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 Land-use/land-cover (LULC) simulation models predict the long-term effects of LULC changes under various 
scenarios. Patch-level land use simulation (PLUS) is a recently developed software that uses a rule-mining 
framework for LULC modelling. With a market share of 76% in the world, hazelnut is a strategic crop for Turkey. 
The hazelnut orchards have grown in Turkey since the first law was issued on 21 October 1935. This study was 
carried out to model the hazelnut orchards for 2030, 2042, 2054, and 2066 based on Samsun province and show 
the future impacts on land use types. Samsun was chosen as a case study due to the rapid expansion of hazelnut 
groves since 2006. According to PLUS results, by the year 2030, the increase in the hazelnut groves in Samsun is 
predicted as 9.38%, and hazelnut fields will be formed by the main transformation of open spaces with little or 
no vegetation, shrub and/or herbaceous vegetation associations, and forest; and this transformation will have 
severe effects on the ecosystem. The results clearly showed that hazelnut cultivation areas would continue to 
increase in the future and revealed that policymakers would need to conduct new regulations for environmental 
sustainability and to maintain Turkey’s power in this crop. 
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INTRODUCTION 

Hazelnut (corylus avellana L.) is one of the most crucial 
export crops of Turkey (Aytaç, 2021a). Holding down 70% of 
production and 76% of trade, Turkey is the world’s leading 
manufacturer and exporter of hazelnut (Castro and Swart, 
2017). Food and Agriculture Organization of the United 
Nations (FAO, 2020) statistics indicate that Turkey has an 
annual production of 420,000 tons, and in 2014 Turkey reached 
an income of US$ 2.3 billion from hazelnut exportation 
(Durmaz and Gokmen, 2019). The Black Sea region of Turkey 
is the main production center of hazelnut, but hazelnut 
production is growing in Italy, the USA, Georgia, and 
Azerbaijan (Tas et al., 2019). This crop has a significant 
influence on the economic and social structure of this region, 
and thousands of people are directly or indirectly related to 
this economic activity (Castro and Swart, 2017). Due to these 
reasons, the hazelnut has massive importance in the economy 
of Turkey, and some regulations need to be conducted on 
hazelnut production.  

The main objective of policies for hazelnut production in 
Turkey is, export and manufacturer revenue maximization, 
inventory, transport, and financing costs minimization, and 
maintaining the strength in world markets (Kayalak and 

Ozcelik, 2012). For these purposes, Turkey tried to regulate the 
hazelnut market with purchase and price warranty, limitation 
of plantation areas, alternative crop cultivation projects, and 
direct income support from 1935 to 2014 (Bozoglu and Ceylan, 
2007). Nevertheless, despite all the policies to control the 
supply, hazelnut production fields continued to increase 
(Bozoglu et al., 2019). Hazelnut fields and hazelnut production 
between 2004- 2019 in Turkey can be seen in Figure 1 (TUIK, 
2021). This situation weakens the power of Turkey in this 
strategic crop.  

The rising concerns about environmental problems, food 
security, and loss of biodiversity with excessive cultivation and 
urbanization have directed researchers to understand the 
intensity and pattern of land-use/land-cover (LULC) change 
and to predict future development (Kundu et al., 2017; Liu et 
al., 2020). Land-use changes occur due to natural and 
anthropogenic reasons (Kuntoro et al., 2018; Ullah et al., 
2019). There is an increasing interest in using computational 
algorithms for the detection and monitoring of LULC changes 
in the scientific community, and these algorithms consider 
various environmental, institutional, economic, and social 
factors and processes (Ansari and Golabi, 2019; Silva et al., 
2020). Accordingly, there is a great necessity to precisely 
model the LULC changes and understand the spatial-temporal 
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LULC change patterns for land management and urban 
planning (Xing et al., 2020). 

As a significant part of the regional and global change 
driven by human activities, LULC change has become critical 
in geography, ecology, and land science (Wang et al., 2019). In 
the last decade system dynamics (SD) model, cellular automata 
(CA) model, gray model, linear planning model, neural 
network model, multi-objective planning model, Markov 
model, etc. have been developed to simulate and forecast LULC 
changes (Liu et al., 2020; Sheng et al., 2018). 

