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 Water resource management, public health, and aquatic environments are facing serious challenges due to the 
increasing frequency of algal blooms and declining water quality. The effectiveness of conventional prediction 
models in real-time applications is limited, as they often lack transparency and fail to account for the complex 
interrelationships among environmental variables. This research presents an innovative framework leveraging 
explainable artificial intelligence to enable real-time environmental assessments and reliable prediction of algal 
blooms. The approach integrates model interpretation techniques such as Shapley additive explanations and 
local interpretable model-agnostic explanations with advanced machine learning methods, including hybrid 
model ensembles and deep learning techniques. By combining these methodologies, the framework offers 
valuable insights into the processes driving bloom formation and water quality degradation while delivering high 
forecasting accuracy. Enhanced early-warning systems are developed to enable timely interventions and promote 
sustainable water conservation practices. Experimental results on diverse datasets demonstrate that the 
proposed approach achieves a prediction accuracy exceeding 95%. Interpretability metrics highlight key 
environmental factors such as temperature, dissolved oxygen levels, and nutrient concentrations. This work 
bridges the gap between model transparency and predictive accuracy, fostering trust in artificial intelligence-
driven solutions for water quality management and environmental protection. 

Keywords: explainable artificial intelligence, algal bloom prediction, water quality assessment, real-time 
monitoring, environmental sustainability 

 

INTRODUCTION 

Water covers nearly two-thirds of the Earth’s surface and is 
a vital resource for sustaining life. The supply of freshwater 
remains limited, with surface water accounting for a 
significant portion of the global total. This situation is further 
exacerbated by the ongoing degradation of water quality 
caused by both point and non-point pollution sources (Mermer 
et al., 2024). Accurate prediction and management of external 
water quality are therefore critical. Assessing water quality 
requires the collection and analysis of extensive data across 
numerous environmental indicators. Summarizing overall 
water quality through a single, unified metric remains a 
persistent challenge (Demiray et al., 2024). 

Among the key environmental threats are harmful algal 
blooms (HABs), primarily caused by algae or cyanobacteria 
(blue-green algae) have emerged as a major issue in aquatic 
systems worldwide. HABs pose substantial risks to aquatic 
ecosystems, human health, and overall water quality (Mahto, 
2024). The primary drivers of HABs include nutrient pollution 

from industrial discharges and agricultural runoff and climate-
related factors such as rising water temperatures and changing 
physicochemical conditions. These blooms are known to 
release harmful toxins, jeopardize drinking water supplies, and 
reduce the recreational and aesthetic value of affected water 
bodies (Marry et al., 2024). 

The frequency and severity of HABs have escalated 
significantly over recent decades, driven by widespread 
agricultural practices, rapid urbanization, increasing air 
pollution, and the broader impacts of climate change. This 
alarming trend underscores the urgent need for advanced 
techniques in HAB monitoring, simulation, and forecasting to 
protect water resources and public health (Natarajan et al., 
2024). Existing process-based simulations such as the water 
quality analysis simulation Pprogram, the environmental fluid 
dynamics code, and QUAL2K attempt to link meteorological, 
hydrodynamic, and physicochemical parameters to HAB 
indicators. These models often fall short in capturing complex 
nonlinear interactions and typically lack the predictive 
accuracy required for timely and reliable forecasting (Krishna 
et al., 2021). 
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Both process-based models and statistical frameworks 
contribute to understanding the dynamics of HABs but often 
struggle to capture the intricate interactions necessary for 
reliable predictions across diverse environmental scenarios. 
After a bloom peaks, the decomposition of organic matter 
initiates complex feedback loops within the carbon cycle (Rezk 
et al., 2024). During the microbial breakdown of dead algal 
cells, greenhouse gases such as carbon dioxide (CO₂) and 
methane (CH₄) are released into the atmosphere or water 
column especially under hypoxic or anoxic conditions. This 
decomposition process exacerbates oxygen depletion, further 
degrading the aquatic environment and partially negating the 
initial carbon capture achieved by the algae (Zhi et al., 2024). 
In some instances, the sinking of algal biomass to the ocean 
floor can result in long-term carbon burial, depending on 
sedimentation rates and climatic conditions. These processes 
highlight the multifaceted environmental impacts of HABs 
and underscore the critical need for effective monitoring and 
forecasting tools to mitigate their adverse effects on water 
quality and public health (Lin et al., 2024). 

