EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT RESEARCH
Literature Review

A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments

European Journal of Sustainable Development Research, 2020, 4(4), em0138, https://doi.org/10.29333/ejosdr/8432
Full Text (PDF)

ABSTRACT

A critical overview of renewable energy is provided, including descriptions of renewable energy sources, technologies, assessments, comparisons and planning as well as energy technologies that facilitate renewable energy sources. The renewable energy types considered include solar, wind, geothermal, bioenergy and waste-derived energy, ocean thermal energy, tidal, wave and hydraulic. Also covered for contextual and broader purposes are energy systems more generally and their sustainability. In addition, recent research on new renewable energy sources as well as important recent developments in renewable energy are considered.

KEYWORDS

renewable energy status review

CITATION (APA)

Koohi-Fayegh, S., & Rosen, M. A. (2020). A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. European Journal of Sustainable Development Research, 4(4), em0138. https://doi.org/10.29333/ejosdr/8432
Harvard
Koohi-Fayegh, S., and Rosen, M. A. (2020). A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. European Journal of Sustainable Development Research, 4(4), em0138. https://doi.org/10.29333/ejosdr/8432
Vancouver
Koohi-Fayegh S, Rosen MA. A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. EUR J SUSTAIN DEV RES. 2020;4(4):em0138. https://doi.org/10.29333/ejosdr/8432
AMA
Koohi-Fayegh S, Rosen MA. A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. EUR J SUSTAIN DEV RES. 2020;4(4), em0138. https://doi.org/10.29333/ejosdr/8432
Chicago
Koohi-Fayegh, Seama, and Marc A Rosen. "A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments". European Journal of Sustainable Development Research 2020 4 no. 4 (2020): em0138. https://doi.org/10.29333/ejosdr/8432
MLA
Koohi-Fayegh, Seama et al. "A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments". European Journal of Sustainable Development Research, vol. 4, no. 4, 2020, em0138. https://doi.org/10.29333/ejosdr/8432

REFERENCES

  1. Abbasi, T. and Abbasi, S. A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energ Rev, 14(3), 919-937. https://doi.org/10.1016/j.rser.2009.11.006
  2. Abbasi, T. and Abbasi, S. A. (2012). Is the use of renewable energy sources an answer to the problems of global warming and pollution?. Crit Rev Env Sci Technol, 42(2), 99-154. https://doi.org/10.1080/10643389.2010.498754
  3. Ahmadi, P., Dincer, I. and Rosen, M. A. (2013). Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. Int J Hydrogen Energ, 38(4), 1795-1805. https://doi.org/10.1016/j.ijhydene.2012.11.025
  4. Akella, A. K., Saini, R. P. and Sharma M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renew Energ, 34(2), 390-396. https://doi.org/10.1016/j.renene.2008.05.002
  5. Al Seadi, T. (2002). Quality management of AD residues from biogas production. IEA Bioenergy, Task 24–Energy from Biological Conversion of Organic Waste, Jan 2002. Available at: www.IEA-Biogas.net
  6. Alva, G., Liu, L., Huang, X. and Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renew Sust Energ Rev, 68(1), 693-706. https://doi.org/10.1016/j.rser.2016.10.021
  7. Alvarez, R. and Liden, G. (2008). Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew Energ, 33, 726-734. https://doi.org/10.1016/j.renene.2007.05.001
  8. Alvarez-Silva, O. A., Osorio, A. F. and Winter, C. (2016). Practical global salinity gradient energy potential. Renew Sust Energ Rev, 60, 1387-1395. https://doi.org/10.1016/j.rser.2016.03.021
  9. Amoo, L. M. and Fagbenle, R. L. (2014). Hydrogen energy’s key contributions to the sustainable energy mix of a low-carbon future in Nigeria. Int J Sust Energ, 33(4), 742-765. https://doi.org/10.1080/14786451.2013.765427
  10. Andersen, A. N. and Østergaard, P. A. (2019). Analytic versus solver-based calculated daily operations of district energy plants. Energy, 175, 333-344. https://doi.org/10.1016/j.energy.2019.03.096
  11. Andersson, J. and Grönkvist, S. (2019). Large-scale storage of hydrogen. Int J Hydrogen Energ, 44(23), 11901-11919. https://doi.org/10.1016/j.ijhydene.2019.03.063
  12. Angelis-Dimakis, A., Biberacher, M., Dominguez, J., Fiorese, G., Gadocha, S., Gnansounou, E., Guariso, G., Kartalidis, A., Panichelli, L., Pinedo, I. and Robba, M. (2011). Methods and tools to evaluate the availability of renewable energy sources. Renew Sust Energ Rev, 15(2), 1182-1200. https://doi.org/10.1016/j.rser.2010.09.049
  13. Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R. and Iqbal, H. M. N. (2017). Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. International Journal of Biological Macromolecules, 99, 308-318. https://doi.org/10.1016/j.ijbiomac.2017.02.097
