European Journal of Sustainable Development Research

Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions
Great Umenweke 1 2 * , Joshua Ighalo 3 4, Modestus Anusi 2, Blessing Itabana 2, Lina Ekeh 2
More Detail
1 University of Kentucky, Lexington, USA
2 Department of Chemical Engineering, Federal University of Technology, Owerri, NIGERIA
3 Department of Chemical Engineering, University of Ilorin, Ilorin, NIGERIA
4 Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, NIGERIA
* Corresponding Author
Review Article

European Journal of Sustainable Development Research, 2021 - Volume 5 Issue 2, Article No: em0154
https://doi.org/10.21601/ejosdr/10812

Published Online: 01 Apr 2021

Views: 94 | Downloads: 36

How to cite this article
APA 6th edition
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, G., Ighalo, J., Anusi, M., Itabana, B., & Ekeh, L. (2021). Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions. European Journal of Sustainable Development Research, 5(2), em0154. https://doi.org/10.21601/ejosdr/10812
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Umenweke G, Ighalo J, Anusi M, Itabana B, Ekeh L. Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions. EUR J SUSTAIN DEV RES. 2021;5(2):em0154. https://doi.org/10.21601/ejosdr/10812
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Umenweke G, Ighalo J, Anusi M, Itabana B, Ekeh L. Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions. EUR J SUSTAIN DEV RES. 2021;5(2), em0154. https://doi.org/10.21601/ejosdr/10812
Chicago
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, Great, Joshua Ighalo, Modestus Anusi, Blessing Itabana, and Lina Ekeh. "Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions". European Journal of Sustainable Development Research 2021 5 no. 2 (2021): em0154. https://doi.org/10.21601/ejosdr/10812
Harvard
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, G., Ighalo, J., Anusi, M., Itabana, B., and Ekeh, L. (2021). Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions. European Journal of Sustainable Development Research, 5(2), em0154. https://doi.org/10.21601/ejosdr/10812
MLA
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, Great et al. "Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions". European Journal of Sustainable Development Research, vol. 5, no. 2, 2021, em0154. https://doi.org/10.21601/ejosdr/10812
ABSTRACT
The review paper embodies the current trends and advancements involved in the transformation of biomass to enhanced products, bioenergy, and chemicals. Some selected chemical process like the slow-fast pyrolysis, catalytic fast pyrolysis, hydrothermal liquefaction, transesterification and lignin valorization by depolymerization are aptly suited for biorefinery processing, and were discussed in this review. The (catalytic) fast pyrolysis and hydrothermal liquefaction are quite similar, but differ in their feedstock preparations, reactor configuration and thermal or energy optimization. The review covers the biomass selection, chemical conversion techniques and most importantly the required heterogeneous catalysts (where applicable). The work further suggests the superiority of dedicated chemicals over drop-in and smart drop-in chemicals, due the complete usage of biomass. Relative to the oil refinery process, biorefining is quite novel and accompanied by its drawbacks. These challenges range from catalyst poisoning and deactivation to energy intensiveness and eventually as being cost-ineffective. The challenge encountered in biorefinery is in the economic feasibility, as it is inferred from this review that the pre-treatment process takes up to about 20% of the conversion cost. Although the biorefinery plant employ lignocellulosic biomass, but study shows that the use of biomass is largely under-utilized. The solid products/ wastes from pyrolysis for example, can be utilized as source of energy for the process. In the pursuit for sustainability, it is essential to ensure a balance-energy-mix, where every other type of energy will have a role to play to avoid dependence on only one solution for the future. Therefore, in contrast to the dwindling fossil fuels, it can be generally speculated that the future for biorefining is bright. It was concluded that with vast knowledge on the suitable heterogeneous catalysts and proper optimization of process parameters (temperatures, pressure, and reactant species); some of the biorefining processes will result into a significant increase in industrial fuels and bio-based drop-in chemicals leading towards commercialization.
