EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT RESEARCH
Research Article

Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel

European Journal of Sustainable Development Research, 2020, 4(3), em0126, https://doi.org/10.29333/ejosdr/7900
Full Text (PDF)

ABSTRACT

In this study, the slow pyrolysis has been performed in a fixed bed reactor using Saccharum munja (munj) as raw biomass material and bio-genically synthesized nickel ferrite nanoparticles (NF-NPs) as a catalyst at an optimum temperature of 450 oC. In the absence of any catalyst, the obtained yield of bio-oil was 43.3 %. The maximum yield of bio-oil (72 %) was obtained with 0.4 g of NF-NPs. With 0.2g of ZSM-5, the obtained bio-oil yield was 44.5 %. The characterization of NF-NPs was studied by using UV-VIS analysis and Fourier Transform Infrared (FT-IR) spectroscopy. The characterization of Bio-char was done by using FT-IR spectroscopy.

KEYWORDS

Saccharum munja Nickel ferrite nanoparticles Catalytic pyrolysis Bio-oil Green synthesis Nanotechnology

CITATION (APA)

Din, M. I., Javed, M., Hussain, Z., Khalid, R., & Ameen, S. (2020). Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. European Journal of Sustainable Development Research, 4(3), em0126. https://doi.org/10.29333/ejosdr/7900
Harvard
Din, M. I., Javed, M., Hussain, Z., Khalid, R., and Ameen, S. (2020). Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. European Journal of Sustainable Development Research, 4(3), em0126. https://doi.org/10.29333/ejosdr/7900
Vancouver
Din MI, Javed M, Hussain Z, Khalid R, Ameen S. Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. EUR J SUSTAIN DEV RES. 2020;4(3):em0126. https://doi.org/10.29333/ejosdr/7900
AMA
Din MI, Javed M, Hussain Z, Khalid R, Ameen S. Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. EUR J SUSTAIN DEV RES. 2020;4(3), em0126. https://doi.org/10.29333/ejosdr/7900
Chicago
Din, Muhammad Imran, Mahnoor Javed, Zaib Hussain, Rida Khalid, and Saba Ameen. "Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel". European Journal of Sustainable Development Research 2020 4 no. 3 (2020): em0126. https://doi.org/10.29333/ejosdr/7900
MLA
Din, Muhammad Imran et al. "Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel". European Journal of Sustainable Development Research, vol. 4, no. 3, 2020, em0126. https://doi.org/10.29333/ejosdr/7900

