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ABSTRACT 
The main purpose of this paper is to conduct momentum and energy analysis on non-Newtonian fluid flow 
in a semi-permeable medium between two infinite vertical flat plates considering the influences of medium 
porosity, heat source and magnetic field. In this study, porosity, heat source and magnetic field terms are 
considered to be variable. Initially, partial differential equations of momentum and energy are derived and 
turned into ordinary differential equations utilizing a similarity solution. Afterwards, a system of differential 
equations is solved by Least Square Method (LSM) and subsequently reliable functions are proposed for 
temperature and velocity distributions. To assess the precision of this method, the equations are also solved 
by a numerical method and an analytical approach known as Galerkin Method (GM). Regarding the 
comparisons, it can be implied that when the values of magnetic field, heat source and porosity are constant 
along the channel width, both LSM and GM methods are efficient and appropriate agreement is observed 
between the results. However, for the case in which these parameters linearly vary along the channel width, 
Galerkin approach shows more accurate results. Ultimately, the influences of Hartman number, porosity 
and heat source parameters on the velocity and temperature distributions are discussed. 

Keywords: semi-permeable medium, variable heat source, variable magnetic field, non-Newtonian fluid, 
analytical solution 
 
 

INTRODUCTION 

Natural convection is a mechanism of heat transport in which no external source influences the fluid motion. 
In fact, density difference due to the gravitational field is the major causality of this type of heat transport. Due to 
its potential applications in industry and engineering, this mechanism has attracted a great deal of attentions among 
researchers. In many cases, accurate anticipation of the behavior of fluid flows can remove harmful effects such 
as mechanical noises and vibrations from industrial systems (Jianu and Rosen, 2017). A very conventional industrial 
application of natural convection is free cooling of electronic devices. This heat transfer mechanism can exist in 
small-scale devices such as computer chips to large-scale physical systems such as geothermal systems, heat 
exchangers, chemical catalytic reactors, fibre and granular insulation, packed beds, and petroleum reservoirs. In 
the last couple of decades, natural convection heat transfer for Newtonian and non-Newtonian fluids streaming 
between two infinite parallel vertical plates has been studied by different researchers. In these systems, heat is 
transferred by natural convection mechanism from vertical plates to fluids. Analysis of this mechanism is significant 
especially when the moving fluid is minimally affected by forced convection (McCabe et al., 1993). Natural 
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convection heat transfer between vertical flat plates was analysed for several different non-Newtonian fluids by 
Bruce and Na (Bruce and Na, 1967). In another investigation, they considered and analysed several natural 
convection problems in laminar regimes (Shenoy and Mashelkar, 1982). Rajagopal (Rajagopal and Na, 1985) 
conducted a thermodynamic analysis on different constitutive functions in the area of fluid mechanics. It should 
be pointed out that in fluid mechanics problems, to yield reliable results, inherent non-linear behavior of systems 
must be considered. However, solving nonlinear equations is often very difficult. To overcome the complexities, 
various methods such as instance Homotopy Perturbation Method (HPM) (Nayfeh, 1973; Ganji et al., 2010; Rafei 
and Ganji, 2006; He, 2006; Soltanian et al., 2010; Esmaeilpour and Ganji, 2007; Ganji et al., 2007; Ganji et al., 
2006), Variational Iteration Method (VIM) (Wang and He, 2007), Homotopy Analysis Method (HAM) (Hassan 
and Rashidi, 2013; Shahzad and Ramzan, 2012), Adomian Decomposition Method (ADM) (Abbasbandy, 2007), 
Least Square Method (Shi and Ren, 2010), Galerkin Method (Hessari, 2014) and Collocation Method (CM) 
(Petroudi et al., 2014) have been introduced by different researchers. It is worth mentioning that the 
aforementioned methods offer accurate successive approximations for solution of ODEs. Etbaeitabari and 
Domairy (Etbaeitabari et al., 2013) employed VIM to evaluate the natural convection of a non-Newtonian fluid 
streaming between two infinite vertical plates (Etbaeitabari et al., 2013). Ziabakhsh and Domairy (Ziabakhsh and 
Domairry, 2009) analytically investigated the natural convection of a non-Newtonian fluid between two infinite 
parallel vertical flat plates considering the nature of the fluid. Hatami et al. (Hatami et al., 2014) numerically and 
analytically performed a heat transfer and flow analysis on a non-Newtonian third grade nanofluid flow in porous 
medium considering magnetic field. Sheikholeslami and Ganji (Sheikholeslami and Ganji, 2015) analytically solve 
the problem of nanofluid hydrothermal behavior in presence of magnetic field and Brownian motion of 
nanoparticles using Differential Transformation Method. Sheikholeslami et al. (Sheikholeslami et al., 2015) used 
differential transformation method to develop a theoretical solution for the case of laminar steady 
magnetohydrodymanics nanofluid streaming in a semi-permeable channel. Azimi et al. (Azimi et al., 2014) 
analytically studied the heat transfer of an unsteady nanofluid flow between two moving parallel plates applying 
Galerkin Optimal Homotopy Asymptotic Method. In another paper, Azimi et al. (Azimi and Riazi, 2016) proposed 
an analytical solution for the problem of a steady nanofluid streaming through a convergent-divergent channel 
utilizing Reconstruction of Variational Iteration method. Shahriari et al. (Shahriari et al., 2018) analytically 
investigated the effect of viscous dissipation on temperature distribution of a two-dimensional unsteady nanofluid 
streaming between two moving parallel plates utilizing Akbari-Ganji Method. The main purpose of the present 
paper, for the first time, is to carry out a momentum and energy analysis on non-Newtonian fluid flow between 
two infinite vertical flat plates in a changeable semi-permeable medium considering variable heat source and 
magnetic field terms. Initially, partial differential equations of momentum and energy are derived and turned into 
ordinary differential equations using a similarity solution. Afterwards, a system of differential equations is solved 
by LSM and subsequently reliable functions are presented for temperature and velocity distributions. In order to 
evaluate the reliability of this method, the governing equations are also solved and compared by a numerical 
method and an analytical approach known as GM. Subsequently, the influences of Hartman number, porosity and 
heat source parameters on the velocity and temperature distributions are presented. Finally, variations of velocity 
with change types of porosity and magnetic field are studied. 

