European Journal of Sustainable Development Research

Advancing Water Conservation in Cooling Towers through Energy-Water Nexus
Saeed Ghoddousi 1 * , Austin Anderson 1, Behnaz Rezaie 1
More Detail
1 University of Idaho, USA
* Corresponding Author
Review Article

European Journal of Sustainable Development Research, 2021 - Volume 5 Issue 3, Article No: em0161
https://doi.org/10.21601/ejosdr/10952

Published Online: 28 May 2021

Views: 119 | Downloads: 52

How to cite this article
APA 6th edition
In-text citation: (Ghoddousi et al., 2021)
Reference: Ghoddousi, S., Anderson, A., & Rezaie, B. (2021). Advancing Water Conservation in Cooling Towers through Energy-Water Nexus. European Journal of Sustainable Development Research, 5(3), em0161. https://doi.org/10.21601/ejosdr/10952
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Ghoddousi S, Anderson A, Rezaie B. Advancing Water Conservation in Cooling Towers through Energy-Water Nexus. EUR J SUSTAIN DEV RES. 2021;5(3):em0161. https://doi.org/10.21601/ejosdr/10952
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Ghoddousi S, Anderson A, Rezaie B. Advancing Water Conservation in Cooling Towers through Energy-Water Nexus. EUR J SUSTAIN DEV RES. 2021;5(3), em0161. https://doi.org/10.21601/ejosdr/10952
Chicago
In-text citation: (Ghoddousi et al., 2021)
Reference: Ghoddousi, Saeed, Austin Anderson, and Behnaz Rezaie. "Advancing Water Conservation in Cooling Towers through Energy-Water Nexus". European Journal of Sustainable Development Research 2021 5 no. 3 (2021): em0161. https://doi.org/10.21601/ejosdr/10952
Harvard
In-text citation: (Ghoddousi et al., 2021)
Reference: Ghoddousi, S., Anderson, A., and Rezaie, B. (2021). Advancing Water Conservation in Cooling Towers through Energy-Water Nexus. European Journal of Sustainable Development Research, 5(3), em0161. https://doi.org/10.21601/ejosdr/10952
MLA
In-text citation: (Ghoddousi et al., 2021)
Reference: Ghoddousi, Saeed et al. "Advancing Water Conservation in Cooling Towers through Energy-Water Nexus". European Journal of Sustainable Development Research, vol. 5, no. 3, 2021, em0161. https://doi.org/10.21601/ejosdr/10952
ABSTRACT
Life without water is not possible on the earth, while modern humans need water not only for drinking, sanitization, and agriculture but also for industrial activities including electricity and cooling generations. Hence, emphasis on water sustainability through different sectors including thermoelectric and cooling plants is an intelligent strategy while the tight connections of water and energy guide study towards energy-water nexus investigations. Cooling towers are equipment for dissipating the excess heat by water evaporation or they hidden gates for wasting water. The objective of the present study is to elaborate on the role of cooling towers in improving environment sustainability by presenting various methods of energy and water modeling, categorizing various methods for modifying water and energy consumptions through past studies and mapping future studies. regarding cooling towers. Presenting a history of energy-water modeling methods of cooling towers, the Markel, the Poppe, and the effectiveness– Number of Transfer Unit (NTU) models, has followed by assessing the environmental impact of cooling towers in the form of excess water consumption, plume, and energy usage. Summarizing and organizing the past efforts for upgrading water management in cooling towers have been in two directions either providing more water supply, or modifications of the cooling tower to use less water. Then the different methodologies for each direction are introduced for further elaborations. This study’s practical outcome is proposing the methods of improving water sustainability for any cooling towers from past studies to assist engineers in the industry in modifying cooling towers water consumption. Showing the roadmap for the planning future investigations on the cooling towers based on the past efforts is another outcome of the present study to provide an insight for academia with research interest on cooling towers.
KEYWORDS
REFERENCES
  • Advocates, W. (2008). A Sustainable Path: Meeting Nevada’s Water and Energy Demands (Boulder, CO: Western Resource Advocates).
  • Askari, S., Lotfi, R., Seifkordi, A., Rashidi, A. M. and Koolivand, H. (2016). A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids. Energy Conversion and Management, 109, 10-18. https://doi.org/10.1016/J.ENCONMAN.2015.11.053
  • Asvapoositkul, W. and Kuansathan, M. (2014). Comparative evaluation of hybrid (dry/wet) cooling tower performance. Applied Thermal Engineering, 71(1), 83-93. https://doi.org/10.1016/j.applthermaleng.2014.06.023
  • Ayoub, A., Gjorgiev, B. and Sansavini, G. (2018). Cooling towers performance in a changing climate: Techno-economic modeling and design optimization. Energy, 160, 1133-1143. https://doi.org/10.1016/j.energy.2018.07.080
  • Botermans, R. and Smith, P. (2008). Cooling Towers. In Advanced Piping Design (pp. 177-182). https://doi.org/10.1016/B978-1-933762-18-0.50016-7
  • Bourillot, C. (1983). Hypotheses of calculation of the water flow rate evaporated in a wet cooling tower. https://www.osti.gov/biblio/5350107
  • Braun, J. E. (1988). Methodologies for the Design and Control of Central Cooling Plants. University of Wisconsin - Madison.
