EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT RESEARCH
Research Article

Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals

European Journal of Sustainable Development Research, 2020, 4(3), em0122, https://doi.org/10.29333/ejosdr/7843
Full Text (PDF)

ABSTRACT

Ecosystems are complex compendia of biotic and abiotic components and characterized by exchanges of energy and mass. Via the actions and functions of the resident components which assemble into communities, ecosystems provide both direct/indirect tangible and intangible services to human society as well as the natural world. This holds true for ecosystems which cut across various scales and niches. Various frameworks have been devised to categorize and evaluate the services provided by ecosystems and/or their components. In this study, the services elicited by three specific communities occupying different ecosystem niches and having distinct scalar resolution are assessed. Firstly, the microbial communities which reside in the mammalian gut ecosystem, the microbial communities in the soil and the indigenous/local communities who inhabit the ecosystems comprising their traditional landscapes. Further, the roles and functions of these diverse communities, separated by scale and mostly and largely contributing to the homeostasis and functionality of their corresponding ecosystems, are evaluated. The services rendered by these communities are then mapped to the United Nations Sustainable Development Goals. Finally, the importance of these communities in maximizing social, economic and ecological capital is pointed out.

KEYWORDS

communities gut microbiota soil microbiota indigenous/local communities ecosystem services sustainable development goals social ecological economic capital

CITATION (APA)

Sudhakar, P. (2020). Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals. European Journal of Sustainable Development Research, 4(3), em0122. https://doi.org/10.29333/ejosdr/7843
Harvard
Sudhakar, P. (2020). Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals. European Journal of Sustainable Development Research, 4(3), em0122. https://doi.org/10.29333/ejosdr/7843
Vancouver
Sudhakar P. Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals. EUR J SUSTAIN DEV RES. 2020;4(3):em0122. https://doi.org/10.29333/ejosdr/7843
AMA
Sudhakar P. Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals. EUR J SUSTAIN DEV RES. 2020;4(3), em0122. https://doi.org/10.29333/ejosdr/7843
Chicago
Sudhakar, Padhmanand. "Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals". European Journal of Sustainable Development Research 2020 4 no. 3 (2020): em0122. https://doi.org/10.29333/ejosdr/7843
MLA
Sudhakar, Padhmanand "Assessment of Ecosystem Services and Capabilities of Communities from different Scales and Niches - Implications on Sustainability Goals". European Journal of Sustainable Development Research, vol. 4, no. 3, 2020, em0122. https://doi.org/10.29333/ejosdr/7843

REFERENCES

  1. Angsongna, A., Ato Armah, F., Boamah, S., Hambati, H., Luginaah, I., Chuenpagdee, R., & Campbell, G. (2016). A systematic review of resource habitat taboos and human health outcomes in the context of global environmental change. Global Bioethics 27, 91-111. https://doi.org/10.1080/11287462.2016.1212608
  2. Armour, C. R., Nayfach, S., Pollard, K. S., & Sharpton, T. J. (2019). A Metagenomic Meta-analysis Reveals Functional Signatures of Health and Disease in the Human Gut Microbiome. mSystems 4. https://doi.org/10.1128/mSystems.00332-18
  3. Babai, D., & Molnár, Z. (2014). Small-scale traditional management of highly species-rich grasslands in the Carpathians. Agriculture, Ecosystems & Environment 182, 123-130. https://doi.org/10.1016/j.agee.2013.08.018