GOVERNING EQUATIONS 

Figure 1 illustrates the schematic of the problem analysed in the current paper. As can be seen in this figure, 
the system includes two vertical flat plates (the distance between the plates is considered to be 2b) and a non-
Newtonian fluid streaming between the plates. In this investigation, a steady, incompressible, non-Newtonian fluid 
flow between two parallel vertical plates in a semi-permeable medium with variable heat source and magnetic field 
terms is considered. The schematic of the problem is shown in Figure 1. The temperatures of the walls located at 
𝑥𝑥 = +𝑏𝑏 and 𝑥𝑥 = −𝑏𝑏 are constant and assumed to be 𝑇𝑇2 and 𝑇𝑇1 (𝑇𝑇1>𝑇𝑇2), respectively. This temperature difference 
results in upward motion of fluid near the wall at 𝑥𝑥 = −𝑏𝑏 and downward motion of fluid near the wall at 𝑥𝑥 = +𝑏𝑏. 



 European Journal of Sustainable Development Research, 2(3), 33 

© 2018 by Author/s  3 / 13 

Generally, a viscous fluid is governed by continuity and Navier–Stokes equations. Since the fluid is considered 
to be incompressible, the conservation equations of momentum and energy are stated as follows (Rajagopal and 
Na, 1985; Hatami et al., 2014; Sheikholeslami and Ganji, 2015): 

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕.∇𝜕𝜕� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇∗ −
𝜇𝜇𝜇𝜇
𝑘𝑘∗

�1 + 𝜆𝜆𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕 + 𝜌𝜌𝑓𝑓[1 − 𝛽𝛽𝑇𝑇(𝑇𝑇 − 𝑇𝑇𝑚𝑚)]𝑔𝑔 + 𝐽𝐽 × 𝐵𝐵 (1) 