KEYWORDS
REFERENCES
  • Akhar, N., Gupta, K., Goyal, D. and Goyal, A. (2016). Recent advances in pre-treatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress and Sustainable Energy, 35(2), 489-511. https://doi.org/10.1002/ep.12257
  • Amini, E., Safdari, M.-S., Deyoung, J. T., Weise, D. R. and Fletcher, T. H. (2019). Characterization of pyrolysis products from slow pyrolysis of live and dead vegetation native to the southern United States. Fuel, 2019(235), 1475-1491. https://doi.org/10.1016/j.fuel.2018.08.112
  • Anusi, M. O., Umenweke, G. C., Nkuzinna, O. and Igboko, N. (2018a). Kinetics of alkali catalyzed transesterification reaction of palm kernel oil and physicochemical characterization of the biodiesel product. American Journal of Engineering Research (AJER), 7(2), 73-82. https://www.researchgate.net/publication/324797946
  • Anusi, M. O., Umenweke, G. C., Oyoh, K. B., Nkuzinna, O. and Njoku, C. N. (2018b). Characterization of non-edible oil from waste plant materials for biodiesel production. American Journal of Engineering Research (AJER), 7(4), 32-36. https://www.researchgate.net/publication/324798033
  • Asadullah, M., Fujimoto, K. and Tomishige, K. (2001). Catalytic performance of Rh/ CeO2 in the gasification of cellulose to synthesis gas at low temperature. Industrial & Engineering Chemistry Research, 40, 5894-5900. https://doi.org/10.1021/ie010160z
  • Barreiro, D. L., Gómez, B. R., Hornung, U., Kruse, A. and Prins, W. (2015). Hydrothermal Liquefaction of Microalgae in a Continuous Stirred-Tank Reactor. Energy Fuels, 29, 6422-6432. https://doi.org/10.1021/acs.energyfuels.5b02099
  • Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Barauh, D. C. and Kalita, E. (2018). Recent trends in the pre-treatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141. https://doi.org/10.3389/fenrg.2018.00141
  • Baskar, G. and Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496-504. https://doi.org/10.1016/j.rser.2015.12.101
  • Benemann, J. R. (2008). Opportunities and Challenges in algae biofuel production, future energy events. Available at: www.futureenergyevents.com/algae/attend/
  • Bulushev, D. A. and Ross, J. R. H. (2011). Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catalysis Today, 171(1), 1-13. https://doi.org/10.1016/j.cattod.2011.02.005
  • Bunch, A. Y., Wang, X. Q. and Ozkan, U. S. (2008). Adsorption characteristics of reduced Mo and Ni-Mo catalysts in the Hydrodeoxygenation of benzofuran. Applied Catalysis A: General, 346(1-2), 96-103. https://doi.org/10.1016/j.apcata.2008.05.007
  • Cao, J. P., Xiao, X.-B., Zhang, S.-Y., Zhao, X.-Y., Sato, K., Ogawa, Y., Wei, X.-Y. and Takarada, T. (2010). Preparation and Characteristics of Bio-oils from internally circulating fluidized-bed pyrolysis of municipal, livestock and wood waste. Bioresource Technology, 102(2), 2009-2015. https://doi.org/10.1016/j.biortech.2010.09.057
  • Cao, J.-P., Xiao, X.-B., Zhang, S.-Y., Zhao, X.-Y., Sato, K., Ogawa, Y., Wei, X.-Y. and Takarada, T. (2010). Preparation and Characteristics of Bio-oils from internally circulating fluidized-bed pyrolysis of municipal, livestock and wood waste. Elsevier. https://doi.org/10.1016/j.biortech.2010.09.057
  • Capodaglio, A. G. and Bolognesi, S. (2019). Ecofuel feedstocks and their prospects. In Advances in Eco-Fuels for a Sustainable Environment (pp. 15-51). https://doi.org/10.1016/B978-0-08-102728-8.00002-4
  • Caretta, A., Riccò, M., Bosetti, A., Burattini, M., Carnelli, L., Miglio, R. and Volpato, C. B. (2013). Waste to fuel—Conversion of waste into energy. In Proceedings of the 9th European Congress of Chemical Engineering, The Hague, The Netherlands.