  4. Bagchi, V. A., Siegel, J. P., Demkovich, M. R., Zehr, L. N., & Berenbaum, M. R. (2016). Impact of pesticide resistance on toxicity and tolerance of hostplant phytochemicals in amyelois transitella (lepidoptera: pyralidae). J. Insect Sci. 16. https://doi.org/10.1093/jisesa/iew063
  5. Balée, W. L., & Erickson, C. L. (2006). Time and complexity in historical ecology: studies in the neotropical lowlands. New York Chichester, West Sussex: Columbia University Press. https://doi.org/10.7312/bale13562
  6. Baron, S., Diene, S., & Rolain, J.-M. (2018). Human microbiomes and antibiotic resistance. Human Microbiome Journal 10, 43-52. https://doi.org/10.1016/j.humic.2018.08.005
  7. Begotti, R. A., & Peres, C. A. (2019). Brazil’s indigenous lands under threat. Science 363, 592. https://doi.org/10.1126/science.aaw3864
  8. Bennett, N. J., Whitty, T. S., Finkbeiner, E., Pittman, J., Bassett, H., Gelcich, S., & Allison, E. H. (2018). Environmental stewardship: A conceptual review and analytical framework. Environ. Manage. 61, 597-614. https://doi.org/10.1007/s00267-017-0993-2
  9. Benyei, P., Arreola, G., & Reyes-García, V. (2019). Storing and sharing: A review of indigenous and local knowledge conservation initiatives. Ambio. https://doi.org/10.1007/s13280-019-01153-6
  10. Blair, J. M., Collins, S. L., & Knapp, A. K. (2000). Ecosystems as Functional Units in Nature. Natural Resources & Environment 14, 150-155. Retrieved from https://www.jstor.org/stable/40923968?seq=1
  11. Blaya, J., Marhuenda, F. C., Pascual, J. A., & Ros, M. (2016). Microbiota characterization of compost using omics approaches opens new perspectives for phytophthora root rot control. PLoS ONE 11, e0158048. https://doi.org/10.1371/journal.pone.0158048
  12. Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J. S., Nasuti, C., Fiorini, D., Boarelli, M. C., Rossi, G., & Eleuteri, A. M. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7, 2426. https://doi.org/10.1038/s41598-017-02587-2
  13. Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108, 16050-16055. https://doi.org/10.1073/pnas.1102999108
  14. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481. https://doi.org/10.2337/db07-1403
  15. Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food Energy Secur. 6, 48-60. https://doi.org/10.1002/fes3.108
  16. Chan, Y. K., Brar, M. S., Kirjavainen, P. V., Chen, Y., Peng, J., Li, D., Leung, F. C.-C., & El-Nezami, H. (2016). High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice. BMC Microbiol. 16, 264. https://doi.org/10.1186/s12866-016-0883-4
  17. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., & Gewirtz, A. T. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414-1427. https://doi.org/10.1136/gutjnl-2016-313099
  18. Chialva, M., Zhou, Y., Spadaro, D., & Bonfante, P. (2018). Not only priming: Soil microbiota may protect tomato from root pathogens. Plant Signal. Behav. 13, e1464855. https://doi.org/10.1080/15592324.2018.1464855
  19. Chowdhury, A., Pradhan, S., Saha, M., & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol. 48, 114-127. https://doi.org/10.1007/s12088-008-0011-8
  20. Clavel, T., Henderson, G., Engst, W., Doré, J., & Blaut, M. (2006). Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 55, 471-478. https://doi.org/10.1111/j.1574-6941.2005.00057.x
  21. Clement, F., & Amezaga, J. M. (2009). Afforestation and forestry land allocation in northern Vietnam: Analysing the gap between policy intentions and outcomes. Land use policy 26, 458-470. https://doi.org/10.1016/j.landusepol.2008.06.003
  22. Colding, J., & Folke, C. (1997). The relations among threatened species, their protection, and taboos. CE 1. https://doi.org/10.5751/ES-00018-010106
