European Journal of Sustainable Development Research

Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel
Muhammad Imran Din 1 * , Mahnoor Javed 1, Zaib Hussain 1, Rida Khalid 1, Saba Ameen 1
More Detail
1 Institute of Chemistry, University of Punjab, Lahore-54590, PAKISTAN
* Corresponding Author
Research Article

European Journal of Sustainable Development Research, 2020 - Volume 4 Issue 3, Article No: em0126
https://doi.org/10.29333/ejosdr/7900

Published Online: 07 Apr 2020

Views: 384 | Downloads: 320

How to cite this article
APA 6th edition
In-text citation: (Din et al., 2020)
Reference: Din, M. I., Javed, M., Hussain, Z., Khalid, R., & Ameen, S. (2020). Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. European Journal of Sustainable Development Research, 4(3), em0126. https://doi.org/10.29333/ejosdr/7900
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Din MI, Javed M, Hussain Z, Khalid R, Ameen S. Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. EUR J SUSTAIN DEV RES. 2020;4(3):em0126. https://doi.org/10.29333/ejosdr/7900
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Din MI, Javed M, Hussain Z, Khalid R, Ameen S. Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. EUR J SUSTAIN DEV RES. 2020;4(3), em0126. https://doi.org/10.29333/ejosdr/7900
Chicago
In-text citation: (Din et al., 2020)
Reference: Din, Muhammad Imran, Mahnoor Javed, Zaib Hussain, Rida Khalid, and Saba Ameen. "Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel". European Journal of Sustainable Development Research 2020 4 no. 3 (2020): em0126. https://doi.org/10.29333/ejosdr/7900
Harvard
In-text citation: (Din et al., 2020)
Reference: Din, M. I., Javed, M., Hussain, Z., Khalid, R., and Ameen, S. (2020). Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel. European Journal of Sustainable Development Research, 4(3), em0126. https://doi.org/10.29333/ejosdr/7900
MLA
In-text citation: (Din et al., 2020)
Reference: Din, Muhammad Imran et al. "Slow Catalytic Pyrolysis of Saccharum munja using Bio-genically Synthesized Nickel Ferrite Nanoparticles for the Production of high yield Biofuel". European Journal of Sustainable Development Research, vol. 4, no. 3, 2020, em0126. https://doi.org/10.29333/ejosdr/7900
ABSTRACT
In this study, the slow pyrolysis has been performed in a fixed bed reactor using Saccharum munja (munj) as raw biomass material and bio-genically synthesized nickel ferrite nanoparticles (NF-NPs) as a catalyst at an optimum temperature of 450 oC. In the absence of any catalyst, the obtained yield of bio-oil was 43.3 %. The maximum yield of bio-oil (72 %) was obtained with 0.4 g of NF-NPs. With 0.2g of ZSM-5, the obtained bio-oil yield was 44.5 %. The characterization of NF-NPs was studied by using UV-VIS analysis and Fourier Transform Infrared (FT-IR) spectroscopy. The characterization of Bio-char was done by using FT-IR spectroscopy.
KEYWORDS
REFERENCES
  • Abedi, G., Sotoudeh, A., Soleymani, M., Shafiee, A., Mortazavi, P., & Aflatoonian, M.R. (2011). A collagen–poly (vinyl alcohol) nanofiber scaffold for cartilage repair. Journal of Biomaterials Science, Polymer Edition, 22(18), 2445-2455 https://doi.org/10.1163/092050610X540503
  • Ahmed, M. A. A. (2017). A review on the properties and uses of ferrite magnet. Sudan University of Science and Technology. Retrieved from http://repository.sustech.edu/handle/123456789/19434
  • Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 39(1), 301-312. https://doi.org/10.1039/B918763B
  • Chattopadhyay, J., Kim, C., Kim, R., & Pak, D. (2009). Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts. Journal of Industrial and Engineering Chemistry, 15(1), 72-76. https://doi.org/10.1016/j.jiec.2008.08.022