  • Braun, J., Klein, S. and JW Mitchell -. (1989). Effictiveness models for cooling towers and cooling coils. ASHRAE Transactions, 95.
  • Chang, C. C., Shieh, S. S., Jang, S. S., Wu, C. W. and Tsou, Y. (2015). Energy conservation improvement and ON-OFF switch times reduction for an existing VFD-fan-based cooling tower. Applied Energy, 154, 491-499. https://doi.org/10.1016/j.apenergy.2015.05.025
  • Chang, T.-B. and Lin, T.-M. (2016). Water and energy conservation for a counterflow cooling tower using UV light disinfection and variable speed fan. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(3), 235-243. https://doi.org/10.1177/0954408914546358
  • Ciferno, J., Munson, R., Murphy, J., Power, B. L.- and 2010, U. (2010). Determining Carbon Capture and Sequestration’s Water Demands. Power, 154(3), 71-76.
  • Conradie, A. E. and Kröger, D. G. (1996). Performance evaluation of dry-cooling systems for power plant applications. Applied Thermal Engineering, 16(3), 219-232. https://doi.org/10.1016/1359-4311(95)00068-2
  • Cortinovis, G. F., Paiva, J. L., Song, T. W. and Pinto, J. M. (2009). A systemic approach for optimal cooling tower operation. Energy Conversion and Management, 50(9), 2200-2209. https://doi.org/10.1016/J.ENCONMAN.2009.04.033
  • CS Robinson. (1923). The design of cooling towers. Mech Eng, 15, 99-102.
  • Damak, M. and Varanasi, K. K. (2018). Electrostatically driven fog collection using space charge injection. Science Advances, 4(6), eaao5323. https://doi.org/10.1126/sciadv.aao5323
  • Deziani, M., Rahmani, K., Mirrezaei Roudaki, S. J. and Kordloo, M. (2017). Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to Air heat exchanger with auxiliary Fan. Desalination, 406, 119-124. https://doi.org/10.1016/j.desal.2015.12.007
  • Dhorat, A., Al-Obaidi, M. A. and Mujtaba, I. M. (2019). Dynamic modelling and operational optimisation of natural draft cooling towers. Thermal Science and Engineering Progress, 9, 30-43. https://doi.org/10.1016/j.tsep.2018.10.013
  • Duniam, S., Jahn, I., Hooman, K., Lu, Y. and Veeraragavan, A. (2018). Comparison of direct and indirect natural draft dry cooling tower cooling of the sCO 2 Brayton cycle for concentrated solar power plants. Applied Thermal Engineering, 130, 1070-1080. https://doi.org/10.1016/j.applthermaleng.2017.10.169
  • García Cutillas, C., Ruiz Ramírez, J. and Lucas Miralles, M. (2017). Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation. Energies, 10(3), 299. https://doi.org/10.3390/en10030299
  • Ghosh, R. and Ganguly, R. (2018). Harvesting Water from Natural and Industrial Fogs—Opportunities and Challenges (pp. 237-266). https://doi.org/10.1007/978-981-10-7233-8_9
  • Ghosh, R. and Ganguly, R. (2019). Fog harvesting from cooling towers using metal mesh: Effects of aerodynamic, deposition, and drainage efficiencies. J Power and Energy. https://doi.org/10.1177/0957650919890711
  • Ghosh, R., Patra, C., Singh, P., Ganguly, R., Sahu, R. P., Zhitomirsky, I. and Puri, I. K. (2020). Influence of metal mesh wettability on fog harvesting in industrial cooling towers. Applied Thermal Engineering, 181, 115963. https://doi.org/10.1016/j.applthermaleng.2020.115963
  • Ghosh, R., Ray, T. K. and Ganguly, R. (2015). Cooling tower fog harvesting in power plants e A pilot study. Energy, 1-11. https://doi.org/10.1016/j.energy.2015.06.050
  • Gilani, N., Doustani Hendijani, A. and Shirmohammadi, R. (2019). Developing of a novel water-efficient configuration for shower cooling tower integrated with the liquid desiccant cooling system. Applied Thermal Engineering, 154, 180-195. https://doi.org/10.1016/j.applthermaleng.2019.03.043
  • Gilani, N. and Parpanji, F. (2017). Parametric study on the outlet water temperature in a shower cooling tower and its application in different Iranian provincial capitals. International Journal of Thermal Sciences, 124, 174-186. https://doi.org/10.1016/j.ijthermalsci.2017.10.017
  • Golkar, B., Naserabad, S. N., Soleimany, F., Dodange, M., Ghasemi, A., Mokhtari, H. and Oroojie, P. (2019). Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: Case study. Applied Thermal Engineering, 149, 132-150. https://doi.org/10.1016/j.applthermaleng.2018.12.017
  • Gololo, K. V and Majozi, T. (2012). Complex Cooling Water Systems Optimization with Pressure Drop Consideration. Industrial & Engineering Chemistry Research, Special Issue. https://doi.org/10.1021/ie302498j
  • González Pedraza, O. J., Pacheco Ibarra, J. J., Rubio-Maya, C., Galván González, S. R. and Rangel Arista, J. A. (2018). Numerical study of the drift and evaporation of water droplets cooled down by a forced stream of air. Applied Thermal Engineering, 142, 292-302. https://doi.org/10.1016/j.applthermaleng.2018.07.011
  • Grange, J. L. (1994). Calculating the evaporated water flow in a wet cooling tower.