  23. Comberti, C., Thornton, T. F., Wyllie de Echeverria, V., & Patterson, T. (2015). Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Global Environmental Change 34, 247-262. https://doi.org/10.1016/j.gloenvcha.2015.07.007
  24. Coombes, B. (2007). Defending community? Indigeneity, self-determination and institutional ambivalence in the restoration of Lake Whakaki. Geoforum 38, 60-72. https://doi.org/10.1016/j.geoforum.2006.05.006
  25. Cuerrier, A., Turner, N. J., Gomes, T. C., Garibaldi, A., & Downing, A. (2015). Cultural keystone places: conservation and restoration in cultural landscapes. J. Ethnobiol. 35, 427-448. https://doi.org/10.2993/0278-0771-35.3.427
  26. Cui, Y., Fang, L., Deng, L., Guo, X., Han, F., Ju, W., Wang, X., Chen, H., Tan, W., & Zhang, X. (2019). Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440-1451. https://doi.org/10.1016/j.scitotenv.2018.12.289
  27. Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., Ricketts, T. H., Salzman, J., & Shallenberger, R. (2009). Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment 7, 21-28. https://doi.org/10.1890/080025
  28. Dai, Z.-L., Li, X.-L., Xi, P.-B., Zhang, J., Wu, G., & Zhu, W.-Y. (2013). L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45, 501-512. https://doi.org/10.1007/s00726-012-1264-4
  29. Dang, C., Morrissey, E. M., Neubauer, S. C., & Franklin, R. B. (2019). Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. Glob. Chang. Biol. 25, 549-561. https://doi.org/10.1111/gcb.14486
  30. Danielsen, F., Adrian, T., Brofeldt, S., van Noordwijk, M., Poulsen, M. K., Rahayu, S., Rutishauser, E., et al. (2013). Community monitoring for REDD+: international promises and field realities. E&S 18. https://doi.org/10.5751/ES-05464-180341
  31. De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84-96. https://doi.org/10.1016/j.cell.2013.12.016
  32. Diemont, S. A. W., & Martin, J. F. (2009). Lacandon Maya ecosystem management: sustainable design for subsistence and environmental restoration. Ecol. Appl. 19, 254-266. https://doi.org/10.1890/08-0176.1
  33. Douterlungne, D., Levy-Tacher, S. I., Golicher, D. J., & Dañobeytia, F. R. (2008). Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern. Restoration Ecology 18, 322-329. https://doi.org/10.1111/j.1526-100X.2008.00459.x
  34. Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom interactions in roots promote arabidopsis survival. Cell 175, 973-983.e14. https://doi.org/10.1016/j.cell.2018.10.020
  35. Dzidic, M., Boix-Amorós, A., Selma-Royo, M., Mira, A., & Collado, M. C. (2018). Gut microbiota and mucosal immunity in the neonate. Med Sci (Basel) 6. https://doi.org/10.3390/medsci6030056
  36. Eckert, L. E., Ban, N. C., Frid, A., & McGreer, M. (2017). Diving back in time: Extending historical baselines for yelloweye rockfish with Indigenous knowledge. Aquatic Conserv: Mar. Freshw. Ecosyst. 28, 158-166. https://doi.org/10.1002/aqc.2834
  37. Enright, E. F., Gahan, C. G. M., Joyce, S. A., & Griffin, B. T. (2016). The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J. Biol. Med. 89, 375-382. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045146/
  38. Erickson, C. L. (2010). The Transformation of Environment into Landscape: The Historical Ecology of Monumental Earthwork Construction in the Bolivian Amazon. Diversity (Basel) 2, 618-652. https://doi.org/10.3390/d2040619
  39. Etchart, L. (2017). The role of indigenous peoples in combating climate change. Palgrave Commun. 3, 17085. https://doi.org/10.1057/palcomms.2017.85
