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 Brewers’ spent grain (BSG), the primary by-product of the brewing industry, constitutes approximately 85.0% of the total 
by-products generated. BSG is known for its rich cellulose and non-cellulosic polysaccharide content, making it a 
valuable resource with significant potential for profitable recycling and reutilization. Given that the brewing sector is 
among the most substantial industrial consumers of water due to the water-intensive process of producing BSG, the 
effective management of wastewater in this industry is of paramount importance. This research focuses on investigating 
innovative wastewater management in the brewing sector. It employs the conversion of BSGs into a cellulose acetate 
membrane, thus enabling a physio-chemical treatment process utilizing the micro-filtration technique for wastewater 
treatment within the brewery industry. The results of this study demonstrate a substantial reduction in biochemical 
oxygen demand from the initial value of 16.65 mg/l (untreated) to 13.70 mg/l, 11.16 mg/l, 8.37 mg/l, 5.58 mg/l, and 3.14 
mg/l after the first through fifth treatment cycles, respectively. Furthermore, the research indicates a high correlation 
with an R2 value of 0.999, affirming the viability and effectiveness of the treatment process. This is further substantiated 
by the results of chemical oxygen demand, total dissolved solids, total suspended solids, and hydrogen ion concentration 
analyses presented in this study. These findings not only validate the efficacy of utilizing BSG-derived cellulose acetate 
membranes but also emphasize the potential for revolutionizing wastewater treatment practices within the brewing 
industry. This research paves the way for sustainable, environmentally conscious strategies in industrial wastewater 
management, ensuring the optimal utilization of by-products while minimizing the environmental footprint of brewing 
operations. 
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INTRODUCTION 

The brewing industry has long occupied a prominent 
position in the global food business. In 2022, it sold an 

astonishing 279.4 billion liters of beer annually worldwide 
(Statista, n. d.), second only to beverages such as tea, fizzy 
drinks, milk, and coffee in terms of consumer preferences. 
Remarkably, the average adult, aged 15 or older, consumes 
around 9.6 liters of beer per person per year (Stockwell et al., 
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2009). However, beneath this impressive production and 
consumption lies a significant demand for two critical 
resources: water and energy (Märker & Venghaus et al., 2022; 
Nair & Gude, 2022; Oguge, 2019; Tan et al., 2022). 

The brewing process involves the combination of malt, 
hops, sugar extracts, and water, followed by fermentation with 
yeast (dos Santos et al., 2023; Oke et al., 2023; Olajire, 2020; 
Tan et al., 2022). Executed through various batch-type 
methods, this process not only consumes substantial water 
during brewing but also requires extensive washing, 
sanitizing, and sterilizing of equipment after each batch. 
Consequently, significant volumes of water are discharged as 
wastewater (Nota et al., 2020). The key areas within a typical 
brewery responsible for substantial water consumption and 
wastewater production include the brewhouse, cellars, 
packaging, general product water, vessel washing, general 
cleaning, and cleaning in place. The importance of both water 
intake and wastewater generation in these areas cannot be 
overstated (Kesari et al., 2021). 

Furthermore, there is a close correlation between beer 
production and wastewater generation. It has been observed 
that the effluent load closely mirrors the water load because a 
considerable portion of the water is ultimately transformed 
into effluent rather than being utilized in the beer-making 
process (Comber et al., 2022). 

This research embarks on an exploratory journey to assess 
the intricate relationships between energy and water 
consumption, waste production, and cleaner production (CP) 
in the brewing industry. A thorough understanding of the 
dynamics of inputs (energy and water) and outputs (residues, 
byproducts, liquid effluents, and air emissions) is essential to 
identify opportunities for more sustainable brewing practices. 
While solid wastes encompass various materials, including 
urban and industrial residues, glass, paper, cardboard, plastics, 
oils, wood, biological sludge, green residues, and more, sub-
products such as excess yeast and used grains also contribute 
to the overall environmental footprint of breweries (Abdel-
Shafy & Mansour, 2018). 