  • Carlson, T. R., Tompsett, G. A., Conner, W. C. and Huber, G. W. (2009). Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Topics in Catalysis, 52(2009), 241. https://doi.org/10.1007/s11244-008-9160-6
  • Carus, M., Dammer, L., Puente, Á., Raschka, A. and Arendt, O. (2017). Bio-based drop-in, smart drop-in and dedicated chemicals. Road to Bio. Nova Institut 2017. Available at: https://www.roadtobio.eu/uploads/news/2017_October/RoadToBio_Drop-in_paper.pdf
  • Castello, D., Pedersen, T. H. and Rosendahl, L. A. (2018). Continuous Hydrothermal Liquefaction of Biomass: A Critical Review. Energies, 11, 3165. https://doi.org/10.3390/en11113165
  • Cateto, C. A., Barreiro, M. F. and Rodrigues, A. E. (2008). Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Industrial Crops and Production, 27(2), 168-174. https://doi.org/10.1016/j.indcrop.2007.07.018
  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. https://doi.org/10.1016/j.enconman.2010.01.015
  • Chiang, L., Lu, B. and Castillo, I. (2017). Big Data Analytics in Chemical Engineering. Annual Review of Chemical and Biomolecular Engineering, 8, 63-85. https://doi.org/10.1146/annurev-chembioeng-060816-101555
  • Chio, C., Sain, M. and Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107, 232-249. https://doi.org/10.1016/j.rser.2019.03.008
  • Chowdhury, Z. Z., Kaushik, P., Wageeh, A. Y., Suresh, S., Syed, T. S., Ganiyu, A. A., Emy, M., Rahman, F. F. and Rafie, B. J. (2017). Pyrolysis: A sustainable way to generate energy from waste. Intechopen. https://doi.org/10.5772/intechopen.69036
  • Crocker, M. and Santillan-Jimenez, E. (2020). Chemical catalyst for biomass upgrading. Wiley-VCH. https://doi.org/10.1002/9783527814794
  • Czernik, S. and Bridgwater, A. V. (2004). Overview of applications of Biomass fast Pyrolysis Oil. Energy and Fuels, 18(2), 590-598. https://doi.org/10.1021/ef034067u
  • De Lasa, H., Salaices, E., Mazumder, J. and Lucky, R. (2011). Catalytic steam gasifi cation of biomass: catalysts, thermodynamics and kinetics. Chemical Reviews, 111, 5404-5433. https://doi.org/10.1021/cr200024w
  • Demiral, I. and Ayan, E. A. (2010). Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102(4), 3946-3951. https://doi.org/10.1016/j.biortech.2010.11.077
  • Demiral, I. and Emine, A. A. (2010). Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102(4), 3946-3951. https://doi.org/10.1016/j.biortech.2010.11.077
  • Demirbas, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Conversion and Management, 44(13), 2093-2109. https://doi.org/10.1016/S0196-8904(02)00234-0
  • Dong, C. Q., Zhang, Z. F., Lu, Q. and Yang, Y. P. (2012). Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conversion and Management, 57(2012), 49-59. https://doi.org/10.1016/j.enconman.2011.12.012
  • Elliot, D. C., Sealock, L. J., Phelps, M. R. and Neuenschwander, G. G. (1993). Development of a catalytic system for gasification of wet biomass. Presented at First Biomass Conference of the Americas, Burlington, Vermont. https://doi.org/10.2172/10120451
  • Elliott, D. C. (2004). Biomass, Chemicals from. In Encyclopedia of Energy (vol. 1). https://doi.org/10.1016/B0-12-176480-X/00358-2
  • Elliott, D. C., Hart, T. R., Neuenschwander, G. G., Rotness, L. J., Roesijadi, G., Zacher, A. H. and Magnuson, J. K. (2014). Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. ACS Sustainable Chemistry & Engineering, 2(2), 207-215. https://doi.org/10.1021/sc400251p
  • Ericsson, K. and Werner, S. (2016). The introduction and expansion of biomass use in Swedish district heating systems. Biomass and Bioenergy, 94, 57-65. https://doi.org/10.1016/j.biombioe.2016.08.011
  • Evans, L., Littlewolf, A., Lopez, M. and Miller, J. (1996). Batch microreactor studies of base catalyzed liginin depolymerization in alcohol solvents. Albuquerque, NM, and Livermore, CA: Sandia National Laboratories.
