peak could be due to short-chain (lower 
molecular weight) polymer segments. The melting peak for 
HDPE is about fifteen degrees higher than that of LDPE 
(Figure 2b), an indication that HDPE is highly ordered with 
less branching. The DSC spectra are similar to spectra from the 
literature (Brandon et al., 2016). 

FTIR characterisation of polyethene showed two bands at 
2914 cm-1 and 2849 cm-1due to the C-H stretch of the 
methylene group (CH2) (Figure 3). This agrees with values of 
2915 and 2845 cm-1 C-H stretching vibrations reported by Jung 
et al. (2018). The peak observed around 1472 cm-1 is attributed 
to the CH2 bending vibration. A medium (1033 cm-1) and weak 
(720 cm-1) peaks were observed. The peak at 720 cm-1 could be 
assigned to CH2 rocking vibration of High-density polyethene 
(HDPE) as observed by Jung et al. (2018). These results agree 
with earlier research on polyethene characterisation by FTIR 
(Gulmine et al., 2002, Jung et al., 2018; Majewski et al., 2016). 
Majewski et al. (2016) observed that polyethene and 
polypropylene could be qualitatively identified with DSC by 
their specific endothermic peak temperatures. Jung et al. 

(2018) demonstrated that attenuated total reflectance (ATR 
FT-IR) analysis could be used to differentiate HDPE and LDPE. 

NMR analysis: The microplastics samples showed slight 
solubility in benzene-d6 and showed no dissolution in other 
common NMR solvents. Microplastics samples obtained from 
fish, sediments and water are presented in Figures 4 and 5. All 
the samples analyzed from the two creeks showed the 
characteristic methylene protons (CH2) chemical shift in the 
region 1.2 to 1.41 ppm and methyl (CH3) protons signals below 
1 ppm. These results are consistent with observations by Peez 
et al. (2019) and Long et al. (2021). Further, the proton 
spectrum for S2 had enough signal to carry out an edited 
HSQC. The microplastic obtained from sediments (S2) (see 
Figure 5) showed chemical shifts (1H, 13C) at 6.92, 130.43 ppm 
and 8.13, 129.46 ppm, 4.28,67.75 ppm and 4.18, 67.27 ppm, 
1.21, 23.12 ppm to 1.29,23.92 ppm, 1.51, 38.91 ppm to 1.59, 
38.91 ppm, and 0.82, 10.87 ppm suggesting presence of 
phthalates. Duchowny and Adams (2021) reported the 1H NMR 
spectra of various plasticizers. The aromatic peaks were 
observed in the region approx., 7 ppm, the α-CH2 groups next 
to the ester bond (3 to 4 ppm), aliphatic CH2 (around 1 ppm) 
and the CH3 chain ends around 0.8 ppm consistent with the 
general structure of phthalates derived from phthalic 
anhydrides. 

 
Figure 4. NMR spectrum of microplastics from fish (F1 – Port-Reitz), sediments (S1 - Tudor) and water (W1 - Tudor) 
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Generally, the concentration of polymer types showed no 
significant variation (P ˃ 0.05 df 2, 24). However, HDPE was 
more abundant, accounting for 38.3 % (8.29 ± 3.27) compared 
to LDPE 27.1 % (5.87 ± 2.6) and PP 34.6 % (7.48 ± 4.84) mp. m-

3of the total microplastics extracted. These results are similar 
to research findings from the Minor Italian Islands and the 
South Ocean (De Lucia et al., 2018). Among sites, HDPE was 
found to account for 33 %; 26 %; 19 % of the total polymer 
particle extracted in Tudor, Mida, and Port-Reitz, respectively, 
while PP accounted for 33 % of the total microplastic particles 
extracted in Port- Reitz, compared to 17 and 14 % microplastic 
particles in Mida, and Tudor respectively (Figure 6). Medium 
density polyethene (MDPE) was rare, only occurring in Tudor 
creek surface water with 17 % of the total polymer particles 
extracted. 
 

The Overall Mean Concentration of Microplastics in 
Sediments 

Generally, the mean polymer concentration was 1.61 ± 0.14 
particles g-1 d.w. of total sediment. These results are similar to 
those obtained in Southern New England (Mathalon and Hill, 
2014), the North Sea (Claessens et al., 2011), and the North-
East Atlantic (Maes et al., 2017). Microplastic concentrations 
varied significantly (p< 0.05) between sites, and Tudor had a 

higher concentration compared to Mida and Port-Reitz. Fibres 
were predominant (Jahan et al., 2019; Martinelli et al., 2020), 
followed by fragments, while films recorded the lowest mean 
concentrations across the sites. Mikindani in Tudor, Dabaso, 
and Mayonda in Mida had a higher microplastic concentration 
compared to others (Table 1). 