REFERENCES

  1. Abedi, G., Sotoudeh, A., Soleymani, M., Shafiee, A., Mortazavi, P., & Aflatoonian, M.R. (2011). A collagen–poly (vinyl alcohol) nanofiber scaffold for cartilage repair. Journal of Biomaterials Science, Polymer Edition, 22(18), 2445-2455 https://doi.org/10.1163/092050610X540503
  2. Ahmed, M. A. A. (2017). A review on the properties and uses of ferrite magnet. Sudan University of Science and Technology. Retrieved from http://repository.sustech.edu/handle/123456789/19434
  3. Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 39(1), 301-312. https://doi.org/10.1039/B918763B
  4. Chattopadhyay, J., Kim, C., Kim, R., & Pak, D. (2009). Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts. Journal of Industrial and Engineering Chemistry, 15(1), 72-76. https://doi.org/10.1016/j.jiec.2008.08.022
  5. Che, R., Zhi, C., Liang, C., & Zhou, X. (2006). Fabrication and microwave absorption of carbon nanotubes∕ CoFe2O4 spinel nanocomposite. Applied Physics Letters, 88(3), 033105. https://doi.org/10.1063/1.2165276
  6. Chen, G. (2003). Catalytic application to biomass pyrolysis in a fixed bed reactor. Energy sources, 25(3), 223-228. https://doi.org/10.1080/00908310390142271
  7. Din, M. I., Khalid, R., & Hussain, Z. (2020). Recent research on development and modification of nontoxic semiconductor for environmental application. Separation & Purification Reviews, 1-18. https://doi.org/10.1080/15422119.2020.1714658
  8. Din, M. I., Najeeb, J., Hussain, Z., Khalid, R., & Ahmad, G. (2020). Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorganic and Nano-Metal Chemistry, 1-7. https://doi.org/10.1080/24701556.2020.1723026
  9. Din, M. I., Rani, A., Hussain, Z., Khalid, R., Aihetasham, A., & Mukhtar, M. (2019). Biofabrication of size-controlled ZnO nanoparticles using various capping agents and their cytotoxic and antitermite activity. International Journal of Environmental Analytical Chemistry, 1-17. https://doi.org/10.1080/03067319.2019.1672671
  10. Din, M. I., Tariq, M., Hussain, Z., & Khalid, R. (2020). Single step green synthesis of nickel and nickel oxide nanoparticles from hordeum vulgare for photocatalytic degradation of methylene blue dye. Inorganic and Nano-Metal Chemistry, 1-6. https://doi.org/10.1080/24701556.2019.1711401
  11. Farooqi, Z. H., Khalid, R., Begum, R., Farooq, U., Wu, Q., Wu, W., … Naseem, K. (2019). Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental technology, 40(15), 2027-2036. https://doi.org/10.1080/09593330.2018.1435737
  12. Ferreira, A. F., Ferreira, A., Dias, A. P. S., & Gouveia, L. (2020). Pyrolysis of scenedesmus obliquus biomass following the treatment of different wastewaters. BioEnergy Research, 1-11. https://doi.org/10.1007/s12155-020-10102-1
  13. Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of analytical and applied pyrolysis, 62(2), 331-349. https://doi.org/10.1016/S0165-2370(01)00129-2
  14. Foster, A. J., Jae, J., Cheng, Y.-T., Huber, G. W., & Lobo, R. F. (2012). Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over zsm-5. Applied Catalysis A: General, 423, 154-161. https://doi.org/10.1016/j.apcata.2012.02.030
  15. Jeong, J.-Y., Yang, C.-W., Lee, U.-D., & Jeong, S.-H. (2020). Characteristics of the pyrolytic products from the fast pyrolysis of palm kernel cake in a bench-scale fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 145, 104708. https://doi.org/10.1016/j.jaap.2019.104708
  16. Kamnev, A. A., & Ristić, M. (1997). Fourier transform far-infrared spectroscopic evidence for the formation of a nickel ferrite precursor in binary Ni (II)-Fe (III) hydroxides on coprecipitation. Journal of molecular structure, 408, 301-304. https://doi.org/10.1016/S0022-2860(96)09485-9
  17. Kandpal, N., Sah, N., Loshali, R., Joshi, R., & Prasad, J. (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles.
  18. Kumar, P., Kumar, P., Rao, P. V., Choudary, N. V., & Sriganesh, G. (2017). Saw dust pyrolysis: Effect of temperature and catalysts. Fuel, 199, 339-345. https://doi.org/10.1016/j.fuel.2017.02.099
  19. Maensiri, S., Masingboon, C., Boonchom, B., & Seraphin, S. (2007). A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta materialia, 56(9), 797-800. https://doi.org/10.1016/j.scriptamat.2006.09.033