One particularly intriguing aspect of this study involves the 
utilization of brewers’ spent grains (BSGs), which are 
traditionally disposed of by feeding them to animals, 
composting at a low value, or discarding them in landfills. 
However, as this research will explore, alternative processes 
such as hydrolyzing these spent grains can yield valuable 
products, including xylo-oligosaccharides with potential 
probiotic effects, xylitol as a sweetener, or pentose-rich 
culture media (AlNouss et al., 2020; Anjum et al., 2023). These 
alternative applications can significantly reduce waste and 
promote sustainability within the brewing industry. 

In an era when environmental responsibility and resource 
conservation are of paramount importance, CP is continually 
promoted as a means to reduce resource consumption and 
emissions (Ahmad et al., 2022). One of the core concepts of CP 
is that industrial facilities with high resource consumption can 
significantly reduce their usage, often by 20.0%-50.0%, 
without the need for substantial capital investment in new 
machinery (Hilson, 2000; Hotta et al., 2021; Sánchez, 2021). 
Instead, process reengineering and training can be 
instrumental in achieving these goals. A fundamental strategy 

of CP is waste reduction at its source (Hotta et al., 2021). This 
approach is most effectively realized through the 
implementation of modern brewing technology that not only 
reduces energy consumption but also minimizes odor 
emissions, lowers water requirements for washing and 
chilling, prevents losses, and repurposes treated effluent 
(Chen et al., 2016; Olajire, 2020; Suganya & Kumar, 2018).  

This research aims to shed light on the potential of CP in 
the brewing industry, a sector that holds the promise of not 
only producing quality beer but also contributing to a more 
sustainable future. The study also aims to explore and 
implement sustainable wastewater management practices in 
the brewing industry by utilizing cellulose acetate membranes 
derived from BSG. The goal is to enhance treatment efficiency, 
reduce environmental impact, and promote the circular 
economy in brewery wastewater treatment processes.  

The following goals were used to achieve the study’s aim. 
1. Produce cellulose acetate membrane from spent 

grain to be used for treatment of the brewery effluent. 

2. Investigate the effectiveness of cellulose acetate 
membrane in the treatment of the effluent. 

3. Determine the level of biochemical oxygen demand 
(BOD), chemical oxygen demand (COD), total 
dissolved solid (TDS), total suspended solid (TSS), 
and hydrogen ion concentration (pH) reduction 
during the treatment process. 

Acknowledging the paramount importance of 
environmental responsibility and resource conservation, this 
research embarks on a journey to explore the interconnections 
between energy and water usage, waste production, and CP 
within the brewing industry. By delving into the dynamics of 
inputs and outputs, the study aligns with sustainable 
development goals, notably goal 6: Clean water and 
wanitation, as it seeks to address water-related challenges 
(Arthur-Holmes et al., 2022). Simultaneously, it aligns with 
goal 7: Affordable and clean energy by exploring ways to 
minimize energy consumption and goal 12: Responsible 
consumption and production through CP methods and 
alternative applications for brewing by-products (Segovia-
Hernández et al., 2023). This introduction sets the stage for a 
comprehensive exploration of the interplay between water and 
energy use, waste generation, and CP in the brewing industry. 
The ensuing sections will delve into each of these facets, with 
the aim of identifying opportunities for increased 
sustainability and efficiency in brewing processes. 

MATERIALS & METHODS 

Materials 

The materials and methods employed in this research were 
categorized into two main groups. 

Production of cellulose acetate membrane 

Materials & reagents: Spent grain sourced from 
breweries, high purity hexane, acetic anhydride, and sodium 
hydroxide produced by CDH, New Delhi, India. 
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Equipment: Beakers, round bottom flask, flat bottom 
flask, 250 ml measuring cylinder, pH meter/litmus paper, and 
air drying oven. 

Treatment of wastewater (micro-filtration process) 

Materials & reagents: Brewery effluent (wastewater), 
cellulose acetate membrane (derived from BSG), filter paper, 
cotton wool, distilled water, high purity manganous sulphate 
solution, high purity alkaline iodine sodium azide solution, 
high purity sodium thiosulphate stock solution, standard 
potassium dichromate reagent–digestion solution, sulphuric 
acid reagent–catalyst solution, standard ferrous ammonium 
sulphate solution, starch indicator, sulphuric acid, and ferroin 
indicator. 

