Kinetics and thermodynamics investigation of pyrolysis of butyl rubber tube waste
Draksharapu Rammohan 1 , Nanda Kishore 1 * , Ramgopal V. S. Uppaluri 1
More Detail
1 Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, INDIA* Corresponding Author


Pyrolysis of butyl rubber tube waste was performed under an inert nitrogen gas environment for temperature ranging between 25 and 1,000 °C, by varying the heating rates (5, 10, 20, 35, and 55 °C min−1). Five different iso-conversional approaches, namely, Differential Friedman, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunuse, Distributed activation, and Starink, were employed to investigate the kinetics and thermodynamic parameters. The mean activation energy (Eα), and pre-exponential factor (ko) varied between 222.67 and 244.73 kJ mol-1 and 6.82×1021 and 2.73×1024 s-1 respectively, for all iso-conversional approaches. From the kinetic investigation, a strong correlation co-efficient (R2>0.97) was ascertained in the conversion range of up to α=0.8 for all the iso-conversational approaches. By thermodynamic analysis, the mean values of change in enthalpy and change in Gibbs free energy were 217.06-239.13 kJ mol-1 and 185.12-218.11, kJ mol-1, respectively. From the master plot analysis, diffusion model (D3), and several reaction order models (F1, F2, F3, and F5) were predicted throughout the conversion (0.1 to 0.8) limit at 20 °C min-1 for the pyrolysis of BRT.


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article Type: Research Article

EUR J SUSTAIN DEV RES, 2023, Volume 7, Issue 2, Article No: em0215

Publication date: 01 Apr 2023

Online publication date: 26 Jan 2023

Article Views: 789

Article Downloads: 502

Open Access References How to cite this article