European Journal of Sustainable Development Research

Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites
Kenechi Nwosu-Obieogu 1 * , Felix Osarumhensen Aguele 1, Linus Ikechi Chiemenam 1, Kelechi Noble Akatobi 1, Kufre Osoh 2, Chinelo Scholastica Onyekwulu 3
More Detail
1 Chemical Engineering Department, Michael Okpara University of Agriculture, Umudike, NIGERIA
2 Chemistry Department, Akwaibom State College of Science and Technology, Nung Ukim, NIGERIA
3 Chemical Engineering Department, Enugu State University of Science and Technology, Enugu, NIGERIA
* Corresponding Author
Research Article

European Journal of Sustainable Development Research, 2020 - Volume 4 Issue 4, Article No: em0144
https://doi.org/10.29333/ejosdr/9284

Published Online: 28 Nov 2020

Views: 216 | Downloads: 144

How to cite this article
APA 6th edition
In-text citation: (Nwosu-Obieogu et al., 2020)
Reference: Nwosu-Obieogu, K., Aguele, F. O., Chiemenam, L. I., Akatobi, K. N., Osoh, K., & Onyekwulu, C. S. (2020). Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites. European Journal of Sustainable Development Research, 4(4), em0144. https://doi.org/10.29333/ejosdr/9284
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Nwosu-Obieogu K, Aguele FO, Chiemenam LI, Akatobi KN, Osoh K, Onyekwulu CS. Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites. EUR J SUSTAIN DEV RES. 2020;4(4):em0144. https://doi.org/10.29333/ejosdr/9284
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Nwosu-Obieogu K, Aguele FO, Chiemenam LI, Akatobi KN, Osoh K, Onyekwulu CS. Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites. EUR J SUSTAIN DEV RES. 2020;4(4), em0144. https://doi.org/10.29333/ejosdr/9284
Chicago
In-text citation: (Nwosu-Obieogu et al., 2020)
Reference: Nwosu-Obieogu, Kenechi, Felix Osarumhensen Aguele, Linus Ikechi Chiemenam, Kelechi Noble Akatobi, Kufre Osoh, and Chinelo Scholastica Onyekwulu. "Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites". European Journal of Sustainable Development Research 2020 4 no. 4 (2020): em0144. https://doi.org/10.29333/ejosdr/9284
Harvard
In-text citation: (Nwosu-Obieogu et al., 2020)
Reference: Nwosu-Obieogu, K., Aguele, F. O., Chiemenam, L. I., Akatobi, K. N., Osoh, K., and Onyekwulu, C. S. (2020). Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites. European Journal of Sustainable Development Research, 4(4), em0144. https://doi.org/10.29333/ejosdr/9284
MLA
In-text citation: (Nwosu-Obieogu et al., 2020)
Reference: Nwosu-Obieogu, Kenechi et al. "Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low Density Polyethylene Composites". European Journal of Sustainable Development Research, vol. 4, no. 4, 2020, em0144. https://doi.org/10.29333/ejosdr/9284
ABSTRACT
The creep and stress relaxation behavior of rice husk reinforced low density polyethylene composite was analyzed in this study. The exponential and power model were used to study the creep while the stress relaxation assessed the time required for the composites to maintain a certain strain level. The creep strain increased with increase in time, at various temperatures, with its highest creep at 70oC while the lowest is at 30oC, the power model provided an excellent fit than other models with a coefficient of determination of 0.9977 at 30oC, the neat low density polyethylene had a good stress relaxation behavior with 4.95 seconds for it to decay and subsequently decreased with increase in filler concentration.
KEYWORDS
REFERENCES
  • Holdsworth, S. (2010). Advances in the assessment of creep data during the past 100 years. Transactions of the Indian Institute of Metals, 63(2-3), 93-99. https://doi.org/10.1007/s12666-010-0013-1