  14. Armaroli, N. and Balzani, V. (2007). The future of energy supply: challenges and opportunities. Angew. Chem Int, 46, 52-66. https://doi.org/10.1002/anie.200602373
  15. Armaroli, N. and Balzani, V. (2016). Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chemistry – A European Journal, 22, 32-57. https://doi.org/10.1002/chem.201503580
  16. Asdrubali, F., Baldinelli, G., D’Alessandro, F. and Scrucca, F. (2015). Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew Sust Energ Rev, 42, 1113-1122. https://doi.org/10.1016/j.rser.2014.10.082
  17. Aydin, M. (2019). Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries. Renew Energ, 136, 599-606. https://doi.org/10.1016/j.renene.2019.01.008
  18. Ayres, R. U., Turton, H. and Casten, T. (2007). Energy efficiency, sustainability and economic growth. Energy, 32(5), 634-648. https://doi.org/10.1016/j.energy.2006.06.005
  19. Azhar, M. S., Rizvi, G. and Dincer, I. (2017). Integration of renewable energy based multigeneration system with desalination. Desalination, 404, 72-78. https://doi.org/10.1016/j.desal.2016.09.034
  20. Bahaj, A. S. (2011). Generating electricity from the oceans. Renew Sust Energ Rev, 15, 3399-3416. https://doi.org/10.1016/j.rser.2011.04.032
  21. Bailey, I., West, J. and Whitehead, I. (2011). Out of sight but not out of mind? Public perceptions of wave energy. J Environ Policy Plan, 13(2), 139-157. https://doi.org/10.1080/1523908X.2011.573632
  22. Bajpai, P. and Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: a review. Renew Sust Energ Rev, 16, 2926-2939. https://doi.org/10.1016/j.rser.2012.02.009
  23. Balat, M. and Balat, H. (2009). Biogas as a renewable energy source—a review. Energ Source, Part A, 31, 1280-1293. https://doi.org/10.1080/15567030802089565
  24. Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gila, C., Alcayde, A. and Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: a review. Renew Sust Energ Rev, 15(4), 1753-1766. https://doi.org/10.1016/j.rser.2010.12.008
  25. Bartolozzi, I., Rizzi, F. and Frey, M. (2017). Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renew Sust Energ Rev, 80, 408-420. https://doi.org/10.1016/j.rser.2017.05.231
  26. Bayon, A., Bader, R., Jafarian, M., Fedunik-Hofman, L., Sun, Y., Hinkley, J., Miller, S. and Lipiński, W. (2018). Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy, 149, 473-484. https://doi.org/10.1016/j.energy.2017.11.084
  27. Bayulgen, O. and Benegal, S. (2019). Green Priorities: How economic frames affect perceptions of renewable energy in the United States. Energ Res Soc Sci, 47, 28-36. https://doi.org/10.1016/j.erss.2018.08.017
  28. Beran, L. and Dyckhoff, H. (2019). Global Biomass Supply and Sustainable Development. In: M. Behnassi, H. Gupta and O. Pollmann (eds), Human and Environmental Security in the Era of Global Risks (pp. 291-316). Springer, Cham. https://doi.org/10.1007/978-3-319-92828-9_15
  29. Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., et al. (2020). Status of renewable energy potential and utilization in Algeria. J Cleaner Production, 246, 119011. https://doi.org/10.1016/j.jclepro.2019.119011
  30. Breton, S. P. and Moe, G. (2009). Status, Plans and technologies for offshore wind turbines in Europe and North America. Renew Energ, 34, 646-654. https://doi.org/10.1016/j.renene.2008.05.040
  31. Brouwer, J. (2010). On the role of fuel cells and hydrogen in a more sustainable and renewable energy future. Curr Appl Phys, 10(2), 9-17. https://doi.org/10.1016/j.cap.2009.11.002
  32. Campos-Guzmán, V., García-Cáscales, M. S., Espinosa, N. and Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renew Sust Energ Rev, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031
  33. Carlino, S., Somma, R., Troise, C. and De Natale, G. (2012). The geothermal exploration of Campanian volcanoes: historical review and future development. Renew Sust Energ Rev, 16(1), 1004-1030. https://doi.org/10.1016/j.rser.2011.09.023
  34. Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., Guisado, R. C. P., Prats, M. A. M., Leon, J. I. and Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE T Ind Electron, 53(4), 1002-1016. https://doi.org/10.1109/TIE.2006.878356
  35. Cavallo, A. (2007). Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy, 32, 120-127. https://doi.org/10.1016/j.energy.2006.03.018
  36. Chamandoust, H., Derakhshan, G., Hakimi, S. M. and Bahramara, S. (2020). Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources. J Energ Storage, 27, 101112. https://doi.org/10.1016/j.est.2019.101112
  37. Chingulpitak, S. and Wongwises, S. (2014). Critical review of the current status of wind energy in Thailand. Renew Sust Energ Rev, 31(3), 312-318. https://doi.org/10.1016/j.rser.2013.11.038
  38. Chu, S. and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488, 294-303. https://doi.org/10.1038/nature11475