  40. Everard, M., Gupta, N., Scott, C. A., Tiwari, P. C., Joshi, B., Kataria, G., & Kumar, S. (2018). Assessing livelihood-ecosystem interdependencies and natural resource governance in Indian villages in the Middle Himalayas. Reg. Environ. Change 1-13. https://doi.org/10.1007/s10113-018-1391-x
  41. Fernández-Bayo, J. D., Hestmark, K. V., Claypool, J. T., Harrold, D. R., Randall, T. E., Achmon, Y., Stapleton, J. J., Simmons, C. W., & VanderGheynst, J. S. (2019). The initial soil microbiota impacts the potential for lignocellulose degradation during soil solarization. J. Appl. Microbiol. 126, 1729-1741. https://doi.org/10.1111/jam.14258
  42. Ficara, M., Pietrella, E., Spada, C., Della Casa Muttini, E., Lucaccioni, L., Iughetti, L., & Berardi, A. (2018). Changes of intestinal microbiota in early life. J. Matern. Fetal Neonatal Med. 1-8. https://doi.org/10.1080/14767058.2018.1506760
  43. Fitzhugh, B., Butler, V. L., Bovy, K. M., & Etnier, M. A. (2018). Human ecodynamics: A perspective for the study of long-term change in socioecological systems. Journal of Archaeological Science: Reports 23, 1077-1094. https://doi.org/10.1016/j.jasrep.2018.03.016
  44. Foin, T. C., & Davis, W. G. (1984). Ritual and self-regulation of the Tsembaga Maring ecosystem in the New Guinea highlands. Hum. Ecol. 12, 385-412. https://doi.org/10.1007/BF01531125
  45. Ford, A., & Nigh, R. (2015). The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (New Frontiers in Historical Ecology). 1st ed. Routledge. https://doi.org/10.4324/9781315417936
  46. Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H. K., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262-266. https://doi.org/10.1038/nature15766
  47. Fox, C. A., Reo, N. J., Turner, D. A., Cook, J., Dituri, F., Fessell, B., Jenkins, J., Johnson, A., Rakena, T. M., Riley, C., et al. (2017). “The river is us; the river is in our veins”: re-defining river restoration in three Indigenous communities. Sustain. Sci. 12, 521-533. https://doi.org/10.1007/s11625-016-0421-1
  48. Freeman, B. M. (2019). Promoting global health and well-being of Indigenous youth through the connection of land and culture-based activism. Glob. Health Promot. 26, 17-25. https://doi.org/10.1177/1757975919831253
  49. Gao, X., Jia, R., Xie, L., Kuang, L., Feng, L., & Wan, C. (2018). A study of the correlation between obesity and intestinal flora in school-age children. Sci. Rep. 8, 14511. https://doi.org/10.1038/s41598-018-32730-6
  50. Garibaldi, A., & Turner, N. (2004). Cultural Keystone Species: Implications for Ecological Conservation and Restoration. Ecology and Society 9. https://doi.org/10.5751/ES-00669-090301
  51. Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K.-W., AgBiome Team, McHardy, A. C., & Schulze-Lefert, P. (2018). Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia. Cell Host Microbe 24, 155-167.e5. https://doi.org/10.1016/j.chom.2018.06.006
  52. Grenni, P., Gibello, A., Barra Caracciolo, A., Fajardo, C., Nande, M., Vargas, R., … Martín, M. (2009). A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Res. 43, 2999-3008. https://doi.org/10.1016/j.watres.2009.04.022
  53. Gupta, R., Singh, A., Srivastava, M., Shanker, K., & Pandey, R. (2019). Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol. Res. 218, 87-96. https://doi.org/10.1016/j.micres.2018.10.006
  54. Gustafsson, B. E., Daft, F. S., Mcdaniel, E. G., Smith, J. C., & Fitzgerald, R. J. (1962). Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats. J. Nutr. 78, 461-468. https://doi.org/10.1093/jn/78.4.461
  55. Gustafsson, B. E., Angelin, B., Einarsson, K., & Gustafsson, J. A. (1977). Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats. J. Lipid Res. 18, 717-721. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/925516