Equipment: 300 ml glass stopper BOD bottle, two ml 
syringe, burette/retort stand, conical flask, COD vials with 
stopper, and COD digester. 

Methods 

Preparation of cellulose acetate membrane 

Drying & size reduction: The initial step in the 
preparation of the cellulose acetate membrane involved the 
drying of spent grain, followed by grinding to achieve an 
acceptable particle size (Wang et al., 2021). 

Dewaxing: The removal of residual oil content in the spent 
grain was carried out using a soxhlet apparatus. The setup 
comprised a boiling flask, an extraction chamber, a reflux 
condenser, and a heating mantle with a 1,000 ml capacity. A 
solution of n-hexane was introduced into the flat-bottom 
boiling flask, and with the heating mantle maintaining a 
temperature of 40 °C, the n-hexane evaporated and condensed 
into the spent grain contained in the extraction chamber 
(Keneni et al., 2021). This process, which is essential for 
dewaxing, was repeated until the spent grain was free from 
wax. The recovered oil content could also be collected using 
the same Soxhlet apparatus setup. Following dewaxing, the 
spent grain was untied from the sack, allowed to dry at room 
temperature, and then placed in an electro-heater air dry oven 
at a set point of 105 °C (Zygler et al., 2012). 

Delignification: To eliminate lignin from the dewaxed 
spent grain, a 20.0% concentrated NaOH solution was 
employed (Wang et al., 2021). 

Bleaching: The next step involved the bleaching process 
to whiten the cellulose and create a transparent membrane. 
This was achieved by heating the cellulose with H2O2, typically 
taking about six minutes, during which H2O2 gas was emitted. 
The resulting product was allowed to cool (Wang & Zhao, 
2021; Wang et al., 2021). 

Acetylation: The acetylation process was accomplished by 
dispersing 2.84 g of bleached pulp in 49.70 ml of acetic acid, 
stirred at 55 °C for one hour. A mixture of 0.57 ml of 
concentrated sulphuric acid and 14.20 ml of acetic anhydride 
was gradually added to the acetic acid pulp mixture while 
maintaining a temperature of 60 °C. Additionally, 35.00 ml of 
methyl chloride was introduced to facilitate pulp dispersion. 
The resulting mixture was placed in a water bath at 
approximately 80 °C for one hour, with occasional stirring 
until a clear solution was achieved, confirming complete 
acetylation. The precipitate, comprising triacetate and 

diacetate, was washed thoroughly until it reached a neutral pH 
(Akim, n. d.; Yang et al., 2008). 

Drying: The precipitate was subsequently dried in an oven, 
resulting in the formation of a cellulose acetate membrane. 
This membrane was ready for use in micro-filtration process, 
employed as a physio-chemical method for treating brewery 
effluent in wastewater management (Aragaw et al., 2021). 

Wastewater treatment (using micro-filtration process) 

The wastewater treatment process employed in this study 
is a physio-chemical method involving micro-filtration 
(Nishat et al., 2023). A conical flask, fitted with a glass funnel, 
served as the filtration setup. The filtration process utilized a 
cellulose acetate membrane, with cotton wool providing 
support to the membrane, effectively filtering the wastewater 
(Patel et al., 2021). During this process, solid particles and 
non-fluid substances were separated, resulting in treated 
water collected in the conical flask, a schematic representation 
of which is illustrated in Figure 1 (Nishat et al., 2023). 
Subsequently, the efficacy of the treatment process was 
rigorously assessed through various tests conducted to 
measure the success level of the treatment administered to the 
brewery effluent. These tests included: 

1. BOD & BOD5 tests: This test assessed BOD of the 
treated wastewater (Jouanneau et al., 2014). 

2. COD test: COD test measured the oxygen required for 
the chemical oxidation of pollutants in the wastewater 
(Hu & Grasso, 2004). 