Microplastic Polymer Types and Abundance in Sediments 

Unlike in surface water samples, three microplastic 
polymer types were identified. None of the sediment samples 
tested contained MDPE plastic polymer. The polymer 
distribution varied between types and HDPE (0.42 ± 0.01 
particles g-1 d.w.) was more compared to LDPE (0.22 ± 0.002) 
and PP (0.18 ± 0.01) particles g-1 d.w. Among sites, the HDPE 
mean concentration differed significantly (p< 0.05) and was 
higher in Tudor (0.53 ± 0.015 particles g-1 d.w.) (33 %) followed 
by Mida and Port-Reitz (0.45 ± 0.041 and 0.27 ± 0.023) particles 
g-1 d.w (28 %, 17 %) of the total polymer particles extracted 
respectively (Figure 6). Similarly, LDPE mean concentrations 
were higher in Mida (0.27 ± 0.017 particles g-1 d.w). The mean 
concentration for PP showed no significant difference (p > 
0.05) but was more abundant in Tudor (0.27 ± 0.127 particles 
g-1 d.w. 17 %). 

 
Figure 5. 2D 1H–13C HSQC of microplastic obtained from sediments (S2 - Mida)   
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Figure 6. Differences in relative abundance (%) of the polymer types between sites as identified by DCS and FTIR: a) surface 
water microplastic polymers (n=685) b) sediments microplastic polymers (n=1140) 

 

Table 1. Total mean (x ̅±SE) concentration (g-1d.w.) and types of microplastics in sediments from the different sites and stations 
 (x ̅± SE (g-1d.w.) 

Site Total mean mps Fibre Fragment Film Station Total mean mps 

Mida 1.24 ± 0.09 1.13 ± 0.2 0.08 ± 0.01 0.02 ± 0.0 
Dabaso 1.5 ± 0.087 
Kirepwe 0 .981 ± 0.150 
Mayonda 1.53 ± 0.066 

Port-Reitz 1.03 ± 0.01 0.95 ± 0.01 0.05 ± 0.01 0.03± 0.01 
Makupa 1.43 ± 0.220 
Mwa-T 1.052 ± 0.149 

Mwa-SGR 0.623 ± 0.137 

Tudor 1.58 ± 0.13 1.45 ± 0.3 0.09 ± 0.01 0.04 ±0.01 
Mikindani 2.18 ± 0.225 

KMC 1.33 ± 0.187 
Nyali-B 1.26 ± 0.210 

Df 2,141 2,141 2,141 2,141  8 
F-value 6.408 5.995 6.494 1.956  4.76 
p-value 0.00217 0.00317 0.002 0.145  <0.01 

Key: KMC - Kenya Meat Commission, Mwa-T - Mwache Tsunza, Mwa-SGR - Mwache Standard Gauge Railway, Nyali-B – Nyali Bridge. 
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DISCUSSION 

Kenya, like other countries in the world consumes plastic 
products. Kenya’s daily plastic consumption is estimated at 
0.03kg per person. In 2017, Kenya imported about 45000-
57000 metric tonnes of plastic (Elliott et al., 2018). However, 
the country’s legislative framework to plastic waste 
management is unpredictable and the country lacks waste 
management infrastructure. However, Kenya adapted the 
circular economy and also effected a ban on production, 
import and use polythene plastic bags in August 2017. The ban 
has had a success rate of 80% and reduced polythene plastic 
bags along the coastline, National Parks and drainages (GOK 
Ministry of Environment and Forestry, 2020). 

Our results on microplastic concentrations in surface water 
were higher compared to observations from other parts of the 
world. For example, by De Lucia et al. (2014), using a 333µm 
manta net, Lusher et al. (2015), by pumping and sieving water, 
and Kosore et al. (2018), by sieving surface water from from the 
open sea along the Kenya coast using a 250 µm sieve. The 
results on microplastic concentrations in sediments were 
consistent with observations by Mathalon and Hill (2014), 
Claessens et al. (2011), and Maes et al. (2017). Majority of the 
Microplastics in our study were fibers which was consistent 
with observations by Partterson et al. (2019), Jahan et al. 
(2019), Martinelli et al. (2020). This suggested that the source 
of microplastics in the ecosystem was fibrous materials such as 
clothes and ropes (Wright et al., 2013) which are a common 
component of marine debris from wastewater due to washing 
clothes (Browne et al., 2011) and fishing activity (Wright et al., 
2013). 