  56. Hansson, L. (2001). Traditional management of forests: plant and bird community responses to alternative restoration of oak-hazel woodland in Sweden. Biodiversity & Conservation. https://doi.org/10.1023/A:1013125611492
  57. Harman, G. E., & Uphoff, N. (2019). Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits. Scientifica (Cairo) 2019, 9106395. https://doi.org/10.1155/2019/9106395
  58. Hartoyo, A. P. P., Siregar, I. Z., Supriyanto, Prasetyo, L. B., & Thelaide, I. (2016). Biodiversity, Carbon Stocks and Community Monitoring in Traditional Agroforestry Practices: Preliminary Results from Two Investigated Villages in Berau, East Kalimantan. Procedia Environmental Sciences 33, 376-385. https://doi.org/10.1016/j.proenv.2016.03.088
  59. Hendgen, M., Hoppe, B., Döring, J., Friedel, M., Kauer, R., Frisch, M., Dahl, A., & Kellner, H. (2018). Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. 8, 9393. https://doi.org/10.1038/s41598-018-27743-0
  60. Hermans, S. M., Buckley, H. L., Case, B. S., Curran-Cournane, F., Taylor, M., & Lear, G. (2017). Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83. https://doi.org/10.1128/AEM.02826-16
  61. Hiippala, K., Jouhten, H., Ronkainen, A., Hartikainen, A., Kainulainen, V., Jalanka, J., & Satokari, R. (2018). The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10. https://doi.org/10.3390/nu10080988
  62. Home, R., Bouagnimbeck, H., Ugas, R., Arbenz, M., & Stolze, M. (2017). Participatory guarantee systems: organic certification to empower farmers and strengthen communities. Agroecology and Sustainable Food Systems 41, 526-545. https://doi.org/10.1080/21683565.2017.1279702
  63. Horiuchi, M., Fukamachi, K., & Oku, H. (2011). Reed community restoration projects with citizen participation: an example of the practical use of Satoyama landscape resources in Shiga Prefecture, Japan. Landscape Ecol. Eng. 7, 217-222. https://doi.org/10.1007/s11355-010-0129-9
  64. Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., et al. (2013). Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 4, 2151. https://doi.org/10.1038/ncomms3151
  65. Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T., et al. (2018). A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host Microbe 24, 296-307.e7. https://doi.org/10.1016/j.chom.2018.07.002
  66. Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Front. Plant Sci. 8, 1617. https://doi.org/10.3389/fpls.2017.01617
  67. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105, 13580-13585. https://doi.org/10.1073/pnas.0804437105
  68. Jones, E. J., Matthews, Z. J., Gul, L., Sudhakar, P., Divekar, D., Buck, J., et al. (2018). Integrative analysis of Paneth cell proteomic data from intestinal organoids reveals functional processes affected in Crohn’s disease due to autophagy impairment. DMM. https://doi.org/10.1242/dmm.037069
  69. Jones, S. E., Pham, C. A., Zambri, M. P., McKillip, J., Carlson, E. E., & Elliot, M. A. (2019). Streptomyces volatile compounds influence exploration and microbial community dynamics by altering iron availability. MBio 10. https://doi.org/10.1128/mBio.00171-19
  70. Kamada, N., Chen, G. Y., Inohara, N., & Núñez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685-690. https://doi.org/10.1038/ni.2608
  71. Kelbessa, W. (2013). Indigenous knowledge and its contribution to biodiversity conservation. Int. Soc. Sci. J. 64, 143-152. https://doi.org/10.1111/issj.12038
  72. Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112, 399-412. https://doi.org/10.1016/j.neuropharm.2016.07.002
  73. Köberl, M., Dita, M., Martinuz, A., Staver, C., & Berg, G. (2017). Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7, 45318. https://doi.org/10.1038/srep45318