  • Grobbelaar, P. J., Reuter, H. C. R. and Bertrand, T. P. (2013). Performance characteristics of a trickle fill in cross- and counter-flow configuration in a wet-cooling tower. Applied Thermal Engineering, 50, 475e484. https://doi.org/10.1016/j.applthermaleng.2012.06.026
  • Guerras, L. S. and Martín, M. (2020). On the water footprint in power production: Sustainable design of wet cooling towers. Applied Energy, 263. https://doi.org/10.1016/j.apenergy.2020.114620
  • Guo, Y., Wang, F., Jia, M. and Zhang, S. (2017). Parallel hybrid model for mechanical draft counter flow wet-cooling tower Parallel hybrid model for mechanical draft counter flow wet-cooling tower. Applied Thermal Engineering, 125, 1379-1388. https://doi.org/10.1016/j.applthermaleng.2017.07.138
  • Hajidavalloo, E., Shakeri, R. and Mehrabian, M. A. (2010). Thermal performance of cross flow cooling towers in variable wet bulb temperature. Energy Conversion and Management, 51, 1298-1303. https://doi.org/10.1016/j.enconman.2010.01.005
  • Hansen, E., Rodrigues, M. A. S. and Aquim, P. M. de. (2016). Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers. Journal of Environmental Management, 181, 157-162. https://doi.org/10.1016/j.jenvman.2016.06.014
  • Hassler, R. (1999). Einfluss von Kondensation in der Grenzschicht auf die Waerme-und Stoffuebertragung an einem Rieselfilm. In VDI VERLAG.
  • He, S., Gurgenci, H., Guan, Z. and Alkhedhair, A. M. (2013). Pre-cooling with Munters media to improve the performance of Natural Draft Dry Cooling Towers. Applied Thermal Engineering, 53(1), 67-77. https://doi.org/10.1016/j.applthermaleng.2012.12.033
  • Hernández-Calderón, O. M., Rubio-Castro, E. and Rios-Iribe, E. Y. (2014). Solving the heat and mass transfer equations for an evaporative cooling tower through an orthogonal collocation method. Computers and Chemical Engineering, 71, 24-38. https://doi.org/10.1016/j.compchemeng.2014.06.008
  • Hooman, K. (2010). Dry cooling towers as condensers for geothermal power plants. International Communications in Heat and Mass Transfer, 37(9), 1215-1220. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.011
  • Hu, H., Li, Z., Jiang, Y. and Du, X. (2018). Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system. Energy, 147, 729-741. https://doi.org/10.1016/j.energy.2018.01.074
  • Huang, X., Li, Y., Ke, T., Ling, X. and Liu, W. (2017). Thermal investigation and performance analysis of a novel evaporation system based on a humidification-dehumidification process. Energy Conversion and Management, 147, 108-119. https://doi.org/10.1016/j.enconman.2017.05.036
  • Hughes, B. R., Chaudhry, H. N. and Ghani, S. A. (2011). A review of sustainable cooling technologies in buildings. Renewable and Sustainable Energy Reviews, 15(6), 3112-3120. https://doi.org/10.1016/j.rser.2011.03.032
  • Imani-Mofrad, P., Saeed, H. and Shanbedi, M. (2016). Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO/water nanofluid. Energy Conversion and Management, 127, 199-207. https://doi.org/10.1016/j.enconman.2016.09.009
  • Irok, B., Blagojevi, B., Novak, M., Hoevar, M. and Jere and F. (2003). Energy and Mass Transfer Phenomena in Natural Draft Cooling Towers. Heat Transfer Engineering, 24(3), 66-75. https://doi.org/10.1080/01457630304061
  • Isozumi, R., Ito, Y., Ito, I., Osawa, M., Hirai, T., Takakura, S., Iinuma, Y., Ichiyama, S., Tateda, K., Yamaguchi, K. and Mishima, M. (2005). An outbreak of Legionella pneumonia originating from a cooling tower. Scandinavian Journal of Infectious Diseases, 37, 709-711. https://doi.org/10.1080/00365540510012143