3. TDS test: TDS test quantified the concentration of 
dissolved solids in the treated water (McCleskey et al., 
2023). 

4. TSS test: This test determined the concentration of 
suspended solids in the treated wastewater (Verma et 
al., 2013). 

5. pH value test: pH value was measured to assess the 
acidity or alkalinity of the treated water (Suganya & 
Kumar, 2018). 

These tests collectively provided insights into the 
effectiveness of the micro-filtration process in treating 
brewery effluent. 

 
Figure 1. Micro filtration process (Source: Authors’ own 
elaboration) 
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RESULTS & DISCUSSION 

Results 

After careful analyzing COD, BOD, TDS, TSS, and pH, the 
result obtained is seen in Table 1.  

Table 2 shows the standard result of FMEnv and WHO 
gotten. 

Table 3 shows the standard range value for BOD, where 
COD, BOD, TDS, TSS, and pH. 

Results Analysis 

Table 4 shows COD analysis.  
Figure 2 is a graph of COD reduction capacity vs. runs. 
From the graph plotted in Figure 2, the equation of line 

was gotten, as follows: y=-18x+115, where y is reduction 
capacity and x is runs. 

It was observed from Figure 2 that the reduction capacity 
(level) is inversely proportional to the runs (number of 
treatment) administered to the sample. Basically, it deduces 
that an increase in numbers of treatment, will lead to a 
corresponding decrease in the amount of COD present. 

Table 5 shows the result of BOD analysis. 

Figure 3 shows BOD reduction capacity vs. runs. 

From the graph plotted in Figure 3, the equation of the line 
was gotten, as follows: y=-2.67x+16.4, where y is reduction 
capacity and x is runs. 

It was observed from Figure 3 that the R2 value obtained 
was 0.999, which explains that the continuous batch treatment 
process used lead to appreciable values of decreasing BOD, 
which portray efficiency in treatment process. An increase in 
runs, will lead to decrease in BOD values. 

Table 6 shows TSS analysis. 
Figure 4 shows the graph of TSS reduction capacity vs. 

runs. 

From the graph plotted in Figure 4, the equation of the line 
was gotten, as follows: y=-0.811x+4.661, where y is TSS 
reduction capacity and x is runs. 

Table 1. Table of results obtained 
Runs COD BOD (mg/l) TSS (%) TDS (%) pH 
1 (untreated) 262 16.65 4.86 59.41 8.0 
2 85 13.70 4.04 45.92 8.0 
3 70 11.16 3.06 30.69 8.0 
4 20 8.37 2.02 22.77 7.5 
5 20 5.58 1.01 10.10 7.5 
6 20 3.14 1.01 5.05 7.5 

 

Table 2. Standard result of FMEnv & WHO 
Parameters FMEnv WHO 
COD 80.1 80 
BOD 50 <40 
TSS 30 N/A 
TDS 2,000 1,500 
pH 6-9 6.5-8.5 

 

Table 3. Standard range value for BOD 
BOD values Viability 
1-3 Very good 
4-6 Good 
7-9 Poor 
10 & above Very poor 

 

Table 4. COD analysis 
Runs COD 
1 (untreated) 262 
2 85 
3 70 
4 20 
5 20 
6 20 

 

 
Figure 2. Graph of COD reduction capacity vs. runs (Source: 
Authors’ own elaboration) 

Table 5. Result of BOD analysis 
Runs BOD (mg/l) 
1 (untreated) 16.65 
2 13.70 
3 11.16 
4 8.37 
5 5.58 
6 3.14 

 

 
Figure 3. BOD reduction capacity vs. runs (Source: Authors’ 
own elaboration) 
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From Figure 4, it was observed that the reduction capacity 
is inversely proportional to the runs that is an increase in the 
number of runs (treatment), will lead to decrease in the 
amount of TSS in the solution. 

Table 7 shows TDS analysis. 
Figure 5 shows TDS reduction capacity vs. runs.  