  74. Kong, H. G., Song, G. C., & Ryu, C.-M. (2019). Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479-486. https://doi.org/10.1111/1758-2229.12760
  75. LaCanne, C. E., & Lundgren, J. G. (2018). Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6, e4428. https://doi.org/10.7717/peerj.4428
  76. Laval, L., Martin, R., Natividad, J. N., Chain, F., Miquel, S., Desclée de Maredsous, C., Capronnier, S., Sokol, H., Verdu, E. F., van Hylckama Vlieg, J. E. T., et al. (2015). Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 6, 1-9. https://doi.org/10.4161/19490976.2014.990784
  77. Lepofsky, D., Armstrong, C. G., Greening, S., Jackley, J., Carpenter, J., Guernsey, B., Mathews, D., & Turner, N. J. (2017). Historical ecology of cultural keystone places of the northwest coast. Am. Anthropol. 119, 448-463. https://doi.org/10.1111/aman.12893
  78. Liang, Y., Zhan, J., Liu, D., Luo, M., Han, J., Liu, X., Liu, C., Cheng, Z., Zhou, Z., & Wang, P. (2019). Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 7, 19. https://doi.org/10.1186/s40168-019-0635-4
  79. Li, F., Wang, R., Hu, D., Ye, Y., Yang, W., & Liu, H. (2014). Measurement methods and applications for beneficial and detrimental effects of ecological services. Ecological Indicators 47, 102-111. https://doi.org/10.1016/j.ecolind.2014.06.032
  80. Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., et al. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14. https://doi.org/10.1186/s40168-016-0222-x
  81. Li, H.-Y., Wang, H., Wang, H.-T., Xin, P.-Y., Xu, X.-H., Ma, Y., et al. (2018). The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome 6, 187. https://doi.org/10.1186/s40168-018-0561-x
  82. Li, L., Lin, Q., Li, X., Li, T., He, X., Li, D., & Tao, Y. (2019). Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-019-10059-y
  83. Lladó, S., López-Mondéjar, R., & Baldrian, P. (2017). Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81. https://doi.org/10.1128/MMBR.00063-16
  84. Long, J., Tecle, A., & Burnette, B. (2003). Cultural foundations for ecological restoration on the white mountain apache reservation. CE 8. https://doi.org/10.5751/ES-00591-080104
  85. Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., et al. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231. https://doi.org/10.1186/s40168-018-0615-0
  86. Macharia, P. N. (2004). Community based interventions as a strategy to combat desertification in the arid and semi-arid rangelands of Kajiado District, Kenya. Environ. Monit. Assess. 99, 141-147. https://doi.org/10.1007/s10661-004-4014-6
  87. Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6, 148. https://doi.org/10.3389/fgene.2015.00148
  88. Martín, J. F., & Liras, P. (2019). Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Curr. Opin. Pharmacol. 48, 8-16. https://doi.org/10.1016/j.coph.2019.02.014
  89. McVey Neufeld, K. A., Perez-Burgos, A., Mao, Y. K., Bienenstock, J., & Kunze, W. A. (2015). The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol. Motil. 27, 627-636. https://doi.org/10.1111/nmo.12534
  90. Mesa, V., Navazas, A., González-Gil, R., González, A., Weyens, N., Lauga, B., Gallego, J. L. R., Sánchez, J., & Peláez, A. I. (2017). Use of Endophytic and Rhizosphere Bacteria to Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Appl. Environ. Microbiol. 83. https://doi.org/10.1128/AEM.03411-16
  91. Mitra, J., & Raghu, K. (1998). Pesticides‐non target plants interactions: An overview. Archives of Agronomy and Soil Science 43, 445-500. https://doi.org/10.1080/03650349809366059
  92. Montefrio, M. J. F., & Johnson, A. T. (2019). Politics in participatory guarantee systems for organic food production. J. Rural Stud. 65, 1-11. https://doi.org/10.1016/j.jrurstud.2018.12.014