(𝜌𝜌𝜌𝜌)𝑓𝑓 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜕𝜕.∇𝑇𝑇� = −𝑘𝑘∇2𝑇𝑇 + 𝑇𝑇∗.𝐿𝐿 + 𝑄𝑄0(𝑇𝑇 − 𝑇𝑇𝑚𝑚) (2) 

where 𝜇𝜇 and 𝑄𝑄0 are porosity of medium and heat source parameter, respectively. Stress in a third-grade non-
Newtonian fluid (𝑇𝑇∗) is presented in the following (Hatami et al., 2014): 

𝑇𝑇∗ = −𝑝𝑝𝑝𝑝 + [𝜇𝜇 + 𝛽𝛽3(𝜕𝜕𝑡𝑡𝐴𝐴12)]𝐴𝐴1 + 𝛼𝛼1𝐴𝐴2 + 𝛼𝛼2𝐴𝐴12 (3) 

where 𝛽𝛽3, 𝛼𝛼1 and 𝑎𝑎2 are temperature-dependent material modules which. In Eq. 3, −𝑝𝑝𝑝𝑝 represents the spherical 
stress related to the restraint of incompressibility and 𝐿𝐿 is velocity gradient. The definitions of the kinematical 
tensors, 𝐴𝐴1 and 𝐴𝐴2, can be found in (Hatami et al., 2014). 

Variable magnetic field, porosity of medium and heat source are defined as follows: 

𝐽𝐽 × 𝐵𝐵 = −𝜎𝜎𝐵𝐵02𝜕𝜕 �1 −
𝑥𝑥
𝑏𝑏
� ,

𝜇𝜇𝜇𝜇
𝑘𝑘∗

𝜕𝜕 =
𝜇𝜇𝜇𝜇
𝑘𝑘∗

�1 −
𝑥𝑥
𝑏𝑏
�𝜕𝜕, 𝑄𝑄 = 𝑄𝑄0(𝑇𝑇 − 𝑇𝑇𝑚𝑚) (4) 

By using the following similarity variables, the governing momentum and energy equations can be defined in 
simpler forms (Rajagopal and Na, 1985): 

𝑈𝑈 =
𝜕𝜕
𝜕𝜕0

, 𝜂𝜂 =
𝑥𝑥
𝑏𝑏

, 𝜃𝜃 =
𝑇𝑇 − 𝑇𝑇𝑚𝑚
𝑇𝑇1 − 𝑇𝑇2

 (5) 

By substituting the above parameters into the Navier–Stokes and energy equations, following equation are 
obtained: 

𝑑𝑑2𝑈𝑈
𝑑𝑑𝜂𝜂2

+ 6𝛿𝛿 �
𝑑𝑑𝑈𝑈
𝑑𝑑𝜂𝜂
�
2 𝑑𝑑2𝑈𝑈
𝑑𝑑𝜂𝜂2

+ 𝜃𝜃 − 𝑃𝑃𝑈𝑈(1 − 𝜂𝜂) −𝐻𝐻𝑎𝑎2𝑈𝑈(1 − 𝜂𝜂) = 0 (6) 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝜂𝜂2

+ 𝐸𝐸𝜌𝜌.𝑃𝑃𝑡𝑡 �
𝑑𝑑𝑈𝑈
𝑑𝑑𝜂𝜂
�
2 𝑑𝑑2𝑈𝑈
𝑑𝑑𝜂𝜂2

+ 2𝛿𝛿𝐸𝐸.𝑃𝑃𝑡𝑡 �
𝑑𝑑𝑈𝑈
𝑑𝑑 𝜂𝜂

�
4

+𝑀𝑀𝜃𝜃 = 0 (7) 

where 𝑃𝑃𝑡𝑡, 𝐸𝐸𝜌𝜌 , 𝛿𝛿 , 𝑃𝑃, 𝐻𝐻𝑎𝑎 and 𝑀𝑀 are Prandtl number, Eckert number, dimensionless non-Newtonian viscosity, 
dimensionless porosity parameter, Hartman number and dimensionless heat source parameter, respectively. These 
parameters are defined in the following: 

