Present and Future Sustainability Development of 3D Metal Printing
Austin Anderson 1, Selso Gallegos 1, Behnaz Rezaie 1 * , Fardad Azarmi 2
More Detail
1 University of Idaho, USA2 North Dakota State University, USA* Corresponding Author

Abstract

Additive manufacturing (AM), also known as 3D printing is a relatively new concept and promising technology for industrial production. It is important to investigate the environmental impact of the AM process in light of the environmental critical situation of the Earth. The elimination of some costly prefabrication processes such as molding or post-fabrication stages such as machining and welding required in traditional manufacturing methods favor the AM process and provide beneficial economic advantages. Furthermore, the reduction of manufacturing steps contributes to environmental protection through fewer operations, less material, and energy consumption, and reduced transportation. This study is a review for the assessment of environmental impact and life cycle of some well-known AM technologies for manufacturing metallic parts and components. The fabrication of a pump impeller is simulated through a well-known metal production AM technology and casting process for direct comparison. Life Cycle Assessment (LCA) is applied to measure the environmental impact in five different stages of pump impeller lifetime with the two different fabrication processes. AM compared to casting has an environmental impact reduction potential of 15%, 20%, 65%, 20%, and 10% respectively in Global Warming Potential (GWP), Acidifications Potential (AP), Water Aquatic Eco-toxicity Potential (FAETP), Human Toxicity Potential (HTP), and Stratospheric Ozone Depletion (ODP). Using hydroelectricity and renewable electricity mitigate the environmental impact of the AM process in pre-manufacturing and manufacturing stages temporarily until the advancement of AM technology for consuming less energy. Recommendations for future research to enhance the environmental sustainability of the AM process is proposed as outcomes of this study.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article Type: Review Article

EUR J SUSTAIN DEV RES, 2021, Volume 5, Issue 3, Article No: em0168

https://doi.org/10.21601/ejosdr/11132

Publication date: 08 Aug 2021

Article Views: 501

Article Downloads: 804

Open Access References How to cite this article