  93. Mörkl, S., Lackner, S., Meinitzer, A., Mangge, H., Lehofer, M., Halwachs, B., et al. (2018). Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur. J. Nutr. 57, 2985-2997. https://doi.org/10.1007/s00394-018-1784-0
  94. Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189-200. https://doi.org/10.1080/19490976.2015.1134082
  95. Muñoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., Duncan, S. H., Flint, H. J., & Leclerc, M. (2011). Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol. Ecol. 76, 615-624. https://doi.org/10.1111/j.1574-6941.2011.01085.x
  96. Mustonen, T. (2013). Oral histories as a baseline of landscape restoration - Co-management and watershed knowledge in Jukajoki River. Fennia 76-91. https://doi.org/10.11143/7637
  97. Neeganagwedgin, E. (2013). Ancestral Knowledges, Spirituality and Indigenous Narratives as Self-Determination. AlterNative: An International Journal of Indigenous Peoples 9, 322-334. https://doi.org/10.1177/117718011300900404
  98. Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 11, 1-10. https://doi.org/10.1007/s12328-017-0813-5
  99. Ohnmacht, C., Park, J.-H., Cording, S., Wing, J. B., Atarashi, K., Obata, Y., et al. (2015). MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989-993. https://doi.org/10.1126/science.aac4263
  100. Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., … Hermoso, M. A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 10, 277. https://doi.org/10.3389/fimmu.2019.00277
  101. Pascal, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., et al. (2017). A microbial signature for Crohn’s disease. Gut 66, 813-822. https://doi.org/10.1136/gutjnl-2016-313235
  102. Paudyal, K., Baral, H., Burkhard, B., Bhandari, S. P., & Keenan, R. J. (2015). Participatory assessment and mapping of ecosystem services in a data-poor region: Case study of community-managed forests in central Nepal. Ecosystem Services 13, 81-92. https://doi.org/10.1016/j.ecoser.2015.01.007
  103. Pérez-Valera, E., Kyselková, M., Ahmed, E., Sladecek, F. X. J., Goberna, M., & Elhottová, D. (2019). Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci. Rep. 9, 6760. https://doi.org/10.1038/s41598-019-42734-5
  104. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B. Biol. Sci 365, 2959-2971. https://doi.org/10.1098/rstb.2010.0143
  105. Rajasekaran, B., & Warren, D. M. (1995). Role of indigenous soil health care practices in improving soil fertility: Evidence from South India. Journal of Soil and Water Conservation, 50(2), 146-149. Retrieved from https://www.jswconline.org/content/50/2/146
  106. Rappaport, R. A. (1967). Ritual Regulation of Environmental Relations among a New Guinea People. Ethnology 6, 17. https://doi.org/10.2307/3772735
  107. Relman, D. A., & Lipsitch, M. (2018). Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc Natl Acad Sci USA 115, 12902-12910. https://doi.org/10.1073/pnas.1717163115
  108. Ren, Z., Li, A., Jiang, J., Zhou, L., Yu, Z., Lu, H., et al. (2019). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68, 1014-1023. https://doi.org/10.1136/gutjnl-2017-315084
  109. Reyes-García, V., & Benyei, P. (2019). Indigenous knowledge for conservation. Nat. Sustain. https://doi.org/10.1038/s41893-019-0341-z
  110. Reyes-García, V., Fernández-Llamazares, Á., McElwee, P., Molnár, Z., Öllerer, K., Wilson, S. J., & Brondizio, E. S. (2019). The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3-8. https://doi.org/10.1111/rec.12894
  111. Russell-Smith, J., Yates, C. P., Edwards, A. C., Whitehead, P. J., Murphy, B. P., & Lawes, M. J. (2015). Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example. PLoS ONE 10, e0143426. https://doi.org/10.1371/journal.pone.0143426