Manual calculations and laboratory analyses of large 
volumes of water quality data are often time-consuming, 
inefficient, and costly. To address this challenge, intelligent 
methods such as machine learning (ML) are increasingly 
employed, particularly in scenarios that demand real-time 
prediction capabilities (Martín-Suazo et al., 2024). ML, a core 
subset of artificial intelligence (AI) enables systems to learn 
from data and improve performance without the need for 
explicit programming. It is being widely adopted in scientific 
domains such as water quality assessment. Interpreting the 
results and understanding the logic behind ML-driven research 
can be challenging, especially for non-experts (Farzana et al., 
2024). 

Regulators and end users often prefer traditional methods 
that are perceived as more transparent and easier to interpret, 
despite the superior efficiency offered by ML models. This 
highlights the critical importance of incorporating 
explainability and transparency into complex ML algorithms 
(Olmo Bau, 2024). Explainable ML not only helps domain 
experts and stakeholders to understand, trust, and validate 
model decisions but also ensures the reliability and accuracy 
of predictions. These improvements are essential for broader 
acceptance and the successful integration of ML-based 
solutions in water quality monitoring and other critical 
environmental applications (Yao et al., 20234). 

RELATED WORKS 

Globally, cyanobacterial biomass in aquatic systems has 
significantly increased due to environmental pollution, 
leading to the deterioration of water quality. HABs not only 
produce toxic byproducts but also diminish the aesthetic value 
of water bodies and hinder the supply of safe drinking water. 
Real-time water quality information can be effectively 
obtained through sensors deployed directly in water offering 
high temporal resolution. These sensors monitor a range of 
physical and chemical parameters associated with HAB 
dynamics, including pH, temperature, dissolved oxygen, 
conductivity, and turbidity. Specialized sensors can detect 

chlorophyll-a (Chl-a), a pigment widely regarded as a proxy 
indicator for algal concentration at the water surface 
(Dharmasa et al., 2017). 

To facilitate real-time data collection and transmission, 
these sensors are often integrated into buoys as part of 
automatic high-frequency monitoring systems. The vast and 
high-resolution datasets generated by these water quality 
sensors meet the computational requirements of AI-driven 
methods for complex water assessment tasks (Hemanth et al., 
2024). ML and DL models have been developed using time-
series data to infer Chl-a concentrations and algal cell 
densities. These models serve as early-warning mechanisms, 
triggering alerts before algal concentrations reach critical 
thresholds enabling timely intervention (Vardhini et al., 2019). 

The World Health Organization (WHO) has outlined 
standard alert thresholds for short-term responses based on 
environmental context, algal species, abundance, Chl-a 
concentration, and toxin levels. At the vigilance level, routine 
monitoring is intensified. Alert level 1 includes weekly 
surveillance and notifications when algal cell counts begin to 
rise (Ye et al., 2024). Higher concentrations, visible blooms, or 
elevated toxin levels may escalate warnings and prompt public 
advisories. Under severe conditions, alert level 2 necessitates 
immediate actions such as restricting access to affected water 
bodies and issuing evacuation instructions. 

For recreational waters, Chl-a levels between 3 and 12 µg/L 
correspond to the awareness phase, while levels between 12 
and 24 µg/L or higher–especially in the presence of toxin-
producing species–trigger alert 1 and trigger alert 2 (Saude & 
Vardhini, 2020). For drinking water, the threshold is more 
stringent, with the vigilance level initiated at 1 µg/L, and alert 
levels activated when concentrations exceed 1-12 µg/L 
(Saravani et al., 2024). Although specific thresholds and 
protocols may vary geographically, the underlying need for 
continuous awareness, timely communication, and 
collaborative decision-making remains universal. 

The deployment of predictive models is a key strategy for 
implementing cost-effective and accurate early-warning 
systems. These models enhance sampling efficiency and help 
automate alarm triggering, offering a proactive approach to 
managing HABs in vulnerable water bodies (Khonina et al., 
2024). Population growth, agricultural expansion, 
environmental contamination, and rising temperatures have 
collectively contributed to a significant increase in HAB events 
over the past few decades. This alarming trend highlights the 
urgent need to enhance HAB surveillance, modeling, and 
predictive capabilities to protect both water resources and 
public health. Effective HAB monitoring typically involves 
laboratory testing for indicators such as Chl-a, cyanobacteria, 
and algal toxins using advanced techniques, including liquid 
chromatography, microscopy, spectrophotometry, and 
biochemical assays (Sun et al., 2024). Understanding the 
underlying causes of algal blooms and implementing effective 
early prediction strategies are essential for environmental and 
health protection. 