  • Che, R., Zhi, C., Liang, C., & Zhou, X. (2006). Fabrication and microwave absorption of carbon nanotubes∕ CoFe2O4 spinel nanocomposite. Applied Physics Letters, 88(3), 033105. https://doi.org/10.1063/1.2165276
  • Chen, G. (2003). Catalytic application to biomass pyrolysis in a fixed bed reactor. Energy sources, 25(3), 223-228. https://doi.org/10.1080/00908310390142271
  • Din, M. I., Khalid, R., & Hussain, Z. (2020). Recent research on development and modification of nontoxic semiconductor for environmental application. Separation & Purification Reviews, 1-18. https://doi.org/10.1080/15422119.2020.1714658
  • Din, M. I., Najeeb, J., Hussain, Z., Khalid, R., & Ahmad, G. (2020). Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorganic and Nano-Metal Chemistry, 1-7. https://doi.org/10.1080/24701556.2020.1723026
  • Din, M. I., Rani, A., Hussain, Z., Khalid, R., Aihetasham, A., & Mukhtar, M. (2019). Biofabrication of size-controlled ZnO nanoparticles using various capping agents and their cytotoxic and antitermite activity. International Journal of Environmental Analytical Chemistry, 1-17. https://doi.org/10.1080/03067319.2019.1672671
  • Din, M. I., Tariq, M., Hussain, Z., & Khalid, R. (2020). Single step green synthesis of nickel and nickel oxide nanoparticles from hordeum vulgare for photocatalytic degradation of methylene blue dye. Inorganic and Nano-Metal Chemistry, 1-6. https://doi.org/10.1080/24701556.2019.1711401
  • Farooqi, Z. H., Khalid, R., Begum, R., Farooq, U., Wu, Q., Wu, W., … Naseem, K. (2019). Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental technology, 40(15), 2027-2036. https://doi.org/10.1080/09593330.2018.1435737
  • Ferreira, A. F., Ferreira, A., Dias, A. P. S., & Gouveia, L. (2020). Pyrolysis of scenedesmus obliquus biomass following the treatment of different wastewaters. BioEnergy Research, 1-11. https://doi.org/10.1007/s12155-020-10102-1
  • Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of analytical and applied pyrolysis, 62(2), 331-349. https://doi.org/10.1016/S0165-2370(01)00129-2
  • Foster, A. J., Jae, J., Cheng, Y.-T., Huber, G. W., & Lobo, R. F. (2012). Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over zsm-5. Applied Catalysis A: General, 423, 154-161. https://doi.org/10.1016/j.apcata.2012.02.030
  • Jeong, J.-Y., Yang, C.-W., Lee, U.-D., & Jeong, S.-H. (2020). Characteristics of the pyrolytic products from the fast pyrolysis of palm kernel cake in a bench-scale fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 145, 104708. https://doi.org/10.1016/j.jaap.2019.104708
  • Kamnev, A. A., & Ristić, M. (1997). Fourier transform far-infrared spectroscopic evidence for the formation of a nickel ferrite precursor in binary Ni (II)-Fe (III) hydroxides on coprecipitation. Journal of molecular structure, 408, 301-304. https://doi.org/10.1016/S0022-2860(96)09485-9
  • Kandpal, N., Sah, N., Loshali, R., Joshi, R., & Prasad, J. (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles.
  • Kumar, P., Kumar, P., Rao, P. V., Choudary, N. V., & Sriganesh, G. (2017). Saw dust pyrolysis: Effect of temperature and catalysts. Fuel, 199, 339-345. https://doi.org/10.1016/j.fuel.2017.02.099
  • Maensiri, S., Masingboon, C., Boonchom, B., & Seraphin, S. (2007). A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta materialia, 56(9), 797-800. https://doi.org/10.1016/j.scriptamat.2006.09.033
  • Mohammed, F. A., Khalaf, M. M., Mohamed, I. M., Saleh, M., & Abd El-Lateef, H. M. (2020). Synthesis of mesoporous nickel ferrite nanoparticles by use of citrate framework methodology and application for electrooxidation of glucose in alkaline media. Microchemical Journal, 153, 104507. https://doi.org/10.1016/j.microc.2019.104507
  • Montoya, J., Pecha, B., Roman, D., Janna, F. C., & Garcia-Perez, M. (2017). Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. Journal of analytical and applied pyrolysis, 123, 347-363. https://doi.org/10.1016/j.jaap.2016.11.008