𝐸𝐸𝜌𝜌 =
𝑈𝑈02

𝜌𝜌(𝑇𝑇1 − 𝑇𝑇2)
, 𝑃𝑃𝑡𝑡 =

𝜇𝜇𝜌𝜌
𝑘𝑘

, 𝛿𝛿 =
6𝛽𝛽3𝑈𝑈02

𝜇𝜇𝑏𝑏2
, 𝑃𝑃 =

𝜇𝜇𝑏𝑏2

𝑘𝑘∗
, 𝑀𝑀 =

𝑄𝑄0𝑏𝑏2

𝑘𝑘
, 𝐻𝐻𝑎𝑎 = 𝐵𝐵0𝑏𝑏�

𝜎𝜎𝑓𝑓
𝜇𝜇

 (8) 

 
Figure 1. Schematic of the problem considered in the present study 
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Accurate boundary conditions for this problem are presented in the following (Rajagopal and Na, 1985): 

𝑈𝑈 = 0,𝜃𝜃 = +
1
2

 at 𝜂𝜂 = −1 (9) 

𝑈𝑈 = 0,𝜃𝜃 = −
1
2

 at 𝜂𝜂 = +1 (10) 

In this study, for solving the coupled and non-linear Eqs. (6) and (7), least square and Galerkin methods are 
used.  

THEORETICAL METHODS 

Least square and Galerkin methods are analytical methods operating based on Weighted Residuals Methods. 
In these methods, a differential operator represented by 𝐷𝐷 is applied on the function of 𝜕𝜕 to generate function 𝑝𝑝. 

𝐷𝐷�𝜕𝜕(𝑥𝑥)� = 𝑝𝑝(𝑥𝑥) (11) 

where function 𝜕𝜕 is approximated by 𝜕𝜕�  and is a linear combination of a set of functions. 

𝜕𝜕 ≅ 𝜕𝜕� = �𝜌𝜌𝑖𝑖𝜇𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (12) 

Since 𝑝𝑝 cannot be calculated by applying operator 𝐷𝐷 on the approximated function 𝜕𝜕, an error will be appeared 
in the calculations which can be defined as follows: 

𝐸𝐸(𝑥𝑥) = 𝑅𝑅(𝑥𝑥) = 𝐷𝐷�𝜕𝜕�(𝑥𝑥)� − 𝑝𝑝(𝑥𝑥) ≠ 0 (13) 

Minimizing the average residual of Eq. 13 is the main purpose of these three procedures. 

�𝑅𝑅(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = 0 , 𝑑𝑑 = 1,2, … ,𝑛𝑛 (14) 

In LSM, 𝑊𝑊𝑖𝑖 can be calculated by the following correlation: 

𝑊𝑊𝑖𝑖 =
𝜕𝜕𝑅𝑅
𝜕𝜕𝜌𝜌𝑖𝑖

, 𝑑𝑑 = 1,2, … ,𝑛𝑛 (15) 

In GM, 𝑊𝑊𝑖𝑖 is defined as follows: 

𝑊𝑊𝑖𝑖 =
𝜕𝜕𝜕𝜕�
𝜕𝜕𝜌𝜌𝑖𝑖

, 𝑑𝑑 = 1,2, … ,𝑛𝑛 (16) 

It is notable that the number of weight functions are equal to the number of unknown parameters of the 
approximated function which must satisfy the considered initial and boundary conditions. 

RESULTS AND DISCUSSION 

Comparison of Analytical and Numerical Results 

As previously expressed, LSM is used for solving the non-linear governing equations. Analysis and solution of 
the governing equations are implemented in Matlab. By applying the boundary conditions, following approximated 
functions are considered for velocity and temperature distributions, respectively. It is worth mentioning that these 
functions are calculated by using try-and-error technique. 