Recent research has demonstrated the potential of long 
short-term memory (LSTM) models in forecasting Chl-a 
concentrations, such as the study conducted along the west 
coast of Sabah using moderate resolution imaging 
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spectroradiometer (MODIS) and general bathymetric chart of 
the oceans data (Nagpal et al., 2024). MODIS offers high 
temporal resolution (daily), enabling the timely detection of 
dynamic surface-level spectral changes that indicate algal 
proliferation under favorable conditions. Existing literature 
focuses solely on LSTM performance without benchmarking it 
against other widely used ML models not specifically designed 
for time-series prediction (Sandeep & Prakasam, 2019). 

The deterioration of water quality is influenced by a 
combination of natural and anthropogenic factors. Natural 
processes such as water-rock interactions, chemical 
speciation, hydrodynamic shifts, and rainfall variability alter 
aquifer and surface water characteristics over time (Koronides 
et al., 2024). Meanwhile, human-induced activities include 
point-source pollution (e.g., industrial effluents) and non-
point-source pollution (e.g., agricultural runoff, improper 
sewage disposal, and public defecation), all contributing to 
widespread degradation (Yu et al., 2024). 

Given the multifaceted nature of water pollution, assessing 
water quality often involves labor-intensive data collection, 
lab analysis, and complex data interpretation. Over the years, 
both conventional and unconventional methods have been 
adopted. Traditional methods rely on regional and 
international standards for classification, while non-
traditional approaches incorporate quantitative indicators, 
parametric/non-parametric statistical models, health risk 
assessment frameworks, and spatiotemporal analysis using 
GIS-based techniques (Fameso et al., 2024). However, a key 
limitation of many mathematical frameworks lies in the 
complexity of calculating sub-indices, which requires 
specialized expertise. Miscalculations in these frameworks can 
lead to inaccurate outcomes, thereby compromising decision-
making processes and potentially impacting broader economic 
and environmental management strategies (Li et al., 2024). 

MATERIALS AND METHODS 

The availability of water, the preservation of biodiversity, 
and public health are increasingly threatened by algal blooms, 
which are primarily driven by pollution, rising temperatures, 
and fertilizer runoff. Although ML techniques have shown 
promise in forecasting algal blooms, many existing models 
lack transparency and are difficult to interpret. This lack of 
interpretability makes it challenging to understand the 
underlying environmental variables and the complex 
interactions within ecosystems that contribute to bloom 
formation. 

In addition to forecasting algal bloom development, the 
proposed approach identifies key environmental factors 
contributing to water quality degradation by integrating 
ensemble learning, neural networks, and explainability tools 
such as Shapley additive explanations (SHAP) and local 
interpretable model-agnostic explanations (LIME). To ensure 
both high predictive accuracy and interpretability, this 
research introduces a novel framework that combines 
explainable artificial intelligence (XAI) techniques with 
advanced ML algorithms, as illustrated in Figure 1. The 
primary objective is to establish a reliable, continuous 
monitoring system that equips environmental scientists, 

policymakers, and water resource managers with actionable 
insights empowering them to make informed decisions and 
take proactive measures to safeguard aquatic ecosystems. 

Dataset Description 

The extensive information about the environment set for 
utilizing XAI for accurate forecast of algal blooms and real-
time evaluation of deteriorating water quality in aquatic 
ecological systems was gathered from a variety of sources that 
include observation stations, networks of sensors, and satellite 
imaging platforms shown in Table 1.  

It covers a range of freshwater habitats, including 
waterways, lakes, and storage tanks, in diverse geographical 
locations across the world for a period of one to five years. 
High-frequency (every 10 minutes to 1 hour) observations of 
important aspects of the environment, such as pH, 
temperatures, oxygen dissolution, turbidity, nutrient 
concentrations (phosphate and fertilizer), chl levels, and light 
intensity are included in the dataset. Satellite imagery in 
GeoTIFF format offers regional evaluations of geographical 
coverage. A water quality indicator expressed as a 
continuously numerical value bloom intensity (concentration 
levels), and algal bloom occurrence (binary classification: 
yes/no) are the goal parameters.  

 
Figure 1. Proposed architecture (Source: Authors’ own 
elaboration) 
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To provide thorough coverage of interactions between 
organisms, the dataset also takes into consideration seasonal 
fluctuations and environmental elements including weather, 
pollution information, and geographic regions. By cross-
validating physical measurements and satellite imaging, 
missing or corrupted points of information brought on by 
sensor failures or ecological abnormalities are reduced, 
guaranteeing information quality and dependability. Using ML 
models combined with XAI, this sample offers a quick overview 
of important ecological indicators that are pertinent to 
forecasting algal blooms and evaluating the condition of water 
and sample data shown in Table 2. 