  39. Clauser, C. and Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study. Renew Sust Energ Rev, 82(3), 3683-3693. https://doi.org/10.1016/j.rser.2017.10.095
  40. Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R. A. and Steyer, J. P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technol, 102, 207-214. https://doi.org/10.1016/j.biortech.2010.06.154
  41. Connolly, D., Lund, H. and Mathiesen, B. V. (2016). Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew Sust Energ Rev, 60, 1634-1653. https://doi.org/10.1016/j.rser.2016.02.025
  42. Connolly, D., Lund, H., Mathiesen, B. V. and Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energ, 87(4), 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026
  43. Cuomo, M. A., Kool, E. D., Reddy, B. V. and Rosen, M. A. (2018). Energy modelling and analysis of a multi-generation renewable energy system for dairy farm applications. Biofuels. Published online: 28 May 2018. https://doi.org/10.1080/17597269.2018.1469342
  44. Darwish, M., Mohtar, R., Elgendy, Y. and Chmeissani, M. (2012). Desalting seawater in Qatar by renewable energy: a feasibility study. Desalin Water Treat, 47(1-3), 279-294. https://doi.org/10.1080/19443994.2012.696409
  45. de Fraiture, C., Giordano, M. and Liao, Y. (2008). Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy, 10(1), 67-81. https://doi.org/10.2166/wp.2008.054
  46. de O. Falcão, A. F. (2010). Wave energy utilization: A review of the technologies. Renew Sust Energ Rev, 14(3), 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  47. Debia, S., Pineau, P. O. and Siddiqui, A. S. (2019). Strategic use of storage: The impact of carbon policy, resource availability, and technology efficiency on a renewable-thermal power system. Energy Economics, 80, 100-122. https://doi.org/10.1016/j.eneco.2018.12.006
  48. Deshmukh, M. K. and Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renew Sust Energ Rev, 12(1), 235-249. https://doi.org/10.1016/j.rser.2006.07.011
  49. Desholm, M. and Kahlert, J. (2005). Avian collision risk at an offshore wind farm. Biol. Lett., 1(3), 296-298. https://doi.org/10.1098/rsbl.2005.0336
  50. Devine-Wright, P. (2005). Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energ, 8(2), 125-139. https://doi.org/10.1002/we.124
  51. Dhyani, V. and Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energ, 129(B), 695-716. https://doi.org/10.1016/j.renene.2017.04.035
  52. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O. and Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renew Sust Energ Rev, 16, 2154-2171. https://doi.org/10.1016/j.rser.2012.01.029
  53. Edwards, P. P., Kuznetsov, V. L., David, W. I. F. and Brandon, N. P. (2008). Hydrogen and fuel cells: towards a sustainable energy future. Energ Policy; 36, 4356-4362. https://doi.org/10.1016/j.enpol.2008.09.036
  54. Eriksson, E. L. V. and Gray, E. M. A. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review. Appl Energ, 202, 348-364. https://doi.org/10.1016/j.apenergy.2017.03.132
  55. Evans, A., Strezov, V. and Evans, T. J. (2019). Assessment of sustainability indicators for renewable energy technologies. Renew Sust Energ Rev, 13(5), 1082-1088. https://doi.org/10.1016/j.rser.2008.03.008
  56. Fedak, W., Anweiler, S., Ulbrich, R. and Jarosz, B. (2017). The concept of autonomous power supply system fed with renewable energy sources. Journal of Sustainable Development of Energy, Water and Environment Systems, 5(4), 579-589. https://doi.org/10.13044/j.sdewes.d5.0160
  57. Fox, A. D., Desholm, M., Kahlert, J., Christensen, T. K. and Petersen, I. B. K. (2006). Information needs to support environmental impact assessment of the effects of European marine offshore wind farms on birds. Ibis, 148, 129-144. https://doi.org/10.1111/j.1474-919X.2006.00510.x
  58. Franchini, G., Brumana, G. and Perdichizzi, A. (2018). Performance prediction of a solar district cooling system in Riyadh, Saudi Arabia – A case study. Energy Conversion and Management, 166, 372-384. https://doi.org/10.1016/j.enconman.2018.04.048
  59. Gallup, D. L. (2009). Production engineering in geothermal technology: a review. Geothermics, 38(3), 326-334. https://doi.org/10.1016/j.geothermics.2009.03.001
  60. Gollakota, A. R. K., Kishore, N. and Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev, 81(1), 1378-1392. https://doi.org/10.1016/j.rser.2017.05.178
  61. Hallenbeck, P. C. (2011). Microbial paths to renewable hydrogen production. Biofuels, 2(3), 285-302. https://doi.org/10.4155/bfs.11.6
  62. Hansen, K., Mathiesen, B. V. and Skov, I. R. (2019). Full energy system transition towards 100% renewable energy in Germany in 2050. Renew Sust Energ Rev, 102, 1-13. https://doi.org/10.1016/j.rser.2018.11.038
  63. Hanson, H. P., Bozec, A. and Duerr, A. E. S. (2011). The Florida Current: A clean but challenging energy resource. Transactions of the American Geophysical Union, 92, 29-30. https://doi.org/10.1029/2011EO040001