  20. Mohammed, F. A., Khalaf, M. M., Mohamed, I. M., Saleh, M., & Abd El-Lateef, H. M. (2020). Synthesis of mesoporous nickel ferrite nanoparticles by use of citrate framework methodology and application for electrooxidation of glucose in alkaline media. Microchemical Journal, 153, 104507. https://doi.org/10.1016/j.microc.2019.104507
  21. Montoya, J., Pecha, B., Roman, D., Janna, F. C., & Garcia-Perez, M. (2017). Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. Journal of analytical and applied pyrolysis, 123, 347-363. https://doi.org/10.1016/j.jaap.2016.11.008
  22. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012
  23. Nokkosmäki, M., Kuoppala, E., Leppämäki, E., & Krause, A. (2000). Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis, 55(1), 119-131. https://doi.org/10.1016/S0165-2370(99)00071-6
  24. Oasmaa, A., Sundqvist, T., Kuoppala, E., Garcia-Perez, M., Solantausta, Y., Lindfors, C., & Paasikallio, V. (2015). Controlling the phase stability of biomass fast pyrolysis bio-oils. Energy & Fuels, 29(7), 4373-4381. https://doi.org/10.1021/acs.energyfuels.5b00607
  25. Pasban Ziyarat, F., Asoodeh, A., Sharif Barfeh, Z., Pirouzi, M., & Chamani, J. (2014). Probing the interaction of lysozyme with ciprofloxacin in the presence of different-sized ag nano-particles by multispectroscopic techniques and isothermal titration calorimetry. Journal of Biomolecular Structure and Dynamics, 32(4), 613-629. https://doi.org/10.1080/07391102.2013.785919
  26. Pütün, E. (2010). Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 35(7), 2761-2766. https://doi.org/10.1016/j.energy.2010.02.024
  27. Rahar, S., Nagpal, N., Swami, G., Arora, M., Bansal, S., Goyal, S., … Kapoor, R. (2010). Medicinal aspects of saccharum munja. Research Journal of Pharmacy and Technology, 3(3), 636-639.
  28. Rodrigues, A. R. O., Gomes, I. T., Almeida, B. G., Araújo, J. P., Castanheira, E. M., & Coutinho, P. J. (2015). Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Physical Chemistry Chemical Physics, 17(27), 18011-18021
  29. Scheirs, J., & Kaminsky, W. (2006). Feedstock recycling and pyrolysis of waste plastics. UK : John Wiley & Sons Chichester.
  30. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., & Muthamizhchelvan, C. (2011). Synthesis and characterization of nickel ferrite magnetic nanoparticles. Materials Research Bulletin, 46(12), 2208-2211. https://doi.org/10.1016/j.materresbull.2011.09.009
  31. Tippayawong, N., Kinorn, J., & Thavornun, S. (2008). Yields and gaseous composition from slow pyrolysis of refuse-derived fuels. Energy Sources, Part A, 30(17), 1572-1580. https://doi.org/10.1080/15567030701258550
  32. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 1-25. https://doi.org/10.1007/s11157-020-09523-3
  33. Verma, A., Alam, M., Chatterjee, R., Goel, T., & Mendiratta, R. (2006). Development of a new soft ferrite core for power applications. Journal of Magnetism and Magnetic Materials, 300(2), 500-505. https://doi.org/10.1016/j.jmmm.2005.05.040
  34. Zabeti, M., Nguyen, T., Lefferts, L., Heeres, H., & Seshan, K. (2012). In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresource technology, 118, 374-381. https://doi.org/10.1016/j.biortech.2012.05.034
  35. Zhang, H., Xiao, R., Jin, B., Shen, D., Chen, R., & Xiao, G. (2013). Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts. Bioresource technology, 137, 82-87. https://doi.org/10.1016/j.biortech.2013.03.031
  36. Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. (2019). Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: Thermochemical behaviors, kinetics, and aromatic hydrocarbon formation. Journal of the Energy Institute, 92(5), 1348-1363. https://doi.org/10.1016/j.joei.2018.09.006
  37. Zhou, L., Yang, H., Wu, H., Wang, M., & Cheng, D. (2013). Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel processing technology, 106, 385-391. https://doi.org/10.1016/j.fuproc.2012.09.003
  38. Zhou, S., Garcia-Perez, M., Pecha, B., McDonald, A. G., Kersten, S. R., & Westerhof, R. J. (2013). Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood. Energy & fuels, 27(3), 1428-1438. https://doi.org/10.1021/ef3019832
  39. Zhou, S., Garcia-Perez, M., Pecha, B., McDonald, A. G., & Westerhof, R. J. (2014). Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel, 125, 15-19. https://doi.org/10.1016/j.fuel.2014.01.016

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.