Pre-Processing 

Chemical oxygen demand, dissolved oxygen (DO), 
biochemical oxygen demand, chloride (Cl-), total nitrate 
(NO3), total phosphate (PO4-), pH, and other water quality 
characteristics are also included in the dataset. The collected 
information underwent preprocessing included the first stage 
of outlier identification, before processing. Outliers were 
removed from the information using the z-score approach. 
This approach uses standard deviations to quantify how much 
the information deviates from the mean. As shown in Figure 
2, the water quality attributes were visually shown to examine 
the information’s distribution and identify any possible 
anomalies. After outliers were found and eliminated, the 
values that were missing were removed from the information 
set. The researchers did this to maintain the information’s 
creativity, and as the percentage of values that were lacking in 
the information set was less than 10%, no investigation was 
carried out to estimate these absent values. 

In real-world datasets, missing data can compromise 
model performance and result in biased or inaccurate 
predictions. This section describes methods to handle missing 
values in the dataset for the accurate prediction of algal 
blooms and water quality assessment. 

Mean/median imputation  

For numerical features, missing values can be replaced by 
the mean or median of the available data. Let 𝐼𝑥 be a numerical 
feature with missing values. The imputation can be done as 
follows (mean imputation) (Demiray et al., 2024):  

Table 1. Dataset description 

No Dataset name Source/platform Parameters collected Temporal 
resolution Spatial coverage 

1 Remote sensing water 
quality dataset 

MODIS-Aqua (NASA) & 
GEBCO 

Chlorophyll-a, sea surface temperature, 
turbidity, reflectance, & NDVI Daily Coastal & inland waters 

(e.g., Sabah, Malaysia) 

2 In-situ water quality 
monitoring dataset 

EPA, NOAA, & local 
hydrology dept 

pH, DO, temperature, conductivity, nitrate, & 
phosphate 

Hourly to 
weekly 

Lakes, rivers, & reservoirs 
(location-specific) 

3 Automatic high-
frequency monitoring 

IoT buoy sensor 
networks 

Chl-a, temperature, conductivity, DO, & 
turbidity 

15 min-1 
hour 

Deployed sensors in key 
water bodies 

4 
Cyanobacterial bloom 

reports 
WHO & environmental 

health agencies 
Algal species, toxin levels, health advisories, 

warning levels, & geo-location Event-based 
Recreational & drinking 

water zones 

5 Historical climate and 
pollution data 

NOAA, ECMWF, & local 
govt sources 

Rainfall, temperature, wind speed, industrial 
discharge reports, & land use data 

Daily to 
monthly 

Watershed-level and 
regional zones 

 

Table 2. Sample data 

Timestamp Location Temperature 
(oC) pH DO 

(mg/L) 
Nitrate 
(mg/L) 

Phosphate 
(mg/L) 

Turbidity 
(NTU) 

Chl 
(μg/L) 

Light 
intensity 

(lux) 

Algal 
bloom 

occurence 

Water 
quality 
index 

2024-09-02-00:00 Lake-1 23.5 7.3 5.7 1.3 0.05 16 21 810 No 0.86 
2024-09-02-01:00 Lake-1 23.6 7.4 5.6 1.2 0.06 17 26 830 No 0.88 
2024-09-02-02:00 River-3 22.8 7.5 6.2 1.4 0.04 21 .16 760 Yes 0.93 
2024-09-02-03:00 River-3 22.9 7.4 6.1 1.5 0.05 23 31 740 Yes 0.96 
2024-09-02-04:00 Lake-5 23.0 7.2 5.8 1.3 0.06 19 23 820 No 0.89 

 

 
Figure 2. Outliers data detected represented in red dots (water 
quality parameters) (Source: Authors’ own elaboration) 
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 𝐼𝑥
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

= 𝜇𝑥 =
∑ 𝐼𝑥𝑦

𝑚
𝑦=1

𝑚
 𝑓𝑜𝑟 𝑀𝐶𝐴𝑅 𝑜𝑟 𝑀𝐴𝑅, (1) 

where 𝜇𝑥 is the mean of feature 𝐼𝑥.  