  64. Heldeweg, M. A. and Saintier, S. (2020). Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy decentralization? Renew Sust Energ Rev, 119, 109518. https://doi.org/10.1016/j.rser.2019.109518
  65. Hemmati, R. (2017). Technical and economic analysis of home energy management system incorporating small-scale wind turbine and battery energy storage system. Journal of Cleaner Production, 159, 106-118. https://doi.org/10.1016/j.jclepro.2017.04.174
  66. Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sust Energ Rev, 12, 593-661. https://doi.org/10.1016/j.rser.2006.10.001
  67. Herbert, G. M. J., Iniyan, S., Sreevalsan, E. and Rajapandian, S. (2007). A review of wind energy technologies. Renew Sust Energ Rev, 11, 1117-1145. https://doi.org/10.1016/j.rser.2005.08.004
  68. Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D., Ramirez, A., Vega, M. I. and Shi, L. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. PNAS, 112(20), 6277-6282. https://doi.org/10.1073/pnas.1312753111
  69. Holm-Nielsen, J. B., Al Seadi, T. and Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technol, 100, 5478-5484. https://doi.org/10.1016/j.biortech.2008.12.046
  70. Hosseini, M., Dincer, I. and Rosen, M. A. (2014). Investigation of a hybrid photovoltaic-biomass system with energy storage options. J Sol Energ Eng, 136(3), 034504. https://doi.org/10.1115/1.4026637
  71. Hosseini, S. E. and Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sust Energ Rev, 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112
  72. Huen, P. and Daoud, W. A. (2017). Advances in hybrid solar photovoltaic and thermoelectric generators. Renew Sust Energ Rev, 72, 1295-1302. https://doi.org/10.1016/j.rser.2016.10.042
  73. Hussain, A., Arif, S. M. and Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renew Sust Energ Rev, 71, 12-28. https://doi.org/10.1016/j.rser.2016.12.033
  74. Inayat, A. and Raza, M. (2019). District cooling system via renewable energy sources: A review. Renew Sust Energ Rev, 107, 360-373. https://doi.org/10.1016/j.rser.2019.03.023
  75. Infield, D. and Freris, L. (2020). Renewable Energy in Power Systems. John Wiley & Sons.
  76. Inger, R., Attrill, M. J., Bearhop, S., Broderick, A. C., Grecian, W. J., Hodgson, D. J., et al. (2009). Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J Appl Ecol, 46, 1145-1153. https://doi.org/10.1111/j.1365-2664.2009.01697.x
  77. International Energy Agency. Energy technology perspectives (2010). 2010: Scenarios and strategies to 2050. Report, IEA, Paris.
  78. International Renewable Energy Agency, Ocean Thermal Energy Conversion, Technical brief; 2014.
  79. Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci, 2, 148-173. https://doi.org/10.1039/B809990C
  80. Jain, C., Vogt, C. and Clauser, C. (2015). Maximum potential for geothermal power in Germany based on engineered geothermal systems. Geotherm Energy, 3, 15-35. https://doi.org/10.1186/s40517-015-0033-5
  81. Jørgensen, C. L., Clausen, L. R., Algren, L., Hansen, A. B., Münster, M., Gadsbøll, R. Ø. And Haglind, F. (2017). Optimization of a flexible multi-generation system based on wood chip gasification and methanol production. Appl Energ, 192, 337-359. https://doi.org/10.1016/j.apenergy.2016.08.092
  82. Jørgensen, C. L., Ensinas, A. V., Münster, M. and Haglind, F. (2016). A methodology for designing flexible multi-generation systems. Energy, 110, 34-54. https://doi.org/10.1016/j.energy.2016.01.084
  83. Kabalina, N., Costa, M., Yang, W. and Martin, A. (2017). Energy and economic assessment of a polygeneration district heating and cooling system based on gasification of refuse derived fuels. Energy, 137, 696-705. https://doi.org/10.1016/j.energy.2017.06.110
  84. Kaldellis, J. K. and Zafirakis, D. (2007). Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency. Energy, 32, 2295-2305. https://doi.org/10.1016/j.energy.2007.07.009
  85. Kaundinya, D. P., Balachandra, P. and Ravindranath, N. H. (2009). Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. Renew Sust Energ Rev, 13(8), 2041-2050. https://doi.org/10.1016/j.rser.2009.02.002
  86. Kaygusuz, K. (2009). Wind power for a clean and sustainable energy future. Energ Source, Part B, 4(1), 122-133. https://doi.org/10.1080/15567240701620390
  87. Khare, V., Nema, S. and Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renew Sust Energ Rev, 58, 23-33. https://doi.org/10.1016/j.rser.2015.12.223
  88. Koohi-Fayegh, S. and Rosen, M. A. (2020). A review of energy storage types, applications and recent developments. J Energ Storage, 27, 101047. https://doi.org/10.1016/j.est.2019.101047
  89. Koračin, D., Belu, R., Canadillas, B., Horvath, K., Vellore, R., Smith, C., Jiang, J. and Mccord, T. (2012). A review of challenges in assessment and forecasting of wind energy resources. Croatian Meteorological J, 47, 13-33.
