European Journal of Sustainable Development Research

Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance
Daniel Farinha Valezi 1 * , Ana Carolina Gomes Mantovani 1, Darcio César Constante 2, Eduardo Di Mauro 1
More Detail
1 Laboratory of Electron Paramagnetic Resonance, Physics Department, State University of Londrina (UEL), Londrina, PR, BRAZIL
2 Department of Agricultural and Forestry Sciences, Federal University of the Semi-Arid Region (UFERSA), Mossoró, RN, BRAZIL
* Corresponding Author
Research Article

European Journal of Sustainable Development Research, 2021 - Volume 5 Issue 3, Article No: em0162
https://doi.org/10.21601/ejosdr/10953

Published Online: 28 May 2021

Views: 285 | Downloads: 161

How to cite this article
APA 6th edition
In-text citation: (Valezi et al., 2021)
Reference: Valezi, D. F., Mantovani, A. C. G., Constante, D. C., & Di Mauro, E. (2021). Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance. European Journal of Sustainable Development Research, 5(3), em0162. https://doi.org/10.21601/ejosdr/10953
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Valezi DF, Mantovani ACG, Constante DC, Di Mauro E. Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance. EUR J SUSTAIN DEV RES. 2021;5(3):em0162. https://doi.org/10.21601/ejosdr/10953
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Valezi DF, Mantovani ACG, Constante DC, Di Mauro E. Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance. EUR J SUSTAIN DEV RES. 2021;5(3), em0162. https://doi.org/10.21601/ejosdr/10953
Chicago
In-text citation: (Valezi et al., 2021)
Reference: Valezi, Daniel Farinha, Ana Carolina Gomes Mantovani, Darcio César Constante, and Eduardo Di Mauro. "Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance". European Journal of Sustainable Development Research 2021 5 no. 3 (2021): em0162. https://doi.org/10.21601/ejosdr/10953
Harvard
In-text citation: (Valezi et al., 2021)
Reference: Valezi, D. F., Mantovani, A. C. G., Constante, D. C., and Di Mauro, E. (2021). Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance. European Journal of Sustainable Development Research, 5(3), em0162. https://doi.org/10.21601/ejosdr/10953
MLA
In-text citation: (Valezi et al., 2021)
Reference: Valezi, Daniel Farinha et al. "Ferritin and Free Radicals Species in Seeds by Electron Paramagnetic Resonance". European Journal of Sustainable Development Research, vol. 5, no. 3, 2021, em0162. https://doi.org/10.21601/ejosdr/10953
ABSTRACT
Biodiesel is a relevant source of renewable energy which has received a lot of attention due to the need to create a renewable fuel matrix. An important source of raw material for the biodiesel production is oilseeds. Considering the lack of studies characterizing magnetic species present in seeds, different types of oilseed samples were characterized and compared using X-band Electron Paramagnetic Resonance spectroscopy, at room temperature and 30 K. It was identified the presence of the semiquinone radical in all seed’s samples. Besides the free radical resonance, the presence of ferritin was observed, that is an important Fe complex present in seeds and plants, which, although very studied, still lacks a precise description related with its storage and other processes. This study can potentially assist future research about biodiesel and other products that have seeds as raw material.