𝑈𝑈 = 0.5𝜂𝜂 + 𝜌𝜌1(𝜂𝜂2 − 1) + 𝜌𝜌2(𝜂𝜂 − 𝜂𝜂3) (17) 

𝜃𝜃 = 𝜌𝜌3(𝜂𝜂2 − 1) + 𝜌𝜌4(𝜂𝜂 − 𝜂𝜂3) (18) 

By using the velocity and temperature approximated functions and applying the LSM, unknown coefficients in 
Eqs. 17 and 18 will be obtained. For validation purpose, the values of non-dimensionalized numbers including 𝛿𝛿, 
𝑃𝑃𝑡𝑡 , 𝐻𝐻𝑎𝑎 , 𝑃𝑃 , 𝑀𝑀 and 𝐸𝐸𝜌𝜌  are taken to be unity and constant. By doing some algebraic computations, following 
equations are achieved for velocity and temperature distributions: 
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𝑈𝑈 = −1.565 × 10−5(𝜂𝜂2 − 1) − 0.0758(𝜂𝜂 − 𝜂𝜂3) (19) 

𝜃𝜃 = 0.5𝜂𝜂 − 8.3463 × 10−5(𝜂𝜂2 − 1) − 0.0885(𝜂𝜂 − 𝜂𝜂3) (20) 

Results calculated by the current numerical and analytical solutions for flow velocity and temperature are 
indicated in Figures 2 and 3, respectively. As can be observed in these figures, there is an appropriate agreement 
between the numerical and analytical results. Hence, it can be concluded that for this problem LSM is an efficient 
technique for solving the momentum and energy equations. 

Tables 1 and 2 list the values of velocity and temperature calculated by using the numerical and analytical 
approaches which includes LSM and GM for two different cases. As presented in Table 1, for the first case, δ =
Pr = Ec = M = P = Ha = 1. In this case, porosity and magnetic field parameters are constant along the channel 
width. The average error related to LSM for non-dimensionalized functions of velocity and temperature are found 

 
Figure 2. Comparison of non-dimensionalized velocity profiles obtained from the numerical and analytical 
solutions for  𝛅𝛅 = 𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 

 
Figure 3. Comparison of non-dimensionalized temperature profiles obtained from the numerical and analytical 
solutions for 𝛅𝛅 = 𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 
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to be 0.034% and 0.16% in this case, respectively. The average error related to GM for non-dimensionalized 
functions of velocity and temperature are found to be 0.035% and 0.17%, respectively. By comparing the values 
of errors, it is implied that precision and efficiency of both of the methods are considerable high. 

As listed in Table 2, calculations are conducted for the case in which δ = Pr = Ec = M = P = Ha = 1. For 
this case, porosity and magnetic field parameters are proportional to 1 − 𝜂𝜂 and linearly vary along the channel 
width. In this case the average error related to LSM for velocity and temperature functions are found to be 0.5% 
and 3.36%, and for GM the values of average error are found to be 0.088% and 0.42%, respectively. Results show 
that when porosity, heat source and magnetic field parameters are constant along the channel width, both of the 
method are efficient. Nevertheless, for the case in which the parameters vary linearly, Galerkin method possesses 
better performance. 

Table 1. Results obtained by LSM, GM and numerical (Num) methods for U(𝞰𝞰) and θ(𝞰𝞰) when 𝛅𝛅 =
𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 and are constant along the channel width 

𝛅𝛅 = 𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 
𝞰𝞰 U θ 
 LSM GM Num LSM GM Num 
-1 0 0 0 0.5 0.5 0.5 

-0.9 0.01296 0.013011 0.013146719 0.465147 0.465708161 0.466013 
-0.8 0.021828 0.021913 0.022204199 0.425513 0.426457054 0.427241 
-0.7 0.027059 0.027163 0.027552464 0.381631 0.382797641 0.384146 
-0.6 0.029106 0.029218 0.029639184 0.334031 0.335280886 0.337197 
-0.5 0.028426 0.028534 0.028947952 0.283244 0.28445775 0.286877 
-0.4 0.025473 0.025568 0.025971096 0.229801 0.230879199 0.233686 
-0.3 0.0207 0.020775 0.021192268 0.174232 0.175096193 0.178145 
-0.2 0.014563 0.014613 0.015078778 0.117069 0.117659697 0.120793 
-0.1 0.007517 0.007538 0.008081113 0.058842 0.059120673 0.062191 