In 2019, a powerful tool named patch-level land use 
smulation (PLUS) model (https://github.com/HPSCIL/Patch-
level_Land_Use_Simulation_Model) had been introduced for 
land use/cover simulations. The PLUS model has been 
developed with a rule-mining framework based on land 
expansion analysis srategy (LEAS), and a CA model based on 
multi-type random seeds (CARS). With these integrated 
features, PLUS helps researchers to understand the driving 
factors of land expansion and project landscape dynamics. 
Also, this model has attained a more similar landscape pattern 
and higher simulation accuracy than the other LULC 
prediction models. The PLUS algorithm combines knowledge 
discovery, policy-making, and simulation to provide 
meaningful information for policy-makers and researchers 
(Liang et al., 2020). 

This study was conducted to model the future hazelnut 
plantation areas for 2030, 2042, 2054, and 2066 using PLUS. 
Samsun province, located in the Central Black Sea Region of 
Turkey, was chosen as a case study due to the rapid expansion 
of hazelnut groves since 2006. 

MATERIALS AND METHODS 

Study Area  

Samsun is located in Central Black Sea Region of Turkey 
and has an area about 9,083 km². The geographical position of 
the city is between 40°50′ and 41°51′ North latitudes and 
37°08′ and 34°25′ east longitudes and is between the deltas 

where Yesilirmak and Kizilirmak rivers run out (Gorur et al., 
2011). The study area can be seen in Figure 2.  

Samsun’s fruit production reached 201,862 tons in 2019. 
Hazelnut has the highest production rate in tons, with 68.28%. 
The total amount of hazelnut groves is 1,164.38 km², and this 
area constitutes 97.40% of the total permanent crops (TUIK, 
2021).  

Required Data 

The PLUS model was used to predict the spatial 
distribution of future LULC changes. This model consists of 
three main parts: 

1. Extract land expansion,  

2. LEAS,  
3. CARS.  

Each section needs different maps, including LULC, land 
use constraints, socioeconomic, climatic, and topographic. 

 
Figure 1. Hazelnut fields and hazelnut production of Turkey 

 
Figure 2. Study area 

https://github.com/HPSCIL/Patch-level_Land_Use_Simulation_Model
https://github.com/HPSCIL/Patch-level_Land_Use_Simulation_Model
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The basic process sequence to run the model is illustrated in 
Figure 3. 

Data preparation consisted of LULC maps, driving factors, 
and conversation constraints. In the study, Coordination of 
Information on the Environment (CORINE) LULC maps of 2006 
and 2018 were used (CORINE, 2020). Considering the 
operability of the study, level two land-use types were 
selected. However, some land-use types were unified at level 
one because the ones lower than the allocated number of 
samples, cause problems. So, ten major classes were created by 
merging CORINE (2020) classes can be seen in Table 1. 

The driving factors used in the study were mainly socio-
economic, climatic, and environmental data collected from 
different publicly available vector and raster data (Table 2 
indicates details of the fetched data).  

 
Figure 3. The basic process sequence of PLUS 

Table 1. Land use classes used in the study converted from 
CORINE classification 
This study CORINE classification 

Artificial surfaces (AS) 

Continuous urban fabric 
Discontinuous urban fabric 

Industrial or commercial units 
Road & rail networks & 

associated land 
Port areas 
Airports 

Mineral extraction sites 
Dumpsites 

Construction sites 
Green urban areas 

Sport and leisure facilities 

Arable land (AR) 
Non-irrigated arable land 

Permanently irrigated land 
Rice fields 

Fruit groves (97.40% hazelnut 
groves) (HG) Fruit trees & berry plantations 

Pastures (PS) Pastures 

Heterogeneous agricultural areas 
(HAS) 

Complex cultivation patterns 
Land principally occupied by 

agriculture with significant areas 
of natural vegetation 

Forest (FST) 
Broad-leaved forest 

Coniferous forest 
Mixed forest 

Shrub and/or herbaceous 
vegetation associations (SHVA) 

Natural grasslands 
Transitional woodland-shrub 

Open spaces with little or no 
vegetation (OLNV) 