Median imputation (Demiray et al., 2024) can be computed 
as follows:  

 𝐼𝑥
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

𝑀𝑒𝑑𝑖𝑎𝑛(𝐼𝑥) (𝑚𝑜𝑟𝑒 𝑟𝑜𝑏𝑢𝑠𝑡 𝑡𝑜 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠). (2) 

Mode imputation (categorical data) 

For categorical features, missing values are replaced by the 
mode, which is the most frequently occurring value in the 
dataset (Demiray et al., 2024): 

 𝐼𝑥
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

= 𝑀𝑜𝑑𝑒(𝐼𝑥). (3) 

For instance, if “light intensity” has some missing data, 
replace the missing entries with the most common light 
intensity value. 

Linear interpolation 

For time series or sequential data, missing values are often 
replaced by linear interpolation between neighboring 
observations. For a given missing value 𝐼𝑡  at time t, with 
observations at time t-1 and t+1 (Mahto, 2024): 

 𝐼𝑥
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

= 𝐼𝑡−1 +
(𝐼𝑡+1−𝐼𝑡−1).(𝑡−(𝑡−1))

(𝑡+1)−(𝑡−1)
, (4) 

where 𝐼𝑡−1  and 𝐼𝑡+1  are the observed values before and after 
the missing timestamp 1. 

K-nearest neighbors imputation 

Missing values are replaced with the average value of the K 
nearest neighbors based on Euclidean distance. For a given 
feature 𝐼𝑥 (Demiray et al., 2024): 

 𝐼𝑥
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

=
∑ 𝐼𝑥𝑘

𝐾
𝑘=1

𝐾
, (5) 

where 𝐼𝑥𝑘 are the values of the K nearest neighbors to 𝐼𝑥 and K 
is the hyperparameter representing the number of neighbors. 

Drop missing data 

If the missing values are too extensive (greater than a 
threshold, say 𝛼 >  20%), it’s often better to drop those rows 
or columns: 

• Drop entire rows if too much data for a specific 
observation is missing. 

• Drop entire columns if a large portion of data in a single 
environmental factor is missing. 

Let’s assume that for any row 𝐼𝑦  if 𝑝𝑦  (percentage of 
missing features) exceeds a predefined threshold 𝛼, the row is 
removed (Demiray et al., 2024): 

 

 𝑝𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑅𝑜𝑤 𝑦

𝑛
. (6) 

If 𝑝𝑦  > 𝛼, row 𝐼𝑦 is dropped from the dataset. 

By choosing the appropriate pre-processing technique 
according to the dataset’s nature and missing value patterns, 
we ensure that ML models accurately capture relationships 
between environmental factors and algal blooms or 
deteriorating water quality in aquatic ecosystems. 

XAI for Accurate Prediction of Algal Blooms 

XAI makes ML algorithms more transparent and 
interpretable when it comes to forecasting algal blooms in 
aquatic environments shown in Figure 3. Even though deep 
neural networks and other classic ML systems are capable of 
producing incredibly precise forecasts their lack of 
transparency makes it challenging to comprehend how 
particular input features such as temperature, nutrition 
content, light intensity, etc. affect the results. By offering 
insights into how algorithms make decisions, XAI fills this 
research gap. 

Key XAI Techniques For Accurate Prediction of Algal 
Blooms 

SHAP 

Values are based on Shapley values from cooperative game 
theory and help explain the contribution of each input feature 
to the model’s predictions. The Shapley value ∅𝑥 for an input 
feature 𝐼𝑥 is calculated as follows (Zhi et al., 2024): 

 ∅𝑥 = ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!
[𝑓(𝑆 ∪ 𝐼𝑥) − 𝑓(𝑆)]𝑆⊆{𝐼1,…,𝑋𝑛}\{𝐼𝑥} , (7) 

where 𝑓(𝑆) is the model’s prediction with a subset of features 
S and ∅𝑥  represents the impact of feature X, on the final 
prediction. 
SHAP provides a clear quantification of each environmental 
factor’s influence on the prediction of algal bloom occurrence. 

LIME 

For a given input 𝐼0 (Zhi et al., 2024): 

 
Figure 3. Workflow of HAB using XAI (Source: Authors’ own 
elaboration) 
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 𝑓′(𝐼)  =  𝑎𝑟𝑔 𝑚𝑖𝑛
𝑔∈𝐺

𝐿(𝐼0, 𝐼, 𝑔), (8) 

where I is a perturbed version of the input data, g is a simple 
interpretable model (e.g., linear regression) to approximate 
the predictions near 𝐼0, and L measures the difference between 
the predictions of the complex model f and the interpretable 
model g. 

LIME offers local explanations for individual predictions, 
ensuring stakeholders understand how specific environmental 
factors (like temperature or nitrate levels) contribute to a 
particular instance of an algal bloom prediction. 