  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012
  • Nokkosmäki, M., Kuoppala, E., Leppämäki, E., & Krause, A. (2000). Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis, 55(1), 119-131. https://doi.org/10.1016/S0165-2370(99)00071-6
  • Oasmaa, A., Sundqvist, T., Kuoppala, E., Garcia-Perez, M., Solantausta, Y., Lindfors, C., & Paasikallio, V. (2015). Controlling the phase stability of biomass fast pyrolysis bio-oils. Energy & Fuels, 29(7), 4373-4381. https://doi.org/10.1021/acs.energyfuels.5b00607
  • Pasban Ziyarat, F., Asoodeh, A., Sharif Barfeh, Z., Pirouzi, M., & Chamani, J. (2014). Probing the interaction of lysozyme with ciprofloxacin in the presence of different-sized ag nano-particles by multispectroscopic techniques and isothermal titration calorimetry. Journal of Biomolecular Structure and Dynamics, 32(4), 613-629. https://doi.org/10.1080/07391102.2013.785919
  • Pütün, E. (2010). Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 35(7), 2761-2766. https://doi.org/10.1016/j.energy.2010.02.024
  • Rahar, S., Nagpal, N., Swami, G., Arora, M., Bansal, S., Goyal, S., … Kapoor, R. (2010). Medicinal aspects of saccharum munja. Research Journal of Pharmacy and Technology, 3(3), 636-639.
  • Rodrigues, A. R. O., Gomes, I. T., Almeida, B. G., Araújo, J. P., Castanheira, E. M., & Coutinho, P. J. (2015). Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Physical Chemistry Chemical Physics, 17(27), 18011-18021
  • Scheirs, J., & Kaminsky, W. (2006). Feedstock recycling and pyrolysis of waste plastics. UK : John Wiley & Sons Chichester.
  • Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., & Muthamizhchelvan, C. (2011). Synthesis and characterization of nickel ferrite magnetic nanoparticles. Materials Research Bulletin, 46(12), 2208-2211. https://doi.org/10.1016/j.materresbull.2011.09.009
  • Tippayawong, N., Kinorn, J., & Thavornun, S. (2008). Yields and gaseous composition from slow pyrolysis of refuse-derived fuels. Energy Sources, Part A, 30(17), 1572-1580. https://doi.org/10.1080/15567030701258550
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 1-25. https://doi.org/10.1007/s11157-020-09523-3
  • Verma, A., Alam, M., Chatterjee, R., Goel, T., & Mendiratta, R. (2006). Development of a new soft ferrite core for power applications. Journal of Magnetism and Magnetic Materials, 300(2), 500-505. https://doi.org/10.1016/j.jmmm.2005.05.040
  • Zabeti, M., Nguyen, T., Lefferts, L., Heeres, H., & Seshan, K. (2012). In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresource technology, 118, 374-381. https://doi.org/10.1016/j.biortech.2012.05.034
  • Zhang, H., Xiao, R., Jin, B., Shen, D., Chen, R., & Xiao, G. (2013). Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts. Bioresource technology, 137, 82-87. https://doi.org/10.1016/j.biortech.2013.03.031
  • Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. (2019). Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: Thermochemical behaviors, kinetics, and aromatic hydrocarbon formation. Journal of the Energy Institute, 92(5), 1348-1363. https://doi.org/10.1016/j.joei.2018.09.006
  • Zhou, L., Yang, H., Wu, H., Wang, M., & Cheng, D. (2013). Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel processing technology, 106, 385-391. https://doi.org/10.1016/j.fuproc.2012.09.003
  • Zhou, S., Garcia-Perez, M., Pecha, B., McDonald, A. G., Kersten, S. R., & Westerhof, R. J. (2013). Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood. Energy & fuels, 27(3), 1428-1438. https://doi.org/10.1021/ef3019832
  • Zhou, S., Garcia-Perez, M., Pecha, B., McDonald, A. G., & Westerhof, R. J. (2014). Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel, 125, 15-19. https://doi.org/10.1016/j.fuel.2014.01.016
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.