Beaches dunes sands 
Bare rocks 

Sparsely vegetated areas 

Wetlands (WL) 
Inland marshes 

Salt marshes 

Water bodies (WB) 

Watercourses 
Water bodies 

Coastal lagoons 
Sea and ocean 

 

Table 2. Details of the fetched data used in the study 
Category Data Year Data source 
Socioeconomic Population 2018 (LandScan, 2020) 

Terrain 

LULC 

2006-
2019 

(CORINE, 2020) 
DEM (USGS, 2020) 

Aspect Calculated from 
DEM 

Slope Calculated from 
DEM 

Climatic 

Proximity to water 
bodies 

2019 (OSM, 2020) Annual precipitation 
Annual mean 
temperature 

Soil Soil type 2019 (FAO, 2020) 

Human 
influence 

Proximity to primary 
roads 

2019 (OSM, 2020) 

Proximity to secondary 
roads 

Proximity to tertiary 
roads 

Proximity to trunk 
Proximity to railways 

Proximity to city center 
Proximity to districts 
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An open water body map was defined as the conversation 
constraint to the model. The required driving factors and 
conversation constraint .tiff images fetched from different 
publicly available sources for the PLUS model can be seen in 
Figure 4. 

RESULTS AND DISCUSSIONS 

Extracting Land Expansion 

The model primarily extracts the land expansion map to 
execute the development potentials of different land-use types 
in the LEAS step. A land expansion map is also essential to 
understand the neighborhood weights and transition matrix, 
two of the inputs to be used in CARS. LULC maps of 2006 and 
2018 were used in extracting land expansion. Figure 5 shows 
generated land expansion map and LULC maps of 2006 & 2018. 

Training the Model 

The land expansion analysis strategy menu is the step for 
training the model. The model reveals the development 
potential of each land-use type using random forest regression 
(RFR) in this stage, and the development potential maps 
created here will be used in the CARS step. Random forest 
regression, which was developed by Leo Breiman, is a tree-

based machine learning regression method (Babar et al., 2020). 
Machine learning seeks to anticipate outcomes by extracting 
patterns from huge datasets, typically in the form of a code 
(Aytaç, 2020, 2021b). RFR has high robustness performance 
against outliers and has the ability to well-approximating 
variables with non-linear relationships (Li et al., 2018). This 
method is based on the bootstrap aggregation (bagging) 
strategy (Aytaç, 2022; Zhao et al., 2019). In the bagging 
approach, random samples (weak learners) from the training 
data are generated. Then the method is trained on the average 
of the weak learners to output the learning results using Eq. 1. 

                           𝑓𝑎𝑣𝑔(𝑥) =  
1

𝐵
 ∑ 𝑓𝑏(𝑥)𝐵

𝑏=1                               (1) 

where B is the number of weak learners and 𝑓𝑏(𝑥) is the result 
of the weak learner (James et al., 2017). There are two critical 
parameters while tuning and optimizing the performance of 
the RFR, and these parameters are nTree and mTry. nTree 
represents the number of regression trees to grow, and mTry is 
the number of variables at each split determined by using a 
randomized subset of the variables (Zhao et al., 2019). The 
nTree value was chosen as 20, and the mTry value was set as 
15, equal to the number of driving factors. The sampling rate 
was selected as 0.10. After the training process, ten 
development potential maps were created, and the calibration 
and validation process step followed the creation of 
development potentials. 

 
Figure 4. Driving factors: (a) population density, (b) digital elevation model (DEM), (c) aspect, (d) slope, (e) proximity to water 
bodies, (f) annual precipitation, (g) annual temperature, (h) soil types, (i) proximity to primary roads, (j) proximity to secondary 
roads, (k) proximity to tertiary roads, (l) proximity to trunk, (m) proximity to railways, (n) proximity to city center, (o) proximity 
to districts and conversation constraint, and (p) open water bodies 
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Calibration and Validation 

The CARS step is to simulate the future LULC. However, 
calibration and validation of the modelling process were 
required before simulation. So, the first time use of this step 
was for the calibration of the model. CARS process uses a 
cellular automata model, which also incorporates a patch-
generation mechanism based on multi-type random seeds of 
land uses (Liang et al., 2020). The cellular automaton is a 
method where each cell interacts with neighboring cells based 
on a set of predefined rules simulating self-replicating 
complex systems that discretize both space and time that was 
proposed by von Neumann and Ulam in the late 1940s (Fuyong 
et al., 2020; Liao et al., 2019; Uzuna et al., 2018).  