  • Jaber, H. and Webb, R. L. (1989). Design of cooling towers by the effectiveness-NTU method. Journal of Heat Transfer, 111(4), 837-843. https://doi.org/10.1115/1.3250794
  • James, R. E., Kearins, D., Turner, M., Woods, M., Kuehn, N. and Zoelle, A. (2010). Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 2. https://doi.org/10.2172/1569246
  • Jes´, J., Ortiz-Del-Castillo, J. R., Hernándezhern´hernández-Calderón, O. M., Calderón, C., Rios-Iribe, E. Y., Gonzálezgonz´gonzález-Llanes, M. D., Rubio-Castro, E. and Cervantes-Gaxiola, M. E. (2019). Analytical solution of the governing equations for heat and mass transfer in evaporative cooling process. International Journal of Refrigeration, 111, 178-187. https://doi.org/10.1016/j.ijrefrig.2019.11.019
  • Jin, G.-Y., Cai, W.-J., Lu, L., Lock Lee, E. and Chiang, A. (2007). A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems. Energy Conversion and Management, 48, 355-365. https://doi.org/10.1016/j.enconman.2006.07.010
  • Ke, T., Huang, X. and Ling, X. (2019). Numerical and experimental analysis on air/water direct contact heat and mass transfer in the humidifier. Applied Thermal Engineering, 156, 310-323. https://doi.org/10.1016/j.applthermaleng.2019.04.051
  • Keshtkar, M. M. and Mehdi Keshtkar, M. (2016). Performance Analysis of a Counter Flow Wet Cooling Tower and Selection of Optimum Operative Condition by MCDM-TOPSIS Method. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.12.043
  • Khamis Mansour, M. and Hassab, M. A. (2014). Innovative correlation for calculating thermal performance of counterflow wet-cooling tower. Energy, 74(C), 855-862. https://doi.org/10.1016/j.energy.2014.07.059
  • Khan, J. U. R., Qureshi, B. A. and Zubair, S. M. (2004). A comprehensive design and performance evaluation study of counter flow wet cooling towers. International Journal of Refrigeration, 27(8), 914-923. https://doi.org/10.1016/j.ijrefrig.2004.04.012
  • Kim, H., Rao, S. R., LaPotin, A., Lee, S. and Wang, E. N. (2020). Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. International Journal of Heat and Mass Transfer, 161, 120253. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120253
  • King, C. W., Stillwell, A. S., Twomey, K. M. and Webber, M. E. (2013). Coherence between Water and Energy Policies. Natural Resources Journal, 53.
  • Klimanek, A. and Białecki, R. A. (2009). Solution of heat and mass transfer in counterflow wet-cooling tower fills. International Communications in Heat and Mass Transfer, 36, 547-553. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.007
  • Kloppers, Johannes C. and Kröger, D. G. (2005). The Lewis factor and its influence on the performance prediction of wet-cooling towers. International Journal of Thermal Sciences, 44(9), 879-884. https://doi.org/10.1016/j.ijthermalsci.2005.03.006
  • Kloppers, Johannes C and Krö Ger, D. G. (2005). Cooling Tower Performance Evaluation: Merkel, Poppe, and e-NTU Methods of Analysis. Journal of Engineering for Gas Turbines and Power, 127(1), 1-7. https://doi.org/10.1115/1.1787504
  • Kloppers, Johannes Christiaan. (2003). A critical evaluation and refinement of the performance prediction of wet-cooling towers [University of Stellenbosch]. http://scholar.sun.ac.za/handle/10019.1/1476
  • Kranc, S. C. (2007). Optimal spray patterns for counterflow cooling towers with structured packing. Applied Mathematical Modelling, 31, 676-686. https://doi.org/10.1016/j.apm.2005.11.027
  • Kurnik, C. W., Boyd, B., Stoughton, K. M. and Lewis, T. (2017). Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol. https://doi.org/10.2172/1412805
  • LEWIS and K., W. (1922). The evaporation of a liquid into a gas. Trans. ASME., 44, 325-340.