It is shown in this study that FTIR, DSC and NMR can be 
used to identify the presence of microplastics in Kenya’s 
marine environment. The use of two or more methods for 
polymer identification reduces multiple interpretations and 
increases the chances of correct identification. However, FTIR 
cannot identify black particles (Kappler et al., 2016) and gives 
limited information about the functional groups present in a 
polymer structure. The force applied to samples to ensure good 
contact can indent vulnerable samples (Mitchell et al., 2013). 
The NMR analysis results suggest that the microplastic 
samples studied contain polyethylene and the chemical shifts 
observed are consistent with other studies done (Moradi et al., 
2019; Peez et al., 2019). The 2D 1H13C Heteronuclear Single 
Quantum Coherence (HSQC) of microplastics suggest the 
presence of phthalates as indicated in the HSQC data above. 
The presence of phthalates may be due to additives added to 
plastics as plasticizers or small molecules. Furthermore, the 
aromatic signal around 7 ppm for microplastics (S2) can be 
used to differentiate types of plasticizers such as diisononyl 
cyclohexane-1,2-dicarboxylate (DINCH) from others such as 
diethylhexyl phthalate and diisobutyl phthalates as described 
by Duchowny and Adams (2021). Of particular interest, 
plasticizers constitute about one third of polymer additives 
(Rahman, 2004) and global demand for plasticizers is expected 
to increase from $78.91 billion in 2020 to $87.81 billion in 2021 
according to a recent report (Researchandmarkets.com). 
Zhang et al. (2021) recently reviewed the hazards of phthalates 
(PAEs) exposure. Therefore, surveillance and monitoring of 

presence of Phthalate Esters, plasticizers phthalates in 
microplastics in marine environment is of global interest. 

Polyethene is used in; i) packaging applications such as 
pharmaceutical and squeeze bottles, caps and closures, 
tamper-evident liners, trash bags, films for food packaging, 
bubble wraps, thick shopping bags, laminations, crates, trays, 
bottles for milk, juice fruits, caps for food packaging, jerrycans, 
drums, industrial bulk containers among others; ii) consumer 
goods such as garbage containers and refuse sacks, 
housewares, ice boxes, toys among others iii) fibres and 
textiles such as in ropes, fishing, and sports nets, nets for 
agricultural use, industrial and decorative fabrics among 
others, iv) pipes and fittings such as pipes for gas, water, 
sewage, drainage, sea outfalls, industrial application cable 
protection, steel pipe coating among others, v) automotive 
products such as fuel tanks, wiring, and cables for sheeting of 
energy, telecommunication cables among others (Chen and 
Chen, 2020; Patel, 2016;Error! Hyperlink reference not 
valid.). Like PE, in addition to packaging applications, PP is 
used in the production of electronic products, films, graphics 
art applications, disposable diaper tabs and closures, furniture 
applications, crates, bottles and pots, translucent parts, 
houseware, luggage, toys, automotive appliances such as 
battery cases and trays, bumpers and fender liners, slit films, 
tape, strapping, staple fibres, ropes and twines, medical 
application products such as disposable syringes, medical 
vials, diagnostic devices, intravenous bottles, petri dishes, 
food trays, pans, pill containers among others, and industrial 
application products such as acid and chemical tanks, sheets, 
pipes, returnable transport packaging among others (Patel, 
2016). All these plastic products are likely to leak into the 
environment leading to contamination.  

Low-density polymers, mainly PE and PP, were observed in 
both water and sediment environments, which was no surprise 
because they are among the polymer types that accounted for 
74 % of global plastic production in 2015 and are the leading 
polymers in plastic production commonly used in short-cycle 
products (Geyer et al., 2017: Plastics Europe, 2017). PE is 
important in synthetic polymer commonly used in packaging 
and textile (Wang et al., 2021). High-density polyethene 
polymers predominated in surface water (38.8 %) and 
sediments (51.2 %). Our results were consistent with 
observations by Yuan et al. (2019), and Zhang et al. (2020), but 
contradicted observations by Liao et al. (2021). High-density 
particles can enter the water column by resuspension of the 
bottom sediment. Nearshore circulation and offshore tides 
influence sediment resuspension in water estuaries 
contributing to redistribution and discharge of substances 
between water and sediments. The presence of low-density 
polymers in sediments can be attributed to change in densities 
with weathering and biofouling in the water and strong 
turbulence caused by wind, waves, or currents that cause 
sedimentation of the polymers (Kukulka et al., 2012). Our 
results show that low-density polymers are widely distributed 
in both water and sediment environments. In contrast, high-
density polymers were not observed, which could imply 
different transport and deposition mechanisms while 
suggesting sewage, synthetic textiles, packaging material, and 
fishing gear as essential sources of the MPs (Browne et al., 
2010; Cole et al., 2014) in the creeks along the Kenya coast.  
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Microplastics of different polymers occurred in sediments 
and surface water samples from all sites, including Mida creek, 
within Watamu National Marine Reserve thought to be safe 
from pollution by industrial effluents, sewage disposal, and 
fishing activities. This can be due to the high tourism activity, 
boat and dhow fishing activities (own observation), densely 
populated villages such as Dabaso, Ngala, and Kirepwe 
(Nyamao and Ogendi, 2018; Okuku et al., 2011), and the 
mangrove vegetation cover of tall trees that bind soil particles 
favouring microplastic accumulation.  