CA was used widely to simulate systems such as the 
behavior of land, rivers, and topographies, crystal growth, the 
behavior of gases, the spread of fires, bacterial or viral 
behavior, population development, and forecast of plant 
growth (Silva et al., 2019). A cellular automaton (A) that can 
be thought of as a tuple (d, S, N, f), where d is the dimension of 
space, S is a finite set of states, N is a finite subset of Zd is the 
neighborhood and f:SN→S is transition function, or the local 
rule (Ortigoza et al., 2020). The inputs of CARS were the 2006 

LULC map, development potential maps produced in the LEAS 
step, and the conversion constraints map. The neighborhood 
size was selected as three, similar to that of traditional models 
(Liang et al., 2018). The patch generation value was set to 0.5, 
and the expansion coefficient was selected as 0.1 as the 
parameters. The land demand values were determined from 
2006 and 2018 LULC maps, and the neighborhood weights were 
determined with the land expansion map and can be seen in 
Table 3 and Table 4, respectively.  

The simulation of 2018 LULC demands was conducted after 
the required data has been implemented into the model for 
calibration and validation. 

The simulation results were validated using the figure of 
merit (FoM). FoM is an excellent indicator of cell-level 
agreement and pattern similarity (Liang et al., 2018). FoM 
value can be calculated with Eq. 2. 

                                   𝐹𝑜𝑀 =  
𝐵

𝐴+𝐵+𝐶+𝐷
                                   (2) 

where 𝐴 is the area of error due to observed change predicted 
as persistence, 𝐵  is the area of accuracy due to observed 
change predicted as change, 𝐶  is the area of error due to 
observed change predicted as changing to an incorrect 
category, and 𝐷 is the area of error due to observed persistence 

 
Figure 5. LULC maps of (a) 2006, (b) 2018, & (c) land expansion between 2006 and 2018 

Table 3. Neighborhood weights 
 AS AL HG PS HAS FST SHVA OLNV WL WB 
Start pixel number (2006) 14,204 155,102 31,358 6,699 202,129 256,443 48,854 15,612 7,611 17,481 
Future pixel number (2018) 15,358 154,435 49,030 6,831 194,788 249,605 45,915 13,735 7,824 17,972 

 

Table 4. Land-use amounts of 2006 and 2018 
 AS AL HG PS HAS FST SHVA OLNV WL WB 
Value 0.03814 0.11517 0.28540 0.01831 0.29826 0.13483 0.07931 0.00731 0.00670 0.01653 
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predicted as change (Liu et al., 2017). The calculated FoM value 
was 15%. This value showed that the predicted outcome was in 
an acceptable range, similar to the results in other papers 
(Chen et al., 2014; Li et al., 2017; Pontius et al., 2008). 

Simulating Future Hazelnut Groves 

The simulation process initially started with determining 
future land demands; the PLUS model uses the Markov chain 
for this procedure. Markov chain models are class-dependent 
transition matrices, and they have been widely used to 
determine the probabilities of LULC change between two time 
periods (Nery et al., 2019). The basis of the Markov chain 
model is to predict the state of the future time based on the 
state of the current time and the transition probability 
between states (Jia et al., 2020). Using the Markov model 
results, LULC simulations were carried out. The projected 
hazelnut grove areas for 2030, 2042, 2054, and 2066 can be 
seen in Figure 6. 

Figure 6 shows that the hazelnut cultivation areas will 
continue to increase in the coming years. The cultivation areas 
will develop primarily in the coastal fields of the city and 
towards the Western Black Sea region. The increase in 
hazelnut areas in 2030, 2042, 2054, and 2066 is predicted as 
32.46%, 61.79%, 88.37%, and 112.54%, respectively, compared 
to 2018. Despite all the regulations, farmers did not comply 
with the decisions and continued to keep their production in 
hazelnuts, and the process of transforming different land-use 
types into hazelnut fields will continue increasingly. The 
changes in the land use types for 2030, 2042, 2054, and 2066 
by percentage are shown in Figure 7. 