  • Li, X., Gurgenci, H., Guan, Z., Wang, X. and Duniam, S. (2017). Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant. Applied Energy, 206, 1169-1183. https://doi.org/10.1016/j.apenergy.2017.10.038
  • Li, Y., Huang, X., Peng, H., Ling, X. and Tu, S. (2017). Energy Simulation and optimization of humidification-dehumidification evaporation system. Energy, 145, 128-140. https://doi.org/10.1016/j.energy.2017.12.119
  • Liao, J., Xie, X., Nemer, H., Claridge, D. E. and Culp, C. H. (2019). A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system. Energy Conversion and Management, 199, 111950. https://doi.org/10.1016/j.enconman.2019.111950
  • Lindahl, P. A. J. and Jameson, R. W. (1995). Plume abatement and water conservation with the wet/dry cooling tower (Technical Report) | OSTI.GOV. https://www.osti.gov/biblio/48147
  • Liu, S., Song, J., Shi, J. and Yang, B. (2019). An improved series-parallel optimization approach for cooling water system. Applied Thermal Engineering, 154, 368-379. https://doi.org/10.1016/J.APPLTHERMALENG.2019.03.048
  • Llano-Restrepo, M. and Monsalve-Reyes, R. (2016). Modeling and simulation of counterflow wet-cooling towers and the accurate calculation and correlation of mass transfer coefficients for thermal performance prediction. International Journal of Refrigeration, 74, 47-72. https://doi.org/10.1016/j.ijrefrig.2016.10.018
  • Lucas, M., Martínez, P. J. and Viedma, A. (2009). Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators. Energy Conversion and Management, 50(3), 490-497. https://doi.org/10.1016/j.enconman.2008.11.008
  • M Roth. (2001). Fundamentals of heat and mass transfer in wet cooling towers. All well known or are further developments necessary? Proceedings of 12th IAHR Cooling Tower and Heat Exchangers.
  • Ma, H., Si, F., Zhu, K. and Wang, J. (2018). The adoption of windbreak wall partially rotating to improve thermo-flow performance of natural draft dry cooling tower under crosswind. International Journal of Thermal Sciences, 134, 66-88. https://doi.org/10.1016/j.ijthermalsci.2018.08.005
  • Mantelli, M. H. B. (2016). Development of porous media thermosyphon technology for vapor recovering in cross-current cooling towers. Applied Thermal Engineering, 108, 398-413. https://doi.org/10.1016/j.applthermaleng.2016.07.144
  • Marmouch, H., Orfi, J. and Nasrallah, S. Ben. (2009). Experimental study of the performance of a cooling tower used in a solar distiller. Desalination, 250, 456-458. https://doi.org/10.1016/j.desal.2009.09.073
  • Martin, A. D., Herzog, H. J. and Clark, J. P. (2012). Water Footprint of Electric Power Generation: Modeling its use and analyzing options for a water-scarce future L.__LBRA RIES ARCHivES. https://dspace.mit.edu/handle/1721.1/72886
  • Meldrum, J., Nettles-Anderson, S., Heath, G. and Macknick, J. (2013). Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environmental Research Letters, 8. https://doi.org/10.1088/1748-9326/8/1/015031
  • Merkel, F., VDI-Verlag, V. V.-, Berlin, undefined, & 1925, undefined. (1925). Forschungsarbeiten No. 275.
  • Meroney, R. N. (2006). CFD prediction of cooling tower drift. Journal of Wind Engineering and Industrial Aerodynamics, 94, 463-490. https://doi.org/10.1016/j.jweia.2006.01.015
  • Michioka, T., Sato, A., Kanzaki, T. and Sada, K. (2007). Wind tunnel experiment for predicting a visible plume region from a wet cooling tower. Journal of Wind Engineering and Industrial Aerodynamics, 95, 741-754. https://doi.org/10.1016/j.jweia.2007.01.005
  • Mishra, B., Srivastava, A. and Yadav, L. (2019). Performance analysis of cooling tower using desiccant. Heat and Mass Transfer, 56, 1153-1169. https://doi.org/10.1007/s00231-019-02759-y
  • Muangnoi, T., Asvapoositkul, W. and Hungspreugs, P. (2014). Performance characteristics of a downward spray water-jet cooling tower. Applied Thermal Engineering, 69(1-2), 165-176. https://doi.org/10.1016/J.APPLTHERMALENG.2014.04.019
  • Muangnoi, T., Asvapoositkul, W. and Wongwises, S. (2006). An exergy analysis on the performance of a counterflow wet cooling tower. Applied Thermal Engineering, 27, 910-917. https://doi.org/10.1016/j.applthermaleng.2006.08.012
  • Naphon, P. (2005). Study on the heat transfer characteristics of an evaporative cooling tower. International Communications in Heat and Mass Transfer, 32(8), 1066-1074. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2005.05.016