0 1.57E-05 6.53E-06 0.000636827 8.35E-05 3.01E-05 0.002913 
0.1 -0.00749 -0.00753 -0.006823278 -0.05868 -0.059061105 -0.05645 
0.2 -0.01453 -0.0146 -0.013868076 -0.11691 -0.117601934 -0.1153 
0.3 -0.02067 -0.02076 -0.020058962 -0.17408 -0.175041439 -0.17305 
0.4 -0.02545 -0.02556 -0.024943712 -0.22966 -0.230828656 -0.2291 
0.5 -0.0284 -0.02852 -0.028052555 -0.28312 -0.284412623 -0.28287 
0.6 -0.02909 -0.02921 -0.028898561 -0.33392 -0.335242377 -0.33383 
0.7 -0.02704 -0.02716 -0.026985106 -0.38155 -0.382766955 -0.38145 
0.8 -0.02182 -0.02191 -0.021823057 -0.42545 -0.426435393 -0.42527 
0.9 -0.01295 -0.01301 -0.012957597 -0.46511 -0.465696729 -0.4649 
1 0 0 0 -0.5 -0.5 -0.5 

 

Table 2. Results obtained by LSM, GM and numerical (Num) methods for U(𝞰𝞰) and θ(𝞰𝞰) when 𝛅𝛅 =
𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 and vary along the channel width 

𝛅𝛅 = 𝐏𝐏𝐏𝐏 = 𝐄𝐄𝐄𝐄 = 𝐌𝐌 = 𝐏𝐏 = 𝐇𝐇𝐇𝐇 = 𝟏𝟏 
𝞰𝞰 U θ 
 LSM GM Num LSM GM Num 
-1 0 0 0 0.5 0.5 0.5 

-0.9 0.016768 0.015655 0.014942 0.495076 0.485015 0.48933 
-0.8 0.029167 0.026988 0.025954 0.481861 0.462687 0.469198 
-0.7 0.037629 0.034445 0.03339 0.460947 0.433625 0.440541 
-0.6 0.04259 0.038472 0.03762 0.432925 0.398439 0.404365 
-0.5 0.044483 0.039514 0.039024 0.398385 0.357739 0.361712 
-0.4 0.043743 0.038017 0.037981 0.357919 0.312135 0.313631 
-0.3 0.040803 0.034426 0.034871 0.312117 0.262234 0.261151 
-0.2 3.61E-02 0.029188 0.030073 0.26157 0.208648 0.205254 
-0.1 0.030063 0.022747 0.023968 0.206869 0.151986 0.146857 

0 0.023131 0.01555 0.016948 0.148605 0.092857 0.086792 
0.1 0.015736 0.008042 0.009417 0.087369 0.031871 0.025795 
0.2 0.008313 0.000668 0.001803 0.023752 -0.03036 -0.0355 
0.3 0.001295 -0.00613 -0.00544 -0.04166 -0.09323 -0.09658 
0.4 -0.00488 -0.01189 -0.01181 -0.10826 -0.15613 -0.15704 
0.5 -0.00979 -0.01619 -0.01677 -0.17548 -0.21845 -0.21661 
0.6 -0.01298 -0.01857 -0.01976 -0.24271 -0.27958 -0.27511 
0.7 -0.01404 -0.01858 -0.02016 -0.30937 -0.33891 -0.33254 
0.8 -0.01251 -0.01579 -0.01735 -0.37487 -0.39583 -0.38897 
0.9 -0.00798 -0.00975 -0.01079 -0.43861 -0.44973 -0.44466 
1 0 0 0 -0.5 -0.5 -0.5 

 