  90. Kothari, R., Tyagi, V. V. and Pathak, A. (2010). Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sust Energ Rev, 14, 3164-3170. https://doi.org/10.1016/j.rser.2010.05.005
  91. Kuang, Y., Zhang, Y., Zhou, B., Li, C., Cao, Y., Li, L. and Zeng, L. (2016). A review of renewable energy utilization in islands. Renew Sust Energ Rev, 59, 504-513. https://doi.org/10.1016/j.rser.2016.01.014
  92. Kumar, R. and Rosen, M. A. (2011). A critical review of photovoltaic-thermal solar collectors for air heating. Appl Energ, 88(11), 3603-3614. https://doi.org/10.1016/j.apenergy.2011.04.044
  93. Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271), 1920. https://doi.org/10.1126/science.aad1920
  94. Lewis, N. S. and Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. PNAS, 103, 15729-15735. https://doi.org/10.1073/pnas.0603395103
  95. Liserre, M., Sauter, T. and Hung, J. Y. (2010). Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind Electron Mag, 4(1), 18-37. https://doi.org/10.1109/MIE.2010.935861
  96. Liu, M., Steven Tay, N. H., Bell, S., Belusko, M., Jacob, R., Will, G., Saman, W. and Bruno, F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sust Energ Rev, 53, 1411-1432. https://doi.org/10.1016/j.rser.2015.09.026
  97. Lu, S. M. (2018). A global review of enhanced geothermal system (EGS). Renew Sust Energ Rev, 81(2), 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
  98. Lucia, U., Simonetti, M., Chiesa, G. and Grisolia, G. (2017). Ground-source pump system for heating and cooling: Review and thermodynamic approach. Renew Sust Energ Rev, 70, 867-874. https://doi.org/10.1016/j.rser.2016.11.268
  99. Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. https://doi.org/10.1016/j.energy.2006.10.017
  100. Lund, H., Moller, B., Mathiesen, B. V. and Dyrelund, A. (2010). The role of district heating in future renewable energy systems. Energy, 35(3), 1381-1390. https://doi.org/10.1016/j.energy.2009.11.023
  101. Lund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., et al. (2018). The status of 4th generation district heating: Research and results. Energy, 164, 147-159. https://doi.org/10.1016/j.energy.2018.08.206
  102. Lund, J. W. (2010). Direct utilization of geothermal energy. Energies, 3, 1443-1471. https://doi.org/10.3390/en3081443
  103. Mathews, J. A. (2008). Carbon-negative biofuels. Energ Policy, 36(3), 940-945. https://doi.org/10.1016/j.enpol.2007.11.029
  104. Mathiesen, B. V., Lund, H. and Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Appl Energ, 88(2), 488-501. https://doi.org/10.1016/j.apenergy.2010.03.001
  105. Menanteau, P., Finon, D. and Lamy, M. L. (2003). Prices versus quantities: choosing policies for promoting the development of renewable energy. Energ Policy, 31, 799-812. https://doi.org/10.1016/S0301-4215(02)00133-7
  106. Messaoudani, Z. L., Rigas, F., Hamid, M. D. B. and Hassan, C. R. C. (2016). Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. Int J Hydrogen Energ, 41(39), 17511-17525. https://doi.org/10.1016/j.ijhydene.2016.07.171
  107. Milenić, D., Vasiljević, P. and Vranješ, A. (2010). Criteria for use of groundwater as renewable energy source in geothermal heat pump systems for building heating/cooling purposes. Energ Buildings, 42(5), 649-657. https://doi.org/10.1016/j.enbuild.2009.11.002
  108. Muradov, N. Z. and Veziroglu, T. N. (2008). “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int J Hydrogen Energ, 33(23), 6804-6839. https://doi.org/10.1016/j.ijhydene.2008.08.054
  109. Nair, N. K. C. and Garimella, N. (2010). Battery energy storage systems: assessment for small-scale renewable energy integration. Energ Buildings, 42(11), 2124-2130. https://doi.org/10.1016/j.enbuild.2010.07.002
  110. Narayanan, A., Mets, K., Strobbe, M. and Develder, C. (2019). Feasibility of 100% renewable energy-based electricity production for cities with storage and flexibility. Renew Energ, 134, 698-709. https://doi.org/10.1016/j.renene.2018.11.049
  111. Nathan, G. J., Jafarian, M., Dally, B. B., Saw, W. L., Ashman, P. J., Hu, E. and Steinfeld, A. (2018). Solar thermal hybrids for combustion power plant: A growing opportunity. Progress in Energy and Combustion Science, 64, 4-28. https://doi.org/10.1016/j.pecs.2017.08.002
  112. Nayebossadri, S., Speight, J. D. and Book, D. (2019). Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes. Int J Hydrogen Energ, 44(55), 29092-29099. https://doi.org/10.1016/j.ijhydene.2019.03.044
  113. Noorollahi, Y., Saeidi, R., Mohammadi, M., Amiri, A. and Hosseinzadeh, M. (2018). The effects of ground heat exchanger parameters changes on geothermal heat pump performance – A review. Applied Thermal Engineering, 129, 1645-1658. https://doi.org/10.1016/j.applthermaleng.2017.10.111