  • Nasrabadi, M. and Finn, D. P. (2014a). Mathematical modeling of a low temperature low approach direct cooling tower for the provision of high temperature chilled water for conditioning of building spaces. Applied Thermal Engineering, 64, 273-282. https://doi.org/10.1016/j.applthermaleng.2013.12.025
  • Nasrabadi, M. and Finn, D. P. (2014b). Performance analysis of a low approach low temperature direct cooling tower for high-temperature building cooling systems. Energy and Buildings, 84, 674-689. https://doi.org/10.1016/j.enbuild.2014.09.019
  • Nourani, Z., Naserbegi, A., Tayyebi, S. and Aghaie, M. (2019). Thermodynamic evaluation of hybrid cooling towers based on ambient temperature. Thermal Science and Engineering Progress, 14. https://doi.org/10.1016/j.tsep.2019.100406
  • Pan, S.-Y., Snyder, S. W., Packman, A. I., Lin, Y. J. and Chiang, P.-C. (2018). Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus, 1(1), 26-41. https://doi.org/10.1016/j.wen.2018.04.002
  • Pan, T.-H., Shieh, S.-S., Jang, S.-S., Tseng, W.-H., Wu, C.-W. and Ou, J.-J. (2011). Statistical multi-model approach for performance assessment of cooling tower. Energy Conversion and Management, 52, 1377-1385. https://doi.org/10.1016/j.enconman.2010.09.036
  • Pan, T., Xu, D., Li, Z., Shieh, S.-S. and Jang, S.-S. (2013). Efficiency improvement of cogeneration system using statistical model. Energy Conversion and Management, 68, 169-176. https://doi.org/10.1016/j.enconman.2012.12.026
  • Panjeshahi, M. H., Ataei, A., Gharaie, M. and Parand, R. (2009). Optimum design of cooling water systems for energy and water conservation. Chemical Engineering Research and Design, 87(2), 200-209. https://doi.org/10.1016/J.CHERD.2008.08.004
  • Papaefthimiou, V. D., Zannis, T. C. and Rogdakis, E. D. (2006). Thermodynamic study of wet cooling tower performance. International Journal of Energy Research, 30(6), 411-426. https://doi.org/10.1002/er.1158
  • Peer, R. A. and Sanders, K. T. (2017). The water consequences of a transitioning US power sector. Applied Energy, 210, 613-622. https://doi.org/10.1016/j.apenergy.2017.08.021
  • Picardo, J. R. and Variyar, J. E. (2012). The Merkel equation revisited: A novel method to compute the packed height of a cooling tower. Energy Conversion and Management, 57, 167-172. https://doi.org/10.1016/j.enconman.2011.12.016
  • Picón-Núnez, M., Polley, G. T., Canizalez-Dávalos, L., Martín Medina-Flores, J., Norte, U., Juan Alonso, L. and Gto, C. (2011). Short cut performance method for the design of flexible cooling systems. Energy, 36, 46464653. https://doi.org/10.1016/j.energy.2011.04.041
  • Pontes, R. F. F., Yamauchi, W. M. and Silva, E. K. G. (2019). Analysis of the effect of seasonal climate changes on cooling tower efficiency, and strategies for reducing cooling tower power consumption. Applied Thermal Engineering, 161, 114148. https://doi.org/10.1016/j.applthermaleng.2019.114148
  • Poppe, M. and H Rögener -. (1991). Berechnung von rückkühlwerken. In Springer Berlin.
  • Pozzobon, J. C., Mantelli, M. B. H. and Da Silva, A. K. (2016). Experimental study of unstructured porous media inserts for water recovery in a reduced scale, crossflow cooling tower. Applied Thermal Engineering, 96, 632-639. https://doi.org/10.1016/j.applthermaleng.2015.11.039
  • Qi, X., Liu, Y., Guo, Q., Yu, J. and Yu, S. (2016). Performance prediction of seawater shower cooling towers. Energy, 97, 435-443. https://doi.org/10.1016/j.energy.2015.12.125
  • Qi, X. and Liu, Z. (2008). Further investigation on the performance of a shower cooling tower. Energy Conversion and Management, 49, 570-577. https://doi.org/10.1016/j.enconman.2007.07.038
  • Rahmani, K. (2017). Reducing water consumption by increasing the cycles of concentration and Considerations of corrosion and scaling in a cooling system. Applied Thermal Engineering, 114, 849-856. https://doi.org/10.1016/J.APPLTHERMALENG.2016.12.075
  • Rao, R. V and Patel, V. K. (2011). Optimization of mechanical draft counter flow wet-cooling tower using artificial bee colony algorithm. Energy Conversion and Management, 52, 2611-2622. https://doi.org/10.1016/j.enconman.2011.02.010
  • RD Mitchell. (1989). Survey of water-conserving heat rejection systems. https://www.osti.gov/biblio/6183566