  • Ihueze, C. C. (2007). Modeling of creep in raffia plant fiber-reinforced plastic. Journal of Engineering and applied sciences, 3, 44-50.
  • Lechat, C., Bunsell R. A. and Vavies, P. (2011). Tensile and creep behavior of polyethylene terephthalate and polyethylene naphthalate fibers. Journal of Materials Science, 46(2), 528-533. https://doi.org/10.1007/s10853-010-4999-x
  • Lin, W. C., Pramanick, A. and Sam, M. (2004). Determination of material constant for the nonlinear viscoelastic predictive model. Journal of composite materials, 38(1), 19-29. https://doi.org/10.1177/0021998304038213
  • Lorandi, P. N., Cioff, H. M., Shigue, C. and Ornaghi Jr., L. H. (2018) on the creep behavior of carbon/epoxy non-crimp fabric composites. Materials, 21(3), e 20170768. https://doi.org/10.1590/1980-5373-mr-2017-0768
  • Mirzaei, B., Tajvidi, M., Falk, H. R. and Felton, C. (2011). Stress-relaxation behavior of lignocellulosic high-density polyethylene composites. Journal of reinforced plastic and composites, 30(10), 875-881. https://doi.org/10.1177/0731684411411337
  • Monticeli, F. M., Ornaghi Jr, L. H., Neves, R. M. and Cioffi, M. D. H. (2019) Creep/recovery and stress-relaxation tests applied in a standardized carbon fiber/epoxy composites: Design of experiment and approach. J Strain Analysis, 2, 1-9. https://doi.org/10.1177/0309324719892710
  • Nwosu-Obieogu, K., Ejim I. F. and Adekunle, K. F. (2016). Mechanical properties of rice husk reinforced low-density polyethylene composite. International Journal of Research in Advanced Engineering and Technology (IJRAET), 2(1), 10-15.
  • Obaid, N., Kortschot, T. M. and Sain, M. (2017). Understanding the stress relaxation behavior of polymers reinforced with short elastic fibers. Materials, 10(42), 1-15. https://doi.org/10.3390/ma10050472
  • Premalal, H. G. B., Ismail, H. and Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc-filled polypropylene composites. Polymer Testing, 21(7),833-839. https://doi.org/10.1016/S0142-9418(02)00018-1
  • Qi, S., Yu, M., Fu, J. and Zhu, M. (2018) Stress relaxation behavior of magnetorheological elastomer: experimental and modelling study. Journal of intelligent material system and structure, 29(2) 205-213. https://doi.org/10.1177/1045389X17730913
  • Riara, M. M., Merenga, S. A. and Migwu M. C. (2013). Creep and recovery behavior of compression-molded low-density polyethylene/cellulose composite. Journal of polymers, ID 209529. https://doi.org/10.1155/2013/209529
  • Rowell, M. R., Han, J. S. and Rowell, J. S. (2001). Natural polymers and agrofibers composites fibers. Plastic composites, 31, 21-23.
  • Sorzia, A. (2016). Modelling of creep and stress relaxation test of a polypropylene microfiber by using a fraction-exponential kernel. Modelling and simulation in Engineering, ID 3823047. https://doi.org/10.1155/2016/3823047
  • Sreekala M. S., Kumaran M. G., Reethamma, J. and Thomas, S. (2001). Stress-relaxation behavior in composites based on short oil-palm fibers and phenol-formaldehyderesins. Compos Sci Technol., 6, 1175-1188. https://doi.org/10.1016/S0266-3538(00)00214-1
  • William, D. C. (2007). Materials Science and Engineering, An Introduction (7th Ed.). John Wiley & Sons, Inc.
  • Zhang, Q., Cai, H., Ren, X., Kong, L., Liu, J. and Jiang, X. (2017) The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites. Polymer, 9(628), 1-10. https://doi.org/10.3390/polym9110628
  • Zhang, Q., Zhang, D., Xu, H., Lu, W., Ren, X., Cai, H., … and Mateo, W. (2020) Biochar filled high-densitypolyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes. Industrial crops and products, 146, 112185. https://doi.org/10.1016/j.indcrop.2020.112185
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.