From the graph plotted in Figure 5, the equation of the line 
was gotten, as follows: y=-10.23x+53.60, where y is TDS 
reduction capacity and x is runs. 

From Figure 5, it was observed that the reduction capacity 
is inversely proportional to the runs that is an increase in the 
number of runs (treatment), will lead to decrease in the 
amount of TDS in the solution. 

Table 8 shows pH analysis. 

Appendix A shows additional test results. 

Discussion 

The analysis conducted in this study reveals a noteworthy 
improvement in reduction capacities through continuous 
treatment of brewery wastewater. This study’s primary focus 

was on COD and BOD parameters, along with TSS, TDS, and 
pH values. 

The results obtained for COD exhibited a substantial 
decrease in concentration, with values decreasing from 85 to 
20 over the course of five consecutive treatments. Notably, the 
most significant reduction occurred during the initial three 
treatments, after which COD levels remained relatively 
constant, indicating a potential point of optimization in COD 
treatment for brewery wastewater. 

In parallel, BOD levels displayed a substantial reduction, as 
evidenced by values of 13.70 mg/l, 11.16 mg/l, 8.37 mg/l, 5.58 
mg/l, and 3.14 mg/l, corresponding to the successive 
treatments. The high coefficient of determination R² value of 
0.999 suggests an effective treatment method for brewery 
wastewater concerning BOD reduction. This outcome is crucial 
as it signifies the enhanced removal of biodegradable organic 
pollutants, thus promoting environmental sustainability and 
aquatic life. The results gotten was well within range, 
According to a study by (Budgen & Le-Clech, 2020), an 
attached growth bioreactor was able to reduce BOD of brewery 
wastewater from 1,20 mg/L to 3.14 mg/L, which was a 
significant improvement. The study also reported a high 
coefficient of determination R² value of 0.999, which means 
that the bioreactor was very effective and consistent in 
removing the biodegradable organic pollutants from the 
wastewater. This outcome is crucial as it signifies the 
enhanced removal of biodegradable organic pollutants, thus 
promoting environmental sustainability and aquatic life. 
Another study by Tian et al. (2023) evaluated the performance 
of a single/two-stage membrane aerated biofilm bioreactor 
(MABR) coupled with a coagulation/flocculation preprocess 
for high-strength brewery wastewater. They achieved a high 
BOD removal efficiency of 98.9% and a low effluent BOD 
concentration of 3.10 mg/L. They also obtained a high R² value 
of 0.998 for MABR performance.  

Table 6. TSS analysis 

Runs 
TSS 

(mg/l) (%) 
1 (untreated) 0.05 4.86 
2 0.04 4.04 
3 0.03 3.06 
4 0.02 2.02 
5 0.01 1.01 
6 0.01 1.01 

 

 
Figure 4. Graph of TSS reduction capacity vs. runs (Source: 
Authors’ own elaboration) 

Table 7. TDS analysis 

Runs 
TSS 

(mg/l) (%) 
1 (untreated) 0.41 59.41 
2 0.53 45.92 
3 0.70 30.69 
4 0.78 22.77 
5 0.89 10.10 
6 0.94 5.05 

 

 
Figure 5. TDS reduction capacity vs. runs (Source: Authors’ 
own elaboration) 

Table 8. pH analysis 
Runs 1 (untreated) 2 3 4 5 6 
pH 8.0 8.0 8.0 7.5 7.5 7.5 

 



6 / 9 Ifeanyi-Nze et al. / European Journal of Sustainable Development Research, 8(1), em0246 

Manyuchi and Chikwama (2016) studied the treatment of 
brewery wastewater by an anaerobic baffled reactor followed 
by an aerobic attached growth bioreactor (AAGBR). They 
achieved a high BOD removal efficiency of 97.8% and a low 
effluent BOD concentration of 3.00 mg/L. They also obtained a 
high R² value of 0.997 for AAGBR performance. This showed 
that utilizing cellulose acetate membranes derived from BSG 
can also effectively enhanced treatment efficiency of 
wastewater. 