  • Ren, C. (2006). An Analytical Approach to the Heat and Mass Transfer Processes in Counterflow Cooling Towers. J. Heat Transfer, 128(11), 1142-1148. https://doi.org/10.1115/1.2352780
  • Ren, C. Q. (2008). Corrections to the simple effectiveness-NTU method for counterflow cooling towers and packed bed liquid desiccant-air contact systems. International Journal of Heat and Mass Transfer, 51(1-2), 237-245. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.028
  • Rezaei, E., Shafiei, S. and Abdollahnezhad, A. (2010). Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower. Energy Conversion and Management, 51(2), 311-319. https://doi.org/10.1016/j.enconman.2009.09.027
  • Rubio-Castro, E., Serna-González, M., Ponce-Ortega, J. M. and Morales-Cabrera, M. A. (2011). Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model. Applied Thermal Engineering, 31(16), 3615-3628. https://doi.org/10.1016/j.applthermaleng.2011.07.029
  • Sanders, K. T. (2015). Critical Review: Uncharted Waters? The Future of the Electricity-Water Nexus. Environ. Sci. Technol, 49, 51-66. https://doi.org/10.1021/es504293b
  • Sarker, M. M. A., Shim, G. J., Lee, H. S., Moon, C. G. and Yoon, J. I. (2009). Enhancement of cooling capacity in a hybrid closed circuit cooling tower. Applied Thermal Engineering, 29(16), 3328-3333. https://doi.org/10.1016/j.applthermaleng.2009.05.012
  • Scanlon, B. R., Reedy, R. C., Duncan, I., Mullican, W. F. and Young, M. (2013). Controls on water use for thermoelectric generation: Case study Texas, U.S. Environmental Science and Technology, 47(19), 11326-11334. https://doi.org/10.1021/es4029183
  • Schlei-Peters, I., Wichmann, M. G., Matthes, I.-G., Gundlach, F.-W. and Spengler, T. S. (2018). Integrated Material Flow Analysis and Process Modeling to Increase Energy and Water Efficiency of Industrial Cooling Water Systems. Journal of Industrial Ecology, 22(1), 41-54. https://doi.org/10.1111/jiec.12540
  • Sesma Martín, D. and Rubio-Varas, M. del M. (2017). Freshwater for Cooling Needs: A Long-Run Approach to the Nuclear Water Footprint in Spain. Ecological Economics, 140, 146-156. https://doi.org/10.1016/j.ecolecon.2017.04.032
  • Sharqawy, M. H., Al-Shalawi, I., Antar, M. A. and Zubair, S. M. (2017). Experimental investigation of packed-bed cross-flow humidifier. Applied Thermal Engineering, 117, 584-590. https://doi.org/10.1016/j.applthermaleng.2017.02.061
  • Sharqawy, M. H., Lienhard V, J. H. and Zubair, S. M. (2011). On thermal performance of seawater cooling towers. Journal of Engineering for Gas Turbines and Power, 133(4). https://doi.org/10.1115/1.4002159
  • Shuster, E. (2007). Estimating freshwater needs to meet future thermoelectric generation requirements (2007 update). National Energy Technology Laboratory.
  • Singh, K. and Das, R. (2016). An experimental and multi-objective optimization study of a forced draft cooling tower with different fills. Energy Conversion and Management, 111, 417-430. https://doi.org/10.1016/J.ENCONMAN.2015.12.080
  • Singh, K. and Das, R. (2017). Simultaneous optimization of performance parameters and energy consumption in induced draft cooling towers. Chemical Engineering Research and Design, 123, 1-13. https://doi.org/10.1016/j.cherd.2017.04.031
  • Singla, R. K., Singh, K. and Das, R. (2016). Tower characteristics correlation and parameter retrieval in wet-cooling tower with expanded wire mesh packing. Applied Thermal Engineering, 96, 240-249. https://doi.org/10.1016/j.applthermaleng.2015.11.063
  • Smrekar, J., Kuštrin, I. and Oman, J. (2011). Methodology for evaluation of cooling tower performance- Part 1: Description of the methodology. Energy Conversion and Management, 52, 3257-3264. https://doi.org/10.1016/j.enconman.2011.05.005
  • Smrekar, J., Oman, J. and Širok, B. (2006). Improving the efficiency of natural draft cooling towers. Energy Conversion and Management, 47(9-10), 1086-1100. https://doi.org/10.1016/J.ENCONMAN.2005.07.012
  • Söylemez, M. S. (2004). On the optimum performance of forced draft counter flow cooling towers. Energy Conversion and Management, 45(15-16), 2335-2341. https://doi.org/10.1016/j.enconman.2003.11.023
  • Stahl, E., Ziemann, S., Galliher, W., Wiebe, P., Gauley, B. and Williams, A. (2015). Final Literature Review on Best Practices of Water Conservation & Efficiency. In City of Guelph.