  • Forsythe, W. G., Garrett, M. D., Hardacre, C., Nieuwenhuyzen, M. and Sheldrake, G. N. (2013). An efficient and flexible synthesis of model lignin oligomers. Green Chemistry, 15(11), 3031. https://doi.org/10.1039/c3gc41110a
  • Gashaw, A. and Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92-98. https://doi.org/10.11648/j.ijrse.20140305.12
  • Generation. (2019). Pyrolysis: A Basket of Biomass Potential. ESI Africa, 2, 86-87. Available at: https://www.esi-africa.com/industry-sectors/generation/pyrolysis-a-basket-of-biomass-potential/
  • Gerardy, R., Debecker, D. P., Estager, J., Luis, P. and Manbaliu, J.-C. M. (2020). Continuous Flow Upgrading of selected C2-C6 platform chemicals derived from biomass. Chemical Reviews, 120(15), 7219-7347. https://doi.org/10.1021/acs.chemrev.9b00846
  • Gercel, H. F. (2011). Bio Production from Onopordumacanthium acanthium L. by Slow Pyrolysis. Journal of Analytical and Applied Pyrolysis, 92(1), 233-238. https://doi.org/10.1016/j.jaap.2011.06.002
  • Hammerschmidt, A., Boukis, N., Galla, U., Dinjus, E. and Hitzmann, B. (2011). Conversion of yeast by hydrothermal treatment under reducing conditions. Fuel, 90, 3424-3432.
  • Hammerschmidt, A., Boukis, N., Galla, U., Zevaco, T., Dinjus, E. and Hitzmann, B. (2015). Influence of the heating rate and the potassium concentration of the feed solution on the hydrothermal liquefaction of used yeast and apple pomace under reducing conditions. Biomass Conversion Biorefinery, 5, 125-139. https://doi.org/10.1007/s13399-014-0148-0
  • Hermann, B., Carus, M., Patel, M. and Blok, K. (2011). Policy, regulation and certification: Current policies affecting the market penetration of biomaterials. Biofuels, Bioproducts & Biorefining, 5, 708-719. https://doi.org/10.1002/bbb.327
  • Howe, D., Westover, T., Carpenter, D., Santosa, D., Emerson, R., Deutch, S., Starace, A., Kutnyakov, I. and Lukins, C. (2015). Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis–Hydrotreating Pathway. Energy Fuels, 29, 3188-3197. https://doi.org/10.1021/acs.energyfuels.5b00304
  • Huiyan, Z., Rui, X., Huang, H. and Gang, X. (2008). Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology, 100(3), 1428-1434. https://doi.org/10.1061/j.biortech.2008.08.031
  • IEA (2019). Renewables 2019: Analysis and forecast to 2024. International Energy Agency, France 5. Available at: www.iea.org
  • IEA Bioenergy - Task 42. (2019). Biorefining in a circular economy. Available at: http://task42.ieabioenergy.com/
  • Iffland, K., et al. (2015). Definition, Calculation and Comparison of the “Biomass Utilization Efficiencies (BUE)” of Various Bio-based Chemicals, Polymers and Fuels. Hürth 2015-11. Available at: https://news.bio-based.eu/nova-paper-8-published/
  • Javani, A., Hasheminejad, M., Tahvildari, K. and Tabatabaei, M. (2012). High quality potassium phosphate production through step-by-step glycerol purification: A strategy to economize biodiesel production. Bioresource Technology, 104, 788-790. https://doi.org/10.1016/j.biortech.2011.09.134
  • Jennings, J. A., Parkin, S., Munson, E., Delaney, S. P., Calahan, J. L., Isaacs, M., Hong, K and Crocker, M. (2017). Regioselective Baeyer-Villiger oxidation of lignin model compounds with tin beta zeolite catalyst and hydrogen peroxide. RSC Advances, 7, 25987-25997. https://doi.org/10.1039/C7RA03830E
  • Jensen, C. U., Guerrero, J. K. R., Karatzos, S., Olofsson, G. and Iversen, S. B. (2017). HydrofactionTM of forestry residues to drop-in renewable transportation fuels. In L. Rosendahl (Ed.), Direct Thermochemical Liquefaction for Energy Applications (pp. 319-345). Sawston, UK: Woodhead Publishing—Elsevier. https://doi.org/10.1016/B978-0-08-101029-7.00009-6
  • Jensen, C. U., Rosendahl, L. A. and Olofsson, G. (2017). Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and biocrude upgrading. Fuel Processing Technology, 159, 376-385. https://doi.org/10.1016/j.fuproc.2016.12.022
  • Kirkels, A. F. and Verbong, G. P. J. (2011). Biomass gasification: Still promising? A 30-year global overview. Renewable and Sustainable Reviews, 15(2011), 471-481. https://doi.org/10.1016/j.rser.2010.09.046
  • Laidy, E. H., Arai, A. P. and Antonio, L. B. (2014). Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chemical Engineering Transactions, 2014(37), 115-120. https://doi.org/10.3303/CET1437020
  • Lange, J. P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts, and Biorefining, 1(1), 39-48. https://doi.org/10.1002/bbb.7
  • Lin, Z., Chen, R., Qu, Z. and Chen, J. G. (2018). Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts. Green Chemistry, 20(12). https://doi.org/10.1039/C8GC00239H
  • Lott, M. (2002). QSS Group Inc., 4500 Forbes Boulevard, Suite 200, Lanham, MD 20706.