 European Journal of Sustainable Development Research, 2(3), 33 

© 2018 by Author/s  7 / 13 

Effects of Porosity on Velocity and Temperature Distributions 
Figures 4 and 5 describe the influences of dimensionless porosity parameter on the velocity and temperature 

when the values of the other non-dimensionalized parameters including δ, Pr, Ec, Ha and M are unity. According 
to these figures, it can be seen that porosity parameter which appears in the form of 𝑃𝑃𝑈𝑈(1 − 𝜂𝜂) linearly varies. 
With regard to Figure 4, it can be observed that with an increase in the value of porosity parameter, velocity 
reduces. In other words, rising this parameter results in an increment in porosity and a reduction in permeability 
leading to a greater resistance against the fluid flow and subsequently a decline in the value of velocity. The effect 
of channel width on the temperature distribution for several values of porosity parameter is delineated in Figure 
5. As can be seen in Figure 5, variation of temperature with channel width for different values of porosity 
parameters are very close to each other. Therefore, it can be concluded that porosity has negligible impact on the 
flow temperature. 

 
Figure 4. Variation of non-dimensionalized velocity with position for different porosity parameters 

 
Figure 5. Variation of non-dimensionalized temperature with position for several porosity parameters 
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Figure 6 depicts the variation of velocity with position for several change types of porosity. In descending 
order, constant value and ascending order of porosity, porosity parameters are appeared in forms of 𝑃𝑃𝑈𝑈(1 − 𝜂𝜂), 
𝑃𝑃𝑈𝑈 and 𝑃𝑃𝑈𝑈(𝜂𝜂 + 1) in the momentum equation, respectively. As can be seen in Figure 6, when porosity parameter 
is constant, velocity distribution is symmetric along the channel width. In descending order of porosity, velocity 
of the flow is zero before reaching the centerline of the channel and also on the left-hand side of the centerline. 
In this case, the value of resistance force due to the flow impermeability on the left-hand side of the centerline is 
greater on the left-hand side of the centerline. In this regard, velocity of the flow will be zero in this position. In 
ascending order of porosity, velocity of the flow is zero on the right-hand side of the centerline. 

Effects of Heat Source Term on Velocity and Temperature Distributions 

In Figures 7 and 8, the influences of non-dimensionalized heat source parameter on velocity and temperature 
distributions when the other parameters including δ, Ha, P, Pr and Ec are unity are indicated. Regarding Figure 7, 
with an increment in the value of heat source parameter, velocity of flow reduces along the channel width. The 
reason is that any change in temperature due to existence of heat source will lead to remarkable variations in 
buoyancy force and subsequently the flow velocity. With respect to Figure 8, it can be seen that an enhancement 
in the value of heat source parameter results in a reduction in temperature along the channel width. According to 
Figure 8, it must be pointed out that by adding heat source term in energy equation, temperature varies non-
linearly. With increasing the value of heat source parameter, curvature of temperature distribution increases. 

 
Figure 6. Variation of non-dimensionalized velocity with position for different change types of porosity 
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Effects of Magnetic Field on Velocity and Temperature Distributions 

Figures 9 and 10 indicate the variations of velocity and temperature with position for different values of 
Hartman number. In these figures, all the considered dimensionless parameters except the Hartman number are 
assumed to be unity. In this case, magnetic field parameter is appeared in the form of 𝐻𝐻𝑎𝑎2𝑈𝑈(1 − 𝜂𝜂) in momentum 
equation. As shown in Figure 9, with an increment in the value of Hartman number, velocity in each point of the 
channel width declines. In fact, increasing the Hartman number rises the Lorentz force which is related to the 
magnetic field leading to an increment in resistance against the flow and subsequently reduction in the value of 
velocity. In Figure 10, the effect of Hartman number on temperature distribution is shown. According to this 
figure, Hartman number has insignificance impact on temperature. In other words, the effect of magnetic field on 
temperature is negligible. Figure 11 illustrates the variation of velocity with position for several change types of 

 
Figure 7. Variation of non-dimensionalized velocity with position for different values of heat source parameter 