KEYWORDS
REFERENCES
  • Aime, S., Bergamasco, B., Biglino, D., Digilio, G., Fasano, M., Giamello, E. and Lopiano, L. (1997). EPR investigations of the iron domain in neuromelanin. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1361, 49-58. https://doi.org/10.1016/S0925-4439(97)00014-8
  • Barbana, V., Guedes, C. L. B. and Di Mauro, E. (2013). Characterization of Paramagnetic Species in Seeds by Electron Paramagnetic Resonance (EPR). Renewable Energy and Power Quality Journal, 1(11), 346-348. https://doi.org/10.24084/repqj11.304
  • Baştürk, A., Ceylan, M. M., Çavuş, M., Boran, G. and Javidipour, I. (2018). Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT, 89, 358-364. https://doi.org/10.1016/j.lwt.2017.11.005
  • Bensimon, Y., Deroide, B. and Zanchetta, J. V. (1999). Comparison between the electron paramagnetic resonance spectra obtained in X- and W-bands on a fired clay: a preliminary study. Journal of Physics and Chemistry of Solids, 60, 813-818. https://doi.org/10.1016/S0022-3697(98)00334-5
  • Castner, T., Newell, G. S., Holton, W. C. and Slichter, C. P. (1960). Note on the Paramagnetic Resonance of Iron in Glass. The Journal of Chemical Physics, 32, 668-673. https://doi.org/10.1063/1.1730779
  • Chakraborty, S. and Bhattacharjee, P. (2020). Ultrasonication-assisted extraction of a phytomelatonin-rich, erucic acid-lean nutraceutical supplement from mustard seeds: an antioxidant synergy in the extract by reductionism. Journal of Food Science and Technology, 57, 1278-1289. https://doi.org/10.1007/s13197-019-04161-2
  • Chasteen, N. D. and Harrison, P. M. (1999). Mineralization in Ferritin: An Efficient Means of Iron Storage. Journal of Structural Biology, 126, 182-194. https://doi.org/10.1006/jsbi.1999.4118
  • Chendynski, L. T., Cordeiro, T., Messias, G. B., Mantovani, A. C. G., Spacino, K. R., Zeraik, M. L. and Borsato, D. (2020). Evaluation and application of extracts of rosemary leaves, araçá pulp and peel of bacuri in the inhibition of the oxidation reaction of biodiesel. Fuel, 261, 116379. https://doi.org/10.1016/j.fuel.2019.116379
  • Chendynski, L. T., Mantovani, A. C. G., Savada, F. Y., Messias, G. B., Santana, V. T., Salviato, A., Di Mauro, E. and Borsato, D. (2019). Analysis of the formation of radicals in biodiesel in contact with copper and metallic alloys via electronic paramagnetic resonance (EPR). Fuel, 242, 316-322. https://doi.org/10.1016/j.fuel.2019.01.058
  • Cremonez, P. A., Feroldi, M., Cézar Nadaleti, W., De Rossi, E., Feiden, A., De Camargo, M. P., Cremonez, F. E. and Klajn, F. F. (2015). Biodiesel production in Brazil: Current scenario and perspectives. Renewable and Sustainable Energy Reviews, 42, 415-428. https://doi.org/10.1016/j.rser.2014.10.004
  • de Almeida, V. F., García-Moreno, P. J., Guadix, A. and Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152-160. https://doi.org/10.1016/j.fuproc.2015.01.041
  • Devi, A., Das, V. K. and Deka, D. (2019). A green approach for enhancing oxidation stability including long storage periods of biodiesel via Thuja oreantalis L. as an antioxidant additive. Fuel, 253, 1264-1273. https://doi.org/10.1016/j.fuel.2019.05.127
  • Dixon, J. B. and Weed, S. B. (1989). Minerals in soil environments. Soil Science Society of America Inc. (SSSA). Print ISBN:9780891187875 https://doi.org/10.2136/sssabookser1.2ed
  • Gaffney, B. J. (2020). EPR Spectroscopic Studies of Lipoxygenases. Chemistry – An Asian Journal, 15, 42-50. https://doi.org/10.1002/asia.201901461
  • Hamadou, B., Djomdi, Falama, R. Z., Delattre, C., Pierre, G., Dubessay, P. and Michaud, P. (2020). Influence of Physicochemical Characteristics of Neem Seeds (Azadirachta indica A. Juss) on Biodiesel Production. Biomolecules, 10, 616. https://doi.org/10.3390/biom10040616
  • Hassan, M. H. and Kalam, M. A. (2013). An overview of biofuel as a renewable energy source: Development and challenges. Procedia Engineering, 56, 39-53. https://doi.org/10.1016/j.proeng.2013.03.087
  • Jahagirdar, A. A., Dhananjaya, N., Monika, D. L., Kesavulu, C. R., Nagabhushana, H., Sharma, S. C., Nagabhushana, B. M., Shivakumara, C., Rao, J. L. and Chakradhar, R. P. S. (2013). Structural, EPR, optical and magnetic properties of α-Fe2O3 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 512-518. https://doi.org/10.1016/j.saa.2012.09.069
  • Jain, S. and Sharma, M. P. (2010). Review of different test methods for the evaluation of stability of biodiesel. Renewable and Sustainable Energy Reviews, 14, 1937-1947. https://doi.org/10.1016/j.rser.2010.04.011
  • Kikuchi, M., Hussain, M. S., Morishita, N., Ukai, M., Kobayashi, Y. and Shimoyama, Y. (2010). ESR study of free radicals in mango. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 310-313. https://doi.org/10.1016/j.saa.2009.10.029
  • Kimura, M., Savada, F. Y., Romagnoli, E. S., Chendynski, L. T. and Borsato, D. (2019). Mathematical modeling of the relative protection factor of synthetic antioxidants in commercial biodiesel. Revista Virtual de Quimica, 11, 1097-1105. https://doi.org/10.21577/1984-6835.20190075
  • Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059-1070. https://doi.org/10.1016/j.fuproc.2004.11.002
  • Knothe, G. and Steidley, K. R. (2018). The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. Fuel Processing Technology, 177, 75-80. https://doi.org/10.1016/j.fuproc.2018.04.009
  • Knothe, G. (2007). Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 88, 669-677. https://doi.org/10.1016/j.fuproc.2007.01.005
  • Liang, Y. C., May, C. Y., Foon, C. S., Ngan, M. A., Hock, C. C. and Basiron, Y. (2006). The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel, Fuel, 85, 867-870. https://doi.org/10.1016/j.fuel.2005.09.003
  • Loveridge, D. and Parke, S. (1971). Electron spin resonance of Fe3+, Mn2+, and Cr3+ in glasses. Physics and Chemistry of Glasses, 12, 19.