  112. Russell, W. R., Scobbie, L., Chesson, A., Richardson, A. J., Stewart, C. S., Duncan, S. H., Drew, J. E., & Duthie, G. G. (2008). Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr. Cancer 60, 636-642. https://doi.org/10.1080/01635580801987498
  113. Salick, J., Ghimire, S. K., Fang, Z., Dema, S., & Konchar, K. M. (2014). Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 34, 276. https://doi.org/10.2993/0278-0771-34.3.276
  114. Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61. https://doi.org/10.1002/mnfr.201600240
  115. Sangha, K. K., & Russell-Smith, J. (2017). Towards an Indigenous Ecosystem Services Valuation Framework: A North Australian Example. Conservation and Society, 15(3), 255-269. http://www.conservationandsociety.org/article.asp?issn=0972-4923;year=2017;volume=15;issue=3;spage=255;epage=269;aulast=Sangha
  116. Sangha, K. K., Le Brocque, A., Costanza, R., & Cadet-James, Y. (2015). Ecosystems and indigenous well-being: An integrated framework. Global Ecology and Conservation 4, 197-206. https://doi.org/10.1016/j.gecco.2015.06.008
  117. Sangha, K. K., Preece, L., Villarreal-Rosas, J., Kegamba, J. J., Paudyal, K., Warmenhoven, T., & RamaKrishnan, P. S. (2018). An ecosystem services framework to evaluate indigenous and local peoples’ connections with nature. Ecosystem Services 31, 111-125. https://doi.org/10.1016/j.ecoser.2018.03.017
  118. Selvam, V., Ravichandran, K. K., Gnanappazham, L., & Navamuniyammal, M. (2003). Assessment of community-based restoration of Pichavaram mangrove wetland using remote sensing data. Current Science 85(6), 794-798. Retrieved from https://www.jstor.org/stable/24109889?seq=1
  119. Shackleton, C. M., Ruwanza, S., Sinasson Sanni, G. K., Bennett, S., De Lacy, P., Modipa, R., Mtati, N., Sachikonye, M., & Thondhlana, G. (2016). Unpacking pandora’s box: understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystems 19, 587-600. https://doi.org/10.1007/s10021-015-9952-z
  120. Shaffer, L. J. (2010). Indigenous fire use to manage savanna landscapes in southern mozambique. Fire Ecology 6, 43-59. https://doi.org/10.4996/fireecology.0602043
  121. Shapiro, J., & Báldi, A. (2014). Accurate accounting: How to balance ecosystem services and disservices. Ecosystem Services 7, 201-202. https://doi.org/10.1016/j.ecoser.2014.01.002
  122. Shepard, G. H., & Ramirez, H. (2011). “Made in Brazil”: Human Dispersal of the Brazil Nut (Bertholletia excelsa, Lecythidaceae) in Ancient Amazonia1. Econ. Bot. 65, 44-65. https://doi.org/10.1007/s12231-011-9151-6
  123. Simonin, M., Nunan, N., Bloor, J. M. G., Pouteau, V., & Niboyet, A. (2017). Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms. FEMS Microbiol. Lett. 364. https://doi.org/10.1093/femsle/fnx077
  124. Smith, E. A., & Macfarlane, G. T. (1996). Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81, 288-302. https://doi.org/10.1111/j.1365-2672.1996.tb04331.x
  125. Solomon, D., Lehmann, J., Fraser, J. A., Leach, M., Amanor, K., Frausin, V., … Fairhead, J. (2016). Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. Front. Ecol. Environ. 14, 71-76. https://doi.org/10.1002/fee.1226
  126. Spangenberg, J. H., Görg, C., Truong, D. T., Tekken, V., Bustamante, J. V., & Settele, J. (2014). Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. International Journal of Biodiversity Science, Ecosystem Services & Management 10, 40-53. https://doi.org/10.1080/21513732.2014.884166
  127. Šrut, M., Menke, S., Höckner, M., & Sommer, S. (2019). Earthworms and cadmium - Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol. Environ. Saf. 171, 843-853. https://doi.org/10.1016/j.ecoenv.2018.12.102
  128. Stagaman, K., Cepon-Robins, T. J., Liebert, M. A., Gildner