  114. Ogden, J., Jaffe, A. M., Scheitrum, D., McDonald, Z. and Miller, M. (2018). Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy, 115, 317-329. https://doi.org/10.1016/j.enpol.2017.12.049
  115. Olsthoorn, D., Haghighat, F. and Mirzaei, P. A. (2016). Integration of storage and renewable energy into district heating systems: A review of modelling and optimization. Solar Energy, 136, 49-64. https://doi.org/10.1016/j.solener.2016.06.054
  116. Omer, A. M. (2008). Ground-source heat pumps systems and applications. Renew Sust Energ Rev, 12(2), 344-371. https://doi.org/10.1016/j.rser.2006.10.003
  117. Østergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H. and Kalogirou, S. (2020). Sustainable development using renewable energy technology. Renew Energ, 146, 2430-2437. https://doi.org/10.1016/j.renene.2019.08.094
  118. Ouedraogo, N. S. (2019). Opportunities, barriers and issues with renewable energy development in Africa: A comprehensible review. Current Sustainable/Renewable Energy Reports, 6, 52-60. https://doi.org/10.1007/s40518-019-00130-7
  119. Owusu, P. A. and Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3, 1167990. https://doi.org/10.1080/23311916.2016.1167990
  120. Pant, D., Van Bogaert, G., Diels, L. and Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol, 101, 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
  121. Panwar, N. L., Kaushik, S. C. and Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renew Sust Energ Rev; 15(3), 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
  122. Parida, B., Iniyan, S. and Goic, R. (2011). A review of solar photovoltaic technologies. Renew Sust Energ Rev, 15(3), 1625-1636. https://doi.org/10.1016/j.rser.2010.11.032
  123. Paska, J., Biczel, P. and Kłos, M. (2009). Hybrid power systems – an effective way of utilising primary energy sources. Renew Energ, 34(11), 2414-2421. https://doi.org/10.1016/j.renene.2009.02.018
  124. Pelay, U., Luo, L., Fan, Y., Stitou, D. and Rood, M. (2017). Thermal energy storage systems for concentrated solar power plants. Renew Sust Energ Rev, 79, 82-100. https://doi.org/10.1016/j.rser.2017.03.139
  125. Pelc, R. and Fujita, R. M. (2002). Renewable energy from the ocean. Mar Policy, 26(6), 471-479. https://doi.org/10.1016/S0308-597X(02)00045-3
  126. Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R. and D’haeseleer, W. (2005). Distributed generation: definition, benefits and issues. Energ Policy, 33, 787-798. https://doi.org/10.1016/j.enpol.2003.10.004
  127. Perry, S., Klemeˇs, J. and Bulatov, I. (2008). Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy, 33(10), 1489-1497. https://doi.org/10.1016/j.energy.2008.03.008
  128. Popovski, E., Fleiter, T., Santos, H., Leal, V. and Fernandes, E. O. (2018). Technical and economic feasibility of sustainable heating and cooling supply options in southern European municipalities-A case study for Matosinhos, Portugal. Energy, 153, 311-323. https://doi.org/10.1016/j.energy.2018.04.036
  129. Pöschl, M., Ward, S. and Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energ, 87, 3305-3321. https://doi.org/10.1016/j.apenergy.2010.05.011
  130. Prieto, C., Cooper, P., Inés Fernández, A. and Cabeza, L. F. (2016). Review of technology: Thermochemical energy storage for concentrated solar power plants. Renew Sust Energ Rev, 60, 909-929. https://doi.org/10.1016/j.rser.2015.12.364
  131. Qi, Z., Gao, Q., Liu, Y., Yan, Y. Y. and Spitler, J. D. (2014). Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries. Renew Sust Energ Rev, 29, 37-51. https://doi.org/10.1016/j.rser.2013.08.059
  132. Rahman, M. M. and Velayutham, E. (2020). Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew Energ, 147(1), 399-408. https://doi.org/10.1016/j.renene.2019.09.007
  133. Reddy, V. S., Kaushik, S. C., Ranjan, K. R. and Tyagi, S. K. (2013). State-of-the-art of solar thermal power plants—a review. Renew Sust Energ Rev, 27, 258-273. https://doi.org/10.1016/j.rser.2013.06.037
  134. Ren, J., Musyoka, N. M., Langmi, H. W., Mathe, M. and Liao, S. (2017). Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int J Hydrogen Energ, 42(1), 289-311. https://doi.org/10.1016/j.ijhydene.2016.11.195
  135. Rezaie, B. and Rosen, M. A. (2012). District heating and cooling: Review of technology and potential enhancements. Appl Energ, 93, 2-10. https://doi.org/10.1016/j.apenergy.2011.04.020
  136. Romero, E., Novoderezhkin, V. I. and van Grondelle, R. (2017). Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature, 543(7645), 355. https://doi.org/10.1038/nature22012
  137. Rosen, M. A. (2009). Energy sustainability: a pragmatic approach and illustrations. Sustainability, 1(1), 55-80. https://doi.org/10.3390/su1010055
  138. Rosen, M. A. (2012). Energy sources: natural versus additional. Article in Jorgensen. S.E. (Ed.). Encyclopedia of Environmental Management, Vol. II, New York: Taylor & Francis (Book Chapter).