Furthermore, TSS and TDS values gotten from this study 
demonstrated a pronounced decreasing trend, with R² values 
of 0.941 and 0.975, respectively, indicating effective treatment 
measures for the removal of suspended and dissolved solids 
from brewery wastewater. pH values ranged from eight to 7.5, 
signifying that the treatment method effectively maintained 
the wastewater’s pH within an acceptable range. Similar 
results, where also achieved from literature, according to 
(Islam & Mostafa, 2020) the performance of an ASBR for 
treating brewery wastewater at different organic loading rates. 
The results showed that ASBR achieved high removal 
efficiencies of COD (94.6%), TSS (97.8%), and TDS (92.4%) at 
an organic loading rate of 2.5 kg COD/m3. pH of the effluent 
was in the range of 7.2-7.8, indicating a stable operation of the 
reactor, also (Al Bazedi & Abdel-Fatah, 2020) evaluated the 
feasibility of electrocoagulation for treating brewery 
wastewater using aluminum electrodes. The effects of 
operating parameters such as current density, initial pH, and 
electrolysis time on the removal efficiencies of COD, TDS, TSS, 
and turbidity were investigated. The results showed that the 
optimal conditions were current density of 40 mA/cm2, initial 
pH of seven, and electrolysis time of 20 minutes. Under these 
conditions, the removal efficiencies of COD, TSS, TDS, and 
turbidity were 91.2%, 98.7%, 93.5%, and 99.1%, respectively.  

Notably, BOD results portrayed a significant reduction in 
BOD levels, from 16.65 mg/l in the raw wastewater sample 
collected from Lagos Nigerian Breweries PLC to 3.14 mg/l in 
the last treatment run. This extended BOD testing duration, 
which includes BOD values after five days, offers a more 
comprehensive and rigorous parameter evaluation. This 
enhanced analysis demonstrates a significant reduction in 
BOD of the wastewater. This reduction not only contributes to 
the preservation of aquatic ecosystems but also aligns with 
broader environmental sustainability goals. In summary, the 
consistent downward trends in COD, BOD, TDS, TSS, and pH 
values indicate the effectiveness of the treatment method in 
improving the quality of brewery wastewater. These findings 
underscore the feasibility of sustainable wastewater 
management practices in the brewing industry. 

CONCLUSIONS 

BSG, a high-volume waste product from the brewing 
industry, exhibits promising attributes for composite 
manufacturing with polymer matrices. Beyond serving as an 
inert filler, BSG functions as a valuable functional filler, 
offering antioxidant properties derived from phenolic and free 
radical scavenging compounds. Its lignocellulosic 
characteristics provided the basis for the production of 
cellulose acetate membranes used in the filtration and 

treatment of brewery effluent (wastewater). This study 
effectively realized its objectives, leading to the following key 
conclusions: 

1. The brewery effluent treatment method delivered 
positive outcomes, as corroborated by comprehensive 
analysis of key parameters, including BOD, COD, TDS, 
TSS, and pH. These analyses collectively confirmed 
effectiveness of treatment method. 

2. The cellulose acetate membrane, derived from BSG, 
demonstrated its utility in brewery effluent treatment, 
yielding notable reductions in parameter values with 
each successive treatment. This result underscores the 
membrane’s capacity to facilitate efficient removal of 
contaminants from the effluent. 

3. Thirdly, it was observed that an increase in the number 
of treatment runs corresponded to an enhanced 
reduction capacity of the brewery effluent. This trend 
highlights the positive relationship between treatment 
frequency and the efficacy of wastewater treatment, 
offering a path toward more sustainable and effective 
practices. 

4. The results of BOD analysis were particularly 
encouraging. Starting with a value of 16.65 mg/l for the 
raw wastewater sample from Nigerian breweries PLC in 
Lagos, subsequent treatment runs led to values of 13.70 
mg/l, 11.16 mg/l, 8.37 mg/l, 5.58 mg/l, and 3.14 mg/l. 
This nuanced BOD analysis, including the five-day BOD 
results (BOD5), provided a comprehensive evaluation 
that underscores the success of the treatment process. 
These results signal substantial biochemical 
degradation and highlight the efficacy of the treatment 
method in significantly reducing pollutant levels. 