When Figure 7 is examined, four land-use types will 
expand their lands that are artificial surfaces, hazelnut groves, 
wetlands, and water bodies. After hazelnut groves, the most 
increasing land use type was predicted as artificial surfaces, 
which will be increased by 6.76%, 12.87%, 18.40%, and 23.44% 
for 2030, 2042, 2054, and 2066, respectively. The remaining six 
land use types will lose fields. Among these, the most 
decreasing land-use types stand out as open spaces with little 
or no vegetation, shrub and/or herbaceous vegetation 
associations, and forests. These results show that policy-

makers will not be able to prevent the increase of hazelnut 
lands with regulations, and forests and other vegetation areas 
will be negatively affected by the transformation of these land-
use types into hazelnut groves. By 2066, the decrease in open 
spaces with little or no vegetation, shrub and/or herbaceous 
vegetation associations, and forest in Samsun is predicted to 
decrease 36.82%, 19.11%, and 10.52%, respectively.  

Land cover change is the process through which 
anthropogenic activities alter the natural landscape, referring 
to how the land has been utilized, emphasizing the functional 
use of land for economic output (Kanti and Harun, 2017). The 
increase in population and growing GDP causes the clearing of 
broad areas for agriculture, the land expansion for urban 
development, and tree cutting for wood fuel generation 
(Mzuza et al., 2019). Land cover changes occur at various levels 
and have particular and cumulative consequences on water 
bodies, air, habitats, climate, and human health. According to 
Environmental Protection Agency (EPA, 2022) land, 
development and agricultural usage are two major areas of 
concern. Land development involves the creation of 
impermeable surfaces such as highways, parking lots, and 
other structures. Impermeable surfaces affect ground water 
aquifer recharge, contribute to nonpoint source water 
contamination by reducing soil’s ability to filter runoff, 
increase the erosion potential and stormwater runoff. 
Agricultural uses have a huge impact on the quality of water 
and watersheds, result in habitat loss or increased wind 
erosion and dust, and may hasten or worsen the spread of 
invasive species (EPA, 2022). The results clearly indicate that 
the future expansion of hazelnut orchards will have a huge 
impact on natural land cover and the associated ecosystem. 

CONCLUSIONS 

Turkey is the leading hazelnut producer globally, and 
hazelnut has strategic importance in the Turkish economy. 
The laws and regulations implemented by governments did 
not achieve their purposes, and hazelnut areas increased every 
year. Therefore, understanding the development of future land 
use areas can promote a more efficient and targeted land use 

 
Figure 6. Projected hazelnut plantation areas for the years (a) 
2030, (b) 2042, (c) 2054, & (d) 2066 

 
Figure 7. Predicted land-use changes (%) from 2030 to 2066 
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policy. This study used the PLUS model to simulate the future 
hazelnut groves in Samsun province as a case study. PLUS is a 
recently developed model used to project the dynamics of land 
use patches and landscape patterns and to identify the drivers 
of land growth. The LULC changes were simulated for 2030, 
2042, 2054, and 2066.  

The results of the PLUS model indicate that by the year 
2066, the hazelnut groves will approximately double their 
area. The hazelnut groves will expand notably in the city’s 
coastal lands and toward the Western Black Sea region. In 
2030, 2042, 2054, and 2066, hazelnut areas are expected to rise 
by 32.46%, 61.79%, 88.37%, and 112.54%, respectively, 
compared to 2018. Despite all of the laws, farmers did not 
follow the choices and continued to produce hazelnuts, and 
the process of converting diverse land-use categories into 
hazelnut fields will continue. It is also clear that the new 
hazelnut fields will be formed by transforming LULC types, 
mainly as open spaces with little or no vegetation, shrub 
and/or herbaceous vegetation associations, and forest, and 
this transformation will have severe effects on the ecosystem. 
Besides artificial surfaces will expand as well in the coming 
years. The results of this study are significant and noteworthy 
as they show the urgent need to balance new regulations with 
long-term strategies in designing effective hazelnut policies. 
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