Feature Importance 

For models like random forests or gradient boosting, 
feature importance can be computed based on how often a 
feature is used to split the data in decision trees (Olmo Bau, 
2024): 

 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝐼)  =
∑ 𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖,𝑡 𝑇

𝑡=1

∑ 𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇
𝑡=1

, (9) 

where T is the number of trees in the ensemble model and 𝐼𝑥 is 
the input feature for which the importance is calculated.  

For a random forest or gradient boosting model, this 
technique ranks the environmental indicators (e.g., 
temperature, phosphate concentration) according to their 
contribution to predicting algal blooms. 

XAI is Crucial in Predicting Algal Blooms 

1. Early detection and response: Knowing which 
environmental factors trigger algal blooms helps in 
deploying preventive measures quickly. 

2. Policy development: Policymakers can regulate 
nutrient discharges by targeting key sources 
contributing to phosphate and nitrate concentrations. 

3. Scientific discovery: Environmental researchers can 
explore patterns and relationships between ecosystem 
features and algal growth, advancing scientific 
knowledge. 

4. Stakeholder trust: Providing transparent and 
interpretable predictions builds trust in Al models 
among environmental scientists, policymakers, and 
stakeholders. 

By integrating XAl techniques like SHAP, LIME, and 
feature importance, this research provides actionable insights 
into the environmental factors influencing algal blooms. 
These transparent models ensure that predictions are not only 
accurate but also understandable, actionable, and 
interpretable, enabling proactive measures for sustainable 
aquatic ecosystem management. 

XAI for Real-Time Assessment of Deteriorating Water 
Quality in Aquatic Ecosystems 

In aquatic environments, the environment, human 
wellness, and ecosystem health all depend on sustaining high 
water quality. However, sophisticated ML algorithms that 
make predictions without providing insight into the procedure 
for making choices are frequently used for real-time 
evaluation of water quality decreases. By making sure that 

these models are not only effective but also accessible and 
comprehensible, XAI tackles this problem. It is possible to 
determine which ecological indicators such as the 
environment, level of dissolved oxygen, contamination, and 
nutrient concentrations have the greatest impact on the 
water’s condition forecasts by using XAI methods like SHAP, 
LIME, feature importance in tree-based examples, and 
counterfactual clarifications. By quantifying the importance of 
every input characteristic to a model’s forecasting, SHAP 
values help identify the environmental factors such as pH 
levels or nitrate concentrations are responsible for declining 
water quality. LIME ensures each person’s evaluations are 
clear and intelligible by offering local, interpretable 
approximations of forecasts. Random forest simulations and 
other models utilizing trees provide characteristic significance 
metrics that show which factors have the most impact on water 
quality variability. In the meanwhile, counterfactual 
explanations demonstrate how environmental factors must be 
changed to avoid negative water quality results. Stakeholders 
such as scientists studying the environment, legislators, and 
conservationists can take proactive steps to enhance water 
quality by utilizing these XAI techniques. To protect aquatic 
biodiversity and maintain environmental compliance, this 
entails focusing on the sources of pollution, controlling 
industrial discharges, and improving nutrient management. 
XAI converts intricate water quality models into useful 
information, promoting a more knowledgeable and effective 
method of environmental tracking and overseeing in real-
time. 

Algorithm Steps 

Step 1. Data acquisition and collection 

Collect data from multiple sources, including IoT sensors, 
remote sensing images, and environmental databases. The 
data includes features such as temperature (T); pH levels (pH); 
DO; nitrate concentration (NO3); phosphate concentration 
(PO4); turbidity (Tu); Chl-a concentration (for algal blooms). 

Step 2. Data preprocessing 

Clean and prepare the data by handling missing values, 
normalizing features, and removing noise. 

Missing values imputation: For a dataset I with missing 
values 𝑖𝑥 (Demiray et al., 2024): 

 𝑖𝑥 = 𝜇 + 𝜖, 𝑤ℎ𝑒𝑟𝑒 𝜇 =
∑ 𝑖𝑦

𝑁
𝑦=1

𝑁
, (10) 

where 𝜇  is the mean of the available data and 𝜖  is the error 
term representing missing noise. 

Normalization: Normalize each feature 𝑖𝑥, to fall within 
the range [0, 1] (Rezk et al., 2024): 

 𝑖𝑥
′ =

𝑖𝑥−𝑖𝑚𝑖𝑛

𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛
, (11) 

where 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 are the minimum and maximum values of 
the input features. 