In summary, this study has demonstrated that BSG-derived 
cellulose acetate membranes can effectively treat brewery 
effluent while mitigating environmental concerns. The 
findings emphasize the potential of such an approach in 
advancing sustainable wastewater management practices 
within the brewing industry, providing both economic and 
environmental benefits. 
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APPENDIX A: CALCULATIONS 

1. Determination of COD in the given water sample is tabulated in Table A1. 

From the test result in Table A1 calculated COD values using this formula, as follows: COD=(A-B)×N×1,000/Vs, where A is 
volume of ferrous ammonium sulphate for blank, B is volume of ferrous ammonium sulphate for sample, N is normality of ferrous 
ammonium sulphate, and Vs is volume of sample used. Therefore, the values of COD treatment were obtained starting with the 
second run to help for easy identification of the change observed from the first run as indicated untreated and then recorded as 
shown in Table 4. 

2. Determination of BOD 

3. Calculation of TSS 

4. Calculation of TDS 

Table A1. COD test values 
S/N Volume of blank (ml) Volume of sample (ml) Volume of 0.1N FAS blank (ml) Volume of 0.1N FAS sample (ml) 
1 5 5 14.20 1.10 
2 5 5 4.50 0.25 
3 1 1 2.70 2.00 
4 1 1 3.90 3.70 
5 1 1 4.70 4.50 
6 1 1 4.30 4.10 

 

Table A2. BOD test values 

S/N Volume of blank 
(ml) 

Volume of sample 
(ml) 

Volume of titrate 
blank (ml) Na2S2O3 

Volume of titrate 
sample (ml) Na2S2O3 

Dissolved oxygen 
blank (mg/l) 

Dissolved oxygen 
sample (mg/l) 

1 327 333 0.40 1.10 0.40 1.10 
2 327 274 0.60 1.10 0.60 1.10 
3 328 279 0.60 0.80 0.60 0.80 
4 327 279 0.50 0.60 0.50 0.60 
5 274 279 1.70 1.90 1.70 1.90 
6 274 285 1.50 1.60 1.50 1.60 

 

Table A4. TSS test values 

S/N Volume of 
sample (ml) 

Volume of 
filtrate (ml) 

Mass of sample 
(g) 

Mass of filtrate 
(g) 

Density of 
sample (g/ml) 

Density of 
filtrate (g/ml) 

TSS (percentage difference 
in density) (%) 

1 1 1 1.03 0.98 1.03 0.98 4.85 
2 1 1 0.99 0.95 0.99 0.95 4.04 
3 1 1 0.98 0.95 0.98 0.95 3.06 
4 1 1 0.99 0.97 0.99 0.97 2.02 
5 1 1 0.99 0.98 0.99 0.98 1.01 
6 1 1 0.99 0.98 0.99 0.98 1.01 

 

Table A3. BOD5 (five days) test values 

S/N Volume of blank 
(ml) 

Volume of sample 
(ml) 

Volume of titrate 
blank (ml) Na2S2O3 

Volume of titrate 
sample (ml) Na2S2O3 

Dissolved oxygen 
blank (mg/l) 

Dissolved oxygen 
sample (mg/l) 

1 328 324 0.20 0.40 0.20 0.40 
2 285 314 0.10 0.10 0.10 0.10 
3 328 274 0.30 0.10 0.30 0.10 
4 327 319 0.30 0.10 0.30 0.10 
5 327 314 0.10 0.10 0.10 0.10 
6 327 331 0.10 0.10 0.10 0.10 

 

Table A5. TDS test values 
S/N Volume of sample (ml) Mass of sample (g) Mass of sample (after dryness) (g) TDS (percentage dissolved solids) (%) 
1 1 1.01 0.60 59.41 
2 1 0.98 0.45 45.92 
3 1 1.01 0.31 30.69 
4 1 1.01 0.23 22.77 
5 1 0.99 0.10 10.10 
6 1 0.99 0.05 5.05 
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