  • Ma, L., Wang, T., Liu, Q., Zhang, X., Ma, W. and Zhang, Q. (2012). A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnology Advances 30(4), 859-873. https://doi.org/10.1016/j.biotechadv.2012.01.016
  • Mabee, W. E. (n.d.). Policy Options to Support Biofuel Production. In Biofuels (Part of the Advances in Biochemical Engineering / Biotechnology, pp. 329-357). https://doi.org/10.1007/10_2007_059
  • Mafe, O. A., Davies, S. M., Hancock, J. and Du, C. (2015). Development of an estimated model for the evaluation of the energy requirement of dilute acid pretreatments of biomass. Biomass and Bioenergy, 72, 28-38. https://doi.org/10.1016/j.biombioe.2014.11.024
  • Maithel, S. (2009). Biomass Energy, Resource Assessment Handbook. Asian and Pacific Centre for Transfer of Technology (APCTT). Economic and Social Commission for Asia and the Pacific (ESCAP).
  • Maity, S. K. (2014). Opportunities, recent trends and challenges of integrated biorefinery: part I. Renewable and Sustainable Energy Reviews, 43, 1427-1445. https://doi.org/10.1016/j.rser.2014.11.092
  • Mandegari, M. A., Farzad, S. and Görgens, J. F. (2017). Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Research Journal, 4(3), 704-712. https://doi.org/10.18331/BRJ2017.4.3.7
  • Maneffa, A., Priecel, P. and Lopez‐Sanchez, J. A. (2016). Biomass‐Derived Renewable Aromatics: Selective Routes and Outlook for p‐Xylene Commercialisation. ChemSusChem, 9(19), 2736-2748. https://doi.org/10.1002/cssc.201600605
  • Molton, P. M., Fassbender, A. G., Brown, M. D. (1986). STORS: The Sludge-to-Oil Reactor System; Report No. EPA/600/S2-86/034. Cincinnati, OH, USA: U.S. Environmental Protection Agency (EPA).
  • Morales, G., Iglesias, J. and Melero, J. A. (2020). Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts. Catalysts, 10, 581. https://doi.org/10.3390/catal10050581
  • Morales-Delarosa, S. and Campos-Martin, J. M. (2014) Catalytic processes and catalyst development in biorefining. Wood head Publishing Limited. https://doi.org/10.1533/9780857097385.1.152
  • Mørup, A. J., Becker, J., Christensen, P. S., Houlberg, K., Lappa, E., Klemmer, M., Madsen, R. B., Glasius, M. and Iversen, B. B. (2015). Construction and Commissioning of a Continuous Reactor for Hydrothermal Liquefaction. Industrial & Engineering Chemistry Research, 54(22), 5935-5947. https://doi.org/10.1021/acs.iecr.5b00683
  • Muniru, O. S., Ezeanyanaso, C. S., Fagbemigun, T. K., Akubueze, E. U., Oyewole, A. O., Okunola, O. J., Asieba, G., Shifatu, A. O., CIgwe, C. and Elemo, G. N. (2016). Valorization of biodiesel production: Focus on crude glycerin refining/purification. Journal of Scientific Research & Reports, 11(5), 1-8. https://doi.org/10.9734/JSRR/2016/27982
  • OECD (2019). OECD-FAO agricultural outlook 2019-2028. Biofuels, pp. 9. https://doi.org/10.1787/agr_outlook-2019-en
  • Ogunwole, O. A. (2012). Production of Biodiesel from Jatropha Oil (Curcas Oil). Research Journal of Chemical Sciences, 2(11), 30-33.