  • Ma, F. and Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70, 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
  • Mangrich, A. S., da Silva, L., Pereira, B. F. and Messerschmidt, I. (2009). Proposal of an EPR based method for pollution level monitoring in mangrove sediments. Journal of the Brazilian Chemical Society, 20, 294-298. https://doi.org/10.1590/S0103-50532009000200014
  • Mantovani, A. C. G., Chendynski, L. T., Galvan, D., de Macedo Júnior, F. C., Borsato, D. and Di Mauro, E. (2020). Thermal-oxidation study of biodiesel by proton nuclear magnetic Resonance (1H NMR). Fuel, 274, 117833. https://doi.org/10.1016/j.fuel.2020.117833
  • Mantovani, A. C. G., Chendynski, L. T., Salviato, A., Borsato, D., Santana, V. T. and Di Mauro, E. (2018). Monitoring free radicals formation in the biodiesel oxidation reaction via electronic paramagnetic resonance. Fuel, 224, 255-260. https://doi.org/10.1016/j.fuel.2018.03.114
  • Mantovani, A. C., Chendynski, L., Galvan, D., Borsato, D. and Di Mauro, E. (2020). Evaluation of the Oxidation Degradation Process of Biodiesel via 1H NMR Spectroscopy. Journal of the Brazilian Chemical Society, 31(8), 1661-1667. https://doi.org/10.21577/0103-5053.20200052
  • Moore, K. L., Rodríguez-Ramiro, I., Jones, E. R., Jones, E. J., Rodríguez-Celma, J., Halsey, K., Domoney, C., Shewry, P. R., Fairweather-Tait, S. and Balk, J. (2018). The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 8, 6865. https://doi.org/10.1038/s41598-018-25130-3
  • Moreira, S. G., de Castro Kiehl, J., Prochnow, L. I., Pauletti, V., Martin-Neto, L. and de Resende, A. V. (2019). Soybean macronutrient availability and yield as affected by tillage system. Acta Scientiarum. Agronomy, 42, e42973. https://doi.org/10.4025/actasciagron.v42i1.42973
  • Nakagawa, K. and Hara, H. (2015). Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging. Free Radical Research, 49, 1-6. https://doi.org/10.3109/10715762.2014.967691
  • Ramadan, M. F. (2013). Healthy blends of high linoleic sunflower oil with selected cold pressed oils: Functionality, stability and antioxidative characteristics. Industrial Crops and Products, 43, 65-72. https://doi.org/10.1016/j.indcrop.2012.07.013
  • Raymon, A., Pakianathan, P., Rajamani, M. P. E. and Karthik, R. (2013). Enhancing the critical characteristics of natural esters with antioxidants for power transformer applications. IEEE Transactions on Dielectrics and Electrical Insulation, 20, 899-912. https://doi.org/10.1109/TDEI.2013.6518959
  • Saab, S. C. and Martin-Neto, L. (2008). Characterization by Electron Paramagnetic Resonance of organic matter in whole soil (Gleysoil) and organic-mineral fractions. Journal of the Brazilian Chemical Society, 19, 413-417. https://doi.org/10.1590/S0103-50532008000300007
  • Sajfutdinov, R. G., Larina, L. I., Vakul’skaya, T. I. and Voronkov, M. G. (2001). Electron paramagnetic resonance in biochemistry and medicine. In Springer Science & Business Media: pp. 21-68. ISBN 978-0-306-46925-1 https://doi.org/10.1007/b115596
  • Saluja, R. K., Kumar, V. and Sham, R. (2016). Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866-881. https://doi.org/10.1016/j.rser.2016.05.001
  • Siqueira, R. E., Andrade, M. M., Valezi, D. F., Carneiro, C. E. A., Pinese, J. P. P., da Costa, A. C. S., Zaia, D. A. M., Ralisch, R., Pontuschka, W. M., Guedes, C. L. B. and Di Mauro, E. (2011). EPR, FT-IR and XRD investigation of soils from Paraná, Brazil. Applied Clay Science, 53, 42-47. https://doi.org/10.1016/j.clay.2011.04.018