  139. Rosen, M. A. and Koohi-Faegh, S. (2016a). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1(1), 10-29. https://doi.org/10.1007/s40974-016-0005-z
  140. Rosen, M. A. and Koohi-Fayegh, S. (2016b). Cogeneration and district energy systems: modelling, analysis and optimization. The Institution of Engineering and Technology. https://doi.org/10.1049/PBPO093E
  141. Rosen, M. A., Dincer, I. and Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energ Policy, 36, 128-137. https://doi.org/10.1016/j.enpol.2007.09.006
  142. Rusman, N. A. A. and Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrogen Energ, 41(28), 12108-12126. https://doi.org/10.1016/j.ijhydene.2016.05.244
  143. Saidur, R., Islam, M. R., Rahim, N. A. and Solangi, K. H. (2010). A review on global wind energy policy. Renew Sust Energ Rev, 14(7), 1744-1762. https://doi.org/10.1016/j.rser.2010.03.007
  144. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  145. Schmidt, D., Kallert, A., Blesl, M., Svendsen, S., Li, H., Nord, N. and Sipilä, K. (2017). Low Temperature District Heating for Future Energy Systems. Energy Procedia, 116, 26-38. https://doi.org/10.1016/j.egypro.2017.05.052
  146. Sener, C. and Fthenakis, V. (2014). Energy policy and financing options to achieve solar energy grid penetration targets: accounting for external costs. Renew Sust Energ Rev, 32(9), 854-868. https://doi.org/10.1016/j.rser.2014.01.030
  147. Shivarama Krishna, K. and Sathish Kumar, K. (2015). A review on hybrid renewable energy systems. Renew Sust Energ Rev, 52, 907-916. https://doi.org/10.1016/j.rser.2015.07.187
  148. Solangi, K. H., Islam, M. R., Saidur, R., Rahim, N. A. and Fayaz, H. (2011). A review on global solar energy policy. Renew Sust Energ Rev, 15, 2149-2163. https://doi.org/10.1016/j.rser.2011.01.007
  149. Soltani, S., Mahmoudi, S. M. S., Yari, M. and Rosen, M. A. (2013). Thermodynamic analyses of a biomass integrated fired combined cycle. Appl Therm Eng, 59(1-2), 60-68. https://doi.org/10.1016/j.applthermaleng.2013.05.018
  150. Stehly, T., Beiter, P., Heimiller, D. and Scott, G. (2017). 2017 Cost of Wind Energy Review. CO: National Renewable Energy Laboratory. NREL /TP-5000-52920. https://doi.org/10.2172/1475534
  151. Stougie, L., Giustozzi, N., van der Kooi, H. and Stoppato, A. (2018). Environmental, economic and exergetic sustainability assessment of power generation from fossil and renewable energy sources. Int J Energy Res, 42, 2916-2926. https://doi.org/10.1002/er.4037
  152. Tegen, S., Hand, M., Maples, B. and Lantz, E. (2010). 2010 Cost of Wind Energy Review. CO: National Renewable Energy Laboratory. Report NREL/TP-6A20-72167.
  153. Tian, Y. and Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energ, 104, 538-553. https://doi.org/10.1016/j.apenergy.2012.11.051
  154. Toledo, O. M., Filho, D. O. and Diniz, A. S. A. C. (2010). Distributed photovoltaic generation and energy storage systems: a review. Renew Sust Energ Rev, 14, 506-511. https://doi.org/10.1016/j.rser.2009.08.007
  155. Tsoutsos, T., Frantzeskaki, N. and Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energ Policy, 33, 289-296. https://doi.org/10.1016/S0301-4215(03)00241-6
  156. Turner, J., Sverdrup, G., Mann, M. K., Maness, P. C., Kroposki, B., Ghirardi, M., Evans, R. J. and Blake, D. (2008). Renewable hydrogen production. Int J Energ Res, 32, 379-407. https://doi.org/10.1002/er.1372
  157. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M. and Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ, 2, 012701. https://doi.org/10.1063/1.3294480
  158. Unique challenges in harnessing open ocean marine hydrokinetic energy. IEEE, OCEANS 2017 – Anchorag, Anchorage, AK, 2017, pp. 1-6.
  159. Ursua, A., Gandia, L. M. and Sanchis, P. (2012). Hydrogen production from water electrolysis: current status and future trends. In proceedings of: the IEEE, 100(2), 410-426. https://doi.org/10.1109/JPROC.2011.2156750
  160. US Department of Energy, Alternative Fuels Data Centre. (n.d.). Available at: https://afdc.energy.gov/ (Accessed 19 May 2020).