  • Onay, O. and Kockar, O. M. (2008). Slow, fast and flash pyrolysis of rapeseed. Renewable Energy, 28(15), 2417-2433. https://doi.org/10.1016/S0960-1481(03)00137-X
  • Paasikallio, V., Kalogiannis, K., Lappas, A., Lehto, J. and Lehtonen, J. (2016). Catalytic Fast Pyrolysis: Influencing Bio-Oil Quality with the Catalyst-to-Biomass Ratio. Energy Technology, 5(1), 94-103. https://doi.org/10.1002/ente.201600094
  • Paasikallio, V., Lindfors, C., Kuoppala, E., Solantausta, Y., Oasmaa, A., Lehto, J. and Lehtonen, J. (2014). Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chemistry, 16(7), 3549. https://doi.org/10.1039/C4GC00571F
  • Parasnis, A. (2010). Applications of Pyrolysis and Gasification - The Best from Waste. Sustainable Solid Waste Management, Kolkata.
  • Pedersen, T. H., Hansen, N. H., Pérez, O. M., Villamar Cabezas, D. E. and Rosendahl, L. A. (2017). Modeling and Analysis: Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis. Biofuels, Bioproducts & Biorefining, 12(2), 213-223. https://doi.org/10.1002/bbb.1831
  • Pfeifer, C., Rauch, R. and Hofbauer, H. (2004). In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Industrial & Engineering Chemistry Research, 43, 1634-1640. https://doi.org/10.1021/ie030742b
  • Pfitzer, C., Dahmen, N., Tröger, N., Weirich, F., Saucer, J., Günther, A. and Müller-Hagedorn, M. (2016). Fast Pyrolysis of Wheat Straw in the Bioliq Pilot Plant. Energy Fuels, 30(10), 8047-8054. https://doi.org/10.1021/acs.energyfuels.6b01412
  • Rahman, Md. M., Liu, R. and Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil - A review. Fuel Processing Technology, 180, 32-46. https://doi.org/10.1016/j.fuproc.2018.08.002
  • Ralph, E. H. S., Warren, M., Jack, N. S. and Michael, T. (2010). Bioresource Technology: An overview of second generation biofuel technologies. Bioresource Technology, 101, 1570-1580. https://doi.org/10.1016/j.biortech2009.11.046
  • Reif, P., Rosenthal, H. and Rose, M. (2020). Biomass-Derived Aromatics by Solid Acid-Catalyzed Aldol Condensation of Alkyl Methyl Ketone. Advanced Sustainable Systems, 4(10), 1900150. https://doi.org/10.1002/adsu.201900150
  • REN21. (2009). Renewable global status report. Available at: https://www.ren21.net/Portals/0/documents/activities/gsr/RE_GSR_2009_Update.pdf
  • Robinson, A. M., Hensley, J. E. and Will, J. (2016). Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review. ACS Catalysis, 6(8), 5026-5043. https://doi.org/10.1021/acscatal.6b00923
  • Roland, A. L. and Jean-Michel, L. (2013). From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3(2), 6-11. https://doi.org/10.2527/af.2013-0010
  • Rößiger, B., Unkelbach, G. and Pufky-Heinrich, D. (2018). Base-Catalyzed Depolymerization of Lignin: History, Challenges and Perspectives. Intech open science. https://doi.org/10.5772/intechopen.72964
  • Rostrup-Nielsen, J. R. (2005). Making fuels from biomass. Science, 308, 1421-1422. https://doi.org/10.1126/science.1113354
  • Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454, 841-845. https://doi.org/10.1038/nature07190
  • Safdari, M.-S., Amini, E., Weise, D. R. and Fletcher, T. H. (2019). Heating rate and temperature effect on pyrolysis products from live wildland fuels. Fuel, 2019(242), 295-304. https://doi.org/10.1016/j.fuel.2019.01.040
  • Saifuddin, N., Refal, H. and Kumaran, P. (2014). Rapid Purification of Glycerol by-product from Biodiesel Production through Combined Process of Microwave Assisted Acidification and Adsorption via Chitosan Immobilized with Yeast. Research Journal of Applied Sciences, Engineering and Technology, 7(3), 593-602. https://doi.org/10.19026/rjaset.7.295
  • Serrano-Ruiz, J. C. and Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy & Environmental Science, 2011(4), 83-99. https://doi.org/10.1039/C0EE00436G
  • Song, Y., Mobley, J. K., Motagamwala, A. H., Isaac, M., Dumesic, J. A., Ralph, J., Lee, A. F., Wilson, K. and Crocker, M. (2018). Gold catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 9, 8127-8133. https://do.org/10.1039/c8sc03208d
  • Suesse, A. R., Norton, G. A. and Van Leeuwen, J. (2016). Pilot-Scale Continuous-Flow Hydrothermal Liquefaction of Filamentous Fungi. Energy Fuels, 30, 7379-7386. https://doi.org/10.1021/acs.energyfuels.6b01229
  • Taarning, E., Osmundsen, C. M., Yang, X., Voss, B., Andersen, S. I. and Christensen, C. H. (2011). Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science, 4(3), 793-804. https://doi.org/10.1039/C004518G
  • Thigpen, P. L. and Berry, W. L., Jr. (1982). Liquid fuels from wood by continuous operation of the Albany, Oregon biomass liquefaction facility. In Proceedings of the Energy from Biomass and Wastes VI: Symposium, Lake Buena Vista, FL, USA, pp. 1057-1095.