  • Sotomatsu, A., Nakano, M. and Hirai, S. (1990). Phospholipid peroxidation induced by the catechol-Fe3+(Cu2+) complex: A possible mechanism of nigrostriatal cell damage. Archives of Biochemistry and Biophysics, 283, 334-341. https://doi.org/10.1016/0003-9861(90)90651-E
  • Souza, A. G., Medeiros, M. L., Cordeiro, A. M. M. T., Queiroz, N., Soledade, L. E. B. and Souza, A. L. (2014). Efficient antioxidant formulations for use in biodiesel. Energy and Fuels, 28, 1074-1080. https://doi.org/10.1021/ef402009e
  • Sreekanth Chakradhar, R. P., Yasoda, B., Rao, J. L. and Gopal, N. O. (2006). Mixed alkali effect in Li2O-Na2O-B2O3 glasses containing Fe2O3—An EPR and optical absorption study. Materials Research Bulletin, 41, 1646-1656. https://doi.org/10.1016/j.materresbull.2006.02.028
  • Taiz, L., Zeiger, E., Møller, I. M. and Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed Editora. ISBN 9781605352558
  • Tatur, J. and Hagen, W. R. (2005). The dinuclear iron-oxo ferroxidase center of Pyrococcus furiosus ferritin is a stable prosthetic group with unexpectedly high reduction potentials. FEBS Letters, 579, 4729-4732. https://doi.org/10.1016/j.febslet.2005.07.045
  • Ukai, M., Kameya, H., Nakamura, H. and Shimoyama, Y. (2008). An electron spin resonance study of dry vegetables before and after irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 1417-1422. https://doi.org/10.1016/j.saa.2007.09.043
  • Valezi, D. F., Baú, J. P. T., Zaia, D. A. M., Costa, A. C. S., Urbano, A., Tupan, L. F. S., Paesano, A., Piccinato, M. T. and Di Mauro, E. (2019). Enhanced Magnetic Component in Synthetic Goethite (α‐FeOOH) and its Relation with Morphological and Structural Characteristics. Physica Status Solidi (B), 256, 1800578. https://doi.org/10.1002/pssb.201800578
  • Valezi, D. F., Piccinato, M. T., Sarvezuk, P. W. C., Ivashita, F. F., Paesano, A., Varalda, J., Mosca, D. H., Urbano, A., Guedes, C. L. B. and Di Mauro, E. (2016). Goethite (α-FeOOH) magnetic transition by ESR, Magnetometry and Mössbauer. Materials Chemistry and Physics, 173, 179-185. https://doi.org/10.1016/j.matchemphys.2016.01.067
  • Wajnberg, E., El-Jaick, L. J., Linhares, M. P. and Esquivel, D. M. S. (2001). Ferromagnetic Resonance of Horse Spleen Ferritin: Core Blocking and Surface Ordering Temperatures. Journal of Magnetic Resonance, 153, 69-74. https://doi.org/10.1006/jmre.2001.2430
  • Wang, Q., Pan, X., Lin, C., Ma, X., Cao, S. and Ni, Y. (2020). Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chemical Engineering Journal, 396, 125341. https://doi.org/10.1016/j.cej.2020.125341
  • Weir, M. P., Peters, T. J. and Gibson, J. F. (1985). Electron spin resonance studies of splenic ferritin and haemosiderin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 828, 298-305. https://doi.org/10.1016/0167-4838(85)90311-5
  • Yahiaoui, E. M., Berger, R., Servant, Y., Kliava, J., Cugunov, L. and Mednis, A. (1994). Electron paramagnetic resonance of Fe3+ ions in borate glass: computer simulations. Journal of Physics: Condensed Matter, 6, 9415. https://doi.org/10.1088/0953-8984/6/44/020
  • Yarbasi, A., Karabulut, Z. and Karabulut, B. (2011). An EPR Study of Gamma Irradiated Medicinal Plants: Cress Seeds and Mistletoe. Gazi University Journal of Science, 24, 203-207.
  • Zielińska-Dawidziak, M. (2015). Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients, 7, 1184-1201. https://doi.org/10.3390/nu7021184
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.