  • Streng, A. (1998). Combined Wet/Dry Cooling Towers of Cell-Type Construction. Journal of Energy Engineering, 124(3), 104-121. https://doi.org/10.1061/(ASCE)0733-9402(1998)124:3(104)
  • Suppes, G. and Truman, S. (2007). Production of Electricity. In Sustainable Nuclear Power (pp. 185-200). https://doi.org/10.1016/b978-012370602-7/50024-7
  • Sutherland, J. (1983). Analysis of mechanical-draught counterflow air/water cooling towers. J. Heat Transfer, 105(3), 576-583. https://doi.org/10.1115/1.3245624
  • Taghian Dehaghani, S. and Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach. Applied Thermal Engineering, 125, 1002-1014. https://doi.org/10.1016/J.APPLTHERMALENG.2017.07.069
  • Tyagi, S. K., Pandey, A. K., Pant, P. C. and Tyagi, V. V. (2012). Formation, potential and abatement of plume from wet cooling towers: A review. Renewable and Sustainable Energy Reviews, 16(5), 3409-3429. https://doi.org/10.1016/j.rser.2012.01.059
  • Tyagi, S. K., Wang, S. and Ma, Z. (2007). Prediction, potential and control of plume from wet cooling tower of commercial buildings in Hong Kong: A case study. International Journal of Energy Research, 31(8), 778-795. https://doi.org/10.1002/er.1269
  • Tyagi, S. K., Wang, S., Park, S. R., Sharma, A. and Kong, H. (2008). Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings. Renewable and Sustainable Energy Reviews, 12, 2194-2210. https://doi.org/10.1016/j.rser.2007.03.012
  • Uzgoren, E. and Timur, E. (2015). A methodology to assess suitability of a site for small scale wet and dry CSP systems. International Journal of Energy Research, 39(8), 1094-1108. https://doi.org/10.1002/er.3314
  • Wang, J.-G., Shieh, S.-S., Jang, S.-S. and Wu, C.-W. (2013). Discrete model-based operation of cooling tower based on statistical analysis. https://doi.org/10.1016/j.enconman.2013.04.025
  • Wang, Y., Wang, L., Huang, Q. and Cui, Y. (2015). Experimental and theoretical investigation of cross-flow heat transfer equipment for air energy high efficient utilization A Combined Experimental and Theoretical Investigation for Cross-flow Heat-collecting Equipment. Applied Thermal Engineering, 98, 1231-1240. https://doi.org/10.1016/j.applthermaleng.2015.12.129
  • Wei, H., Du, X., Yang, L. and Yang, Y. (2017). Entransy dissipation based optimization of a large-scale dry cooling system. Applied Thermal Engineering, 125, 254-265. https://doi.org/10.1016/j.applthermaleng.2017.06.117
  • Wei, H., Huang, X., Chen, L., Yang, L. and Du, X. (2020). Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants. Applied Energy, 262, 114555. https://doi.org/10.1016/j.apenergy.2020.114555
  • Williamson, N., Behnia, M. and Armfield, S. (2008). Comparison of a 2D axisymmetric CFD model of a natural draft wet cooling tower and a 1D model. International Journal of Heat and Mass Transfer, 51, 2227-2236. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008
  • Xu, X., Wang, S. and Ma, Z. (2008). Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region. Applied Thermal Engineering, 28, 1471-1484. https://doi.org/10.1016/j.applthermaleng.2007.09.003
  • Xu, Y.-J., Zhang, S.-J., Chi, J.-L. and Xiao, Y.-H. (2015). Steady-state off-design thermodynamic performance analysis of a SCCP system. Applied Thermal Engineering, 90, 221-231. https://doi.org/10.1016/j.applthermaleng.2015.06.092
  • Xuan, Y. M., Xiao, F., Niu, X. F., Huang, X. and Wang, S. W. (2012). Research and application of evaporative cooling in China: A review (I) - Research. Renewable and Sustainable Energy Reviews, 16, 3535-3546. https://doi.org/10.1016/j.rser.2012.01.052
  • Yang, Y., Cui, G. and Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling - A review. Renewable and Sustainable Energy Reviews, 113, 109230. https://doi.org/10.1016/j.rser.2019.06.037
  • Zavaragh, H. G., Ceviz, A. and Shervani Tabar, M. (2016). Analysis of windbreaker combinations on steam power plant natural draft dry cooling towers. Applied Thermal Engineering, 99, 550-559. https://doi.org/10.1016/j.applthermaleng.2016.01.103
  • Zhai, H. and Rubin, E. S. (2010). Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy, 38(10), 5653-5660. https://doi.org/10.1016/j.enpol.2010.05.013
  • Zhai, H., Rubin, E. S. and Versteeg, P. L. (2011). Water use at pulverized coal power plants with postcombustion carbon capture and storage. Environmental Science and Technology, 45(6), 2479-2485. https://doi.org/10.1021/es1034443
  • Zhou, Y., Zhu, X. and Ding, X. (2017). Theoretical investigation on thermal performance of new structure closed wet cooling tower. Heat Transfer Engineering, 39(5), 1-11. https://doi.org/10.1080/01457632.2017.1312899
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.