  • Toor, S. S., Rosendahl, L. and Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013
  • Ubando, A. T., Rivera, D. R., Chen, W.-H. and Culaba, A. B. (2019). A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermo-chemical processes. Bioresource Technology, 291, 121837. https://doi.org/10.1016/j.biortech.2019.121837
  • Umenweke, Great. (2020) Advancements in Biorefinery Processing. Scientific Journal of Research & Reviews, 2(5), SJRR.MS.ID.000548. https://doi.org/10.33552/SJRR.2020.02.000548
  • Von Wedel, R. (1999). Technical handbook for marine biodiesel in recreational boats. Prepared for National Renewable Energy Laboratory, US Department of Energy, Subcontract No. ACG7-16688-01 under Prime Contract No. DE-AC36-83CH10093.
  • Watanabe, Y., Shimada, Y., Sugihara, A. and Tominaga, Y. (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed bed bioreactor. Journal of the American Oil Chemists’ Society, 78(2), 703-707. https://doi.org/10.1007/s11746-001-0329-5
  • World Bioenergy Association. (June, 2015). Available at: http://www.worldbioenergy.org/
  • World Energy Council, Resources 2016 Summary, 2016. Available at: www.worldenergy.org
  • Yamakawa, C. K., Qin, F. and Mussatto, S. I. (2018). Biomass and Energy: Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass and Bioenergy, 119, 54-60. https://doi.org/10.1016/j.biombioe.2018.09.007
  • Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651-671. https://doi.org/10.1016/S0196-8904(03)00177-8
  • Yaning, Z., Yunlei, C., Paul, C., Shiyu, L., Nan, Z., Kuan, D., Liangliang, F., Peng, P., Min, M., Yangling, C., Yunpu, W., Yiqin, W., Yuhuan, L., Bingxi, L. and Roger, R. (2019). Chapter 14 - Gasification Technologies and Their Energy Potentials. In Sustainable Resource Recovery and Zero Waste Approaches (pp 193-206). https://doi.org/10.1016/B978-0-444-64200-4.00014-1
  • Ye, Y., Zhang, Y., Fan, J. and Chang, J. (2012). Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresource Technology, 118, 648-651. https://doi.org/10.1016/j.biortech.2012.05.127
  • Zhai, Y., Li, C., Xu, G., Ma, Y., Liu, X. and Zhang, Y. (2017). Depolymerization of lignin via a nonprecious Ni-Fe alloy catalyst supported on activated carbon. Green Chemistry, 19, 1895-1903. https://doi.org/10.1039/C7GC00149E
  • Zhang, B., Tang, X., Li, X., Xu, Y. and Shen, W. (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy, 32(13), 2367-2373. https://doi.org/10.1016/j.ijhydene.2006.11.003
  • Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 90(3), 229-240. https://doi.org/10.1016/S0960-8524(03)00150-0
  • Zhu, Z., Rosendahl, L., Toor, S. S., Yu, D. and Chen, G. (2015b). Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy, 137, 183-192. https://doi.org/10.1016/j.apenergy.2014.10.005
  • Zhu, Z., Toor, S. S., Rosendahl, L., Yu, D. and Chen, G. (2015a). Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy, 80, 284-292. https://doi.org/10.1016/j.energy.2014.11.071
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.