Tudor creek is fed by two major seasonal rivers, Kombeni 
and Tsalu (Bosire et al., 2016; Kitheka, 1999; Nyamao and 
Ogendi, 2018)), which collect runoff with plastic and other 
waste debris from the mainland and discharge them into the 
creek. The creek experiences solid waves and currents 
(Kitheka, 1999), but the shore had a reasonably thick mangrove 
vegetation cover (own observation) whose roots bind 
sediments together to hold microplastic particles. Rapid 
urbanisation has led to the development of heavy industries at 
Changamwe and densely populated informal settlements like 
the Mikindani, Coast General Hospital, and KMC settlements 
(KNBS, 2019; Okuku et al., 2011) around the creek that may be 
adding onto the microplastics brought in by the seasonal rivers 
and ocean currents through the release of domestic raw waste. 
The many industries in Mombasa Island release their effluents 
into the sea, thereby increasing microplastics in sediments 
but, this study did not determine the proportions.  

Humans are at a risk of microplastic exposure through 
consumption and inhalation in daily life (Cox et al., 2019). 
Understanding the contents of microplastics in the 
environment will contribute to a better understanding of the 
impact of microplastics on the environment. It is important to 
reduce excessive production and use of disposable plastic 
waste. However, consumption of disposable plastics continues 
to increase due to increasing demand in food packaging (Chu 
et al., 2020), Covid-19 pandemic (Silva et al., 2020), and 
increased production and global consumption. It is therefore 
important to promote public environmental awareness and 
better governance. 

CONCLUSIONS AND RECOMMENDATIONS 

The results from the study provide evidence that the 
marine environment along the Kenya coast is polluted with 
microplastics. The analysis showed that physiographic factors 
did not influence the distribution of microplastics. The 
accumulation of microplastic polymers within the creeks may 
be of serious concern because of their ability to absorb and 
concentrate POPs, passing the toxins up trophic levels when 
ingested by plankton species. Marine planktons form the base 
of the marine food web, and any threat to them may have 
severe negative impacts on the oceans. There is a need of 
quantifying the levels and establishing the sources of synthetic 
polymers in the creeks along the Kenya coast and assess the 
future impacts of soaring microplastic levels on oceans 
globally.  

FT-IR, DSC and NMR analyses showed the absence of high-
density polymers such as polyvinylchloride and polyethene 
Terephthalate, probably due to the medium of extraction used. 

The Sodium Chloride solution used has lower density and 
could have favoured the extraction of low-density microplastic 
compared to high density polymers such as PVC. Therefore, 
the concentration of microplastics in the WIO region along the 
Kenya coast may have been underestimated. This study 
recommends that further research be done using a different 
medium of extraction and subject the microplastic samples to 
TGA and GC-MS analysis to detect other types of polymers 
present in the marine ecosystems. 

This study provides insights into the presence, 
concentration, and type of microplastic polymers, providing a 
baseline for monitoring microplastics along the Kenya coast. 
The information also offers a basis for evaluating the effect of 
the Kenya government ban effected in August 2017 on low 
weight plastic bag production and use in Kenya (NEMA, 2017). 
This study is essential since the knowledge can be used for 
proper policy formulation regarding plastic production, waste 
management, and disposal to save oceans rich in biodiversity.  

There is a need to critically evaluate Kenya’s plastic waste 
disposal policy to curb the problem. The Kenya Government 
should protect the ocean through legislation on plastic waste 
management, compelling producers to meet the cost of plastic 
waste disposal and management, encourage the development 
of plastic recycling industries by creating assistance programs 
for those in need of waste management system expertise. 
Manufacturers should produce alternative packaging materials 
to plastics such as sisal bags.  
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