 
Figure 8. Variation of non-dimensionalized temperature with position for different values of heat source 
parameter 
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magnetic field. It should be noted that in this figure all the considered non-dimensionalized parameters are taken 
to be unity. In descending order, constant value and ascending order of magnetic field, this parameter is appeared 
in forms of 𝐻𝐻𝑎𝑎2𝑈𝑈(1 − 𝜂𝜂), 𝐻𝐻𝑎𝑎2𝑈𝑈 and 𝐻𝐻𝑎𝑎2𝑈𝑈(𝜂𝜂 + 1), respectively, in the momentum equation. As can be seen in 
Figure 11, when magnetic field parameter is constant, velocity distribution is symmetric along the channel width. 
In descending order of magnetic field, velocity of the flow is zero before reaching the centerline of the channel as 
well as the left-hand side of the centerline. In this case, the value of resistance force due to the magnetic field on 
the left-hand side of the centerline is further. In this regard, velocity of the flow will be zero in this position. In 
ascending order of magnetic field, velocity of the flow is zero on the right-hand side of the centerline because of 
lower resistance in this region. 

 

 
Figure 9. Variation of non-dimensionalized velocity with position for different values of Hartman number 

 
Figure 10. Variation of non-dimensionalized temperature with position for different values of Hartman number 
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Nomenclature  
𝜕𝜕 velocity in y direction 
U dimensionless velocity 
𝑃𝑃 porosity dimensionless parameter 
𝑀𝑀 heat source dimensionless parameter 
𝑃𝑃𝑡𝑡 Prandtl number 
𝑏𝑏 half of plates distance 
𝜌𝜌 specific heat of the fluid 
𝑘𝑘 coefficient of conductivity 
𝐸𝐸𝜌𝜌 Eckert Number 
𝐻𝐻𝑎𝑎 Hartman Number 
𝑃𝑃𝑡𝑡 Prandtl number 
T temperature field 
𝑇𝑇𝑚𝑚 mean temperature 
𝜕𝜕0 inlet velocity 
𝑄𝑄0 heat source parameter 
𝑘𝑘∗ permeability 
𝐵𝐵0 magnetic field 

Greek symbols  

𝛿𝛿 dimensionless non-Newtonian viscosity 
𝜂𝜂 dimensionless variable of distance 
𝜇𝜇 dynamic viscosity 
𝜃𝜃 dimensionless temperature 
𝜌𝜌𝑓𝑓 fluid density 
𝛽𝛽𝑇𝑇 coefficient of thermal expansion 
𝜇𝜇 porosity 
𝜎𝜎 electrical conductivity 

 
Figure 11. Variation of non-dimensionalized velocity with position for different change types of magnetic field 
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CONCLUSION 

This study tried to perform a reliable analysis on solution of momentum and energy equations for non-
Newtonian fluid flow between two infinite vertical flat plates taking into account the effects of the porosity of 
medium, heat source and magnetic field. In this paper, porosity, heat source and magnetic field terms are 
considered to be variable. In the first phase of this investigation, governing PDEs were converted into ODEs 
using a similarity solution. Afterwards, LSM was employed to solve a system of ODEs. To evaluate the accuracy 
of this method, the equations were also solved by an analytical approach called Galerkin method and a numerical 
technique. By comparing the results of these methods, it was revealed that for the case in which magnetic field, 
heat source and porosity terms are constant along the channel width, both of the analytical methods reached 
promising results. However, when the aforementioned terms linearly vary along the channel width, results obtained 
by Galerkin method were more accurate. Based on the results, with an increase in the value of porosity parameter, 
the velocity declined while the temperature profile varied constantly. Furthermore, enhancing the value of heat 
source parameter led to reductions in the values of velocity and temperature. It should be pointed out that by 
adding heat source term, a curvature appeared in temperature profile. In other words, the temperature distribution 
varied non-linearly considering this term and the profile curvature grew with rising the value of heat source 
parameter. With an increase in the value of Hartman number, velocity would reduce while temperature was 
constant. By enforcing variable porosity and magnetic field terms to momentum equation, velocity distribution 
would be non-symmetric and stagnation point shifted to the right or left-hand sides of the channel centerline. The 
position of stagnation point relative to the channel centerline was specified by ascending, descending and constant 
lines. 
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