  161. van der Heijde, B., Vandermeulen, A., Salenbien, R. and Helsen, L. (2019). Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage. Appl Energ, 248, 79-94. https://doi.org/10.1016/j.apenergy.2019.04.030
  162. Varbanov, P. S. and Klemeš, J. J. (2010). Total sites integrating renewables with extended heat transfer and recovery. Heat Transfer Eng, 31(9), 733-741. https://doi.org/10.1080/01457630903500858
  163. Varun, Prakash, R. and Bhat, I. K. (2009). Energy, economics and environmental impacts of renewable energy systems. Renew Sust Energ Rev, 13, 2716-2721. https://doi.org/10.1016/j.rser.2009.05.007
  164. von Colbe, J. B., Ares, J. R., Barale, J., Baricco, M., Buckley, C., Capurso, G., et al. (2019). Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int J Hydrogen Energ, 44(15), 7780-7808. https://doi.org/10.1016/j.ijhydene.2019.01.104
  165. Wang, C. M., Yee, A. A., Krock, H. and Tay, Z. Y. (2011). Research and developments on ocean thermal energy conversion. The IES J, Part A, 4(1), 41-52. https://doi.org/10.1080/19373260.2011.543606
  166. Wang, K., Yuan, B., Ji, G. and Wu, X. (2018a). A comprehensive review of geothermal energy extraction and utilization in oilfields. Journal of Petroleum Science and Engineering, 168, 465-477. https://doi.org/10.1016/j.petrol.2018.05.012
  167. Wang, M., Jing, R., Zhang, H., Meng, C., Li, N. and Zhao, Y. (2018b). An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization. Applied Thermal Engineering, 145, 743-754. https://doi.org/10.1016/j.applthermaleng.2018.09.075
  168. Wang, Y., Suzuki, H., Xie, J., Tomita, O., Martin, D. J., Higashi, M., Kong, D., Abe, R. and Tang, J. (2018c). Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by z-scheme water splitting systems. Chem. Rev., 118(10), 5201-5241. https://doi.org/10.1021/acs.chemrev.7b00286
  169. Wilson, D. G. (2012). Energy supplies and future engines for land, sea, and air. J Air Waste Ma, 62(6), 607-624. https://doi.org/10.1080/10962247.2012.675403
  170. Wüstenhagen, R., Wolsink, M. and Bürer, M. J. (2007). Social acceptance of renewable energy innovation: an introduction to the concept. Energ Policy, 35(5), 2683-2691. https://doi.org/10.1016/j.enpol.2006.12.001
  171. Xu, B., Li, P. and Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energ, 160, 286-307. https://doi.org/10.1016/j.apenergy.2015.09.016
  172. Yang, H., Cui, P. and Fang, Z. (2010). Vertical-borehole ground-coupled heat pumps: A review of models and systems. Appl Energ, 87(1), 16-27. https://doi.org/10.1016/j.apenergy.2009.04.038
  173. Yang, H., Wei, Z. and Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl Energ, 86(2), 163-169. https://doi.org/10.1016/j.apenergy.2008.03.008
  174. Yang, P., Liu, K., Chen, Q., Li, J., Duan, J., Xue, G., Xu, Z., Xie, W. and Zhou, J. (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci., 10, 1923-1927. https://doi.org/10.1039/C7EE01804E
  175. Yaqoot, M., Diwan, P. and Kandpal, T. C. (2016). Review of barriers to the dissemination of decentralized renewable energy systems. Renew Sust Energ Rev, 58, 477-490. https://doi.org/10.1016/j.rser.2015.12.224
  176. Yilanci, A., Dincer, I. and Ozturk, H. K. (2009). A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energ Combust, 35, 231-244. https://doi.org/10.1016/j.pecs.2008.07.004
  177. Yip, N. Y., Brogioli, D., Hamelers, H. V. M. and Nijmeijer, K. (2016). Salinity gradients for sustainable energy: primer, progress, and prospects. Environ Sci Technol, 50(22), 12072-12094. https://doi.org/10.1021/acs.est.6b03448
  178. Yoon, J. I., Seol, S. H., Son, C. H., Jung, S. H., Kim, Y. B., Lee, H. S., Kim, H. J. and Moon, J. H. (2017). Analysis of the high-efficiency EP-OTEC cycle using R152a. Renew Energ, 105, 366-373. https://doi.org/10.1016/j.renene.2016.12.019
  179. Zabihian, F. and Fung, A. S. (2011). Review of marine renewable energies: case study of Iran. Renew Sust Energ Rev, 15, 2461-2474. https://doi.org/10.1016/j.rser.2011.02.006
  180. Zeng, X., Ma, Y. and Ma, L. (2007). Utilization of straw in biomass energy in China. Renew Sust Energ Rev, 11, 976-987. https://doi.org/10.1016/j.rser.2005.10.003
  181. Zhao, H., Wu, Q., Hu, S., Xu, H. and Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Appl Energ, 137, 545-553. https://doi.org/10.1016/j.apenergy.2014.04.103

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.