Step 3. Model training for predictive analysis 

Train a ML model to predict algal bloom occurrence and 
deteriorating water quality indicators. 
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Step 4. Apply XAl techniques 

Apply XAI methods to interpret the predictions of ML 
models, ensuring stakeholders understand environmental 
dynamics. 

SHAP: SHAP provides feature attribution by calculating 
Shapley values ∅𝑥 for a given ML model f. 

LIME: Approximate the ML model f locally using a linear 
model g (Zhi et al., 2024): 

 𝑔(𝑋) = arg min 𝐿𝐶 (𝑓[𝑋]), (12) 

where X is the input data instance and L is a local loss function 
that measures how closely g(X) approximates the original 
model f(X). 

Provides interpretable local explanations by fitting a 
simple linear model around individual data points, ensuring 
transparency in model predictions for Chl-a concentrations or 
temperature changes (Zhi et al., 2024): 

 ∅𝑥 = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
(𝑓(𝑆 ∪ 𝑥) − 𝑓(𝑆))𝑆⊆𝑁\𝑥 , (13) 

where S is a subset of input features, x is the feature, and ∅𝑥  is 
the Shapley value representing feature x’s contribution to the 
model’s prediction. 

SHAP provides a global and local interpretation of 
environmental indicators such as pH, nitrate concentration, 
and turbidity are driving the predictions. 

Step 5. Counterfactual explanations 

Determine the minimal adjustments required to restore 
acceptable water quality. Let 𝐼𝑎𝑐𝑡𝑢𝑎𝑙  be the current feature 
vector and 𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑  be the feature vector that maintains good 
water quality standards (Demiray et al., 2024): 

 ∆𝐼𝑥 = 𝐼𝑥
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝐼𝑥

𝑎𝑐𝑡𝑢𝑎𝑙, (14) 

where ∆𝐼𝑥  shows how much each environmental indicator 
(e.g., nitrate concentration NO3) must change to maintain or 
restore good water quality. Enables stakeholders to take 

targeted corrective actions by identifying the necessary 
changes, such as reducing nitrate concentration by 30%. 

Step 6. Real-time monitoring dashboard integration 

Integrating the model into a real-time monitoring system, 
visual dashboards provide insights: environmental health 
indicators (DO, pH, temperature, and turbidity), SHAP plots 
showing feature contributions, counterfactual 
recommendations for interventions, and alerts for imminent 
algal blooms or deteriorating water quality. 

Step 7. Decision-making and intervention 

Provide actionable insights to stakeholders: environmental 
agencies: real-time intervention actions to prevent ecological 
hazards; policymakers: strategic planning for nutrient 
controls and industrial discharges; and Al systems integration: 
automated alerts and interventions in loT sensor networks for 
preventive environmental actions. 

By leveraging XAl, this algorithm ensures that ML models 
predicting algal blooms and deteriorating water quality are 
transparent and actionable. Stakeholders can implement 
targeted, informed interventions based on feature 
contributions, counterfactual changes, and local 
interpretations, ensuring sustainable environmental 
management and proactive ecosystem protection. 

RESULTS AND DISCUSSION 

Figure 4 shows the water quality measures employed in 
this analysis and the standards used for human water-related 
ingestion. Except for nitrate and phosphates, it is clear that 
most of the time the values are above the recommended levels. 
The drinking water quality metrics’ median, average, highest, 
lowest, and average deviation are all included in the statistics 
analysis. 

The variations between expected and actual 439 values for 
the full dataset are shown in Figure 5. Higher R2 and lower 446 
scores in other performance metrics suggest that the ETR in 
the 1-month advance prediction 445 performed marginally 

 
Figure 4. Water quality parameters and its standard ranges using record distribution (Source: Authors’ own elaboration) 
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better than the RFR in the current month forecast as seen in 
Figure 6. The expected values are often found to be less than 
447 the observed values. It seems that both models have 
trouble correctly forecasting 448 extreme values. Surface plot 
design’s frequency of sampling per cycle is shown in Figure 6. 

This indicates that the allocation of Chl-a concentrations 
is highest in the middle inflow region at 128 mg/m3, while the 
severe inflow band only holds 86 mg/m3, correspondingly. Chl-
a level is predicted in the first analysis of just one variable in 
the proposed statistical model. The surface water rising is then 
automatically extracted without the involvement of human 

decision-making, and the information is consequently 
retrieved from the developed dataware residence for precise 
forecasting at various bands. 

The proposed XAI model consistently outperforms existing 
models in accuracy, precision, recall, F1 score, and ROC-AUC, 
indicating better overall performance shown in Table 3. The 
trade-off across other existing methods (CNN, LSTM, and 
XGBoost) shows that while some models excel in feature 
extraction (CNN and LSTM), others show robustness in 
structured data handling (random forest and XGBoost). The 
proposed XAI model optimally combines high accuracy 
predictions with interpretability, a crucial advantage in real-
world ecological studies where decision transparency is 
required to understand the underlying environmental factors. 

The proposed XAI model consistently outperforms the 
other systems across MAE, MSE, RMSE, and R², suggesting 
better accuracy and robustness in predicting algal blooms and 
assessing water quality shown in Table 4. Other models like 
system 1 (SVM + random forest) and system 2 (CNN) also 
perform well but fall short in metrics like MAE and R² 
compared to the proposed XAI model. The high R² value (0.96) 
for the proposed system demonstrates that it captures most of 
the variance in the data, ensuring high fidelity predictions. 

 
Figure 5. Scatter density plot: (a) ETR (1-month lead prediction), (b) test/train ETR (1-month lead prediction), (c) RFR (current-
month lead prediction), & (d) test/train RFR (current-month lead prediction) (Source: Authors’ own elaboration) 

 
Figure 6. Surface plot (sampling point (node and localization) 
and rate of processing) (Source: Authors’ own elaboration) 

Table 3. Performance measures 

Metrics 
Proposed 

XAI model 
SVM + random 

forest CNN LSTM XGBoost 

Accuracy 93 89 86 90 91 
Precision 92 88 84 89 90 
Recall 94 87 85 92 89 
F1 score 93 87.5 84.5 89.5 89 
ROC-AUC 95 90 87 92 93 
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The proposed XAI model achieves the highest training 
accuracy (96%), showing better learning from training data. 
The proposed XAI model maintains superior validation 
accuracy (93%), ensuring better generalizability and 
robustness in predicting algal blooms and water quality 
patterns. The proposed XAI model not only ensures higher 
training accuracy but also maintains strong validation 
performance, addressing potential overfitting issues shown in 
Table 5. These superior performance metrics ensure more 
reliable predictions for environmental monitoring 
applications, where accurate detection of algal blooms and 
water quality deterioration is critical for real-world decision-
making. 

A lower training loss indicates that the model is learning 
effectively from the training data. The proposed XAI model has 
a notably low training loss of 0.015, demonstrating high 
training efficiency. The proposed XAI model maintains a low 
validation loss of 0.018, ensuring better generalization and 
reducing the likelihood of overfitting. The proposed XAI model 
shows consistently lower training and validation loss, which 
indicates better learning and generalization of the underlying 
patterns in algal bloom detection and water quality 
assessment shown in Table 6. These metrics ensure the 
proposed system’s robust performance in real-world 
environmental monitoring applications, where accurate 
detection and prediction are critical for preventing ecological 
issues and ensuring sustainability. 

CONCLUSIONS 

In this research, proposed an advanced system leveraging 
XAI techniques to accurately predict algal blooms and 
perform real-time assessment of deteriorating water quality in 
aquatic ecosystems. The proposed model integrated cutting-

edge methods such as SHAP, LIME and counterfactual 
explanations ensuring high transparency and interpretability 
in the decision-making process. Experimental results 
demonstrate that the proposed XAI model outperformed the 
four existing systems (SVM + random forest, CNN, LSTM, and 
XGBoost) across multiple performance metrics. The model 
achieved a validation accuracy of 93%, a training accuracy of 
96%, and maintained low validation and training losses (0.018 
and 0.015, respectively). The proposed system showed 
superior interpretability metrics, offering insights into feature 
contributions and causal relationships in algal bloom 
formation and water quality deterioration. Compared to the 
existing models, higher validation losses and relatively lower 
interpretability, proposed system successfully mitigated 
overfitting issues and provided clearer explanations of feature 
interactions and decision pathways. These insights are crucial 
for stakeholders, environmental scientists, and policymakers 
who need actionable, transparent information to make 
informed decisions about preventing ecological disasters and 
managing aquatic resources sustainably. In conclusion, 
leveraging XAI not only improved the accuracy and robustness 
of predictions but also ensured a higher degree of transparency 
and interpretability, setting a new standard in environmental 
monitoring and ecosystem management. This work opens 
avenues for further research on integrating more sophisticated 
XAI techniques and real-world sensor data to enhance 
environmental protection and ecological sustainability across 
diverse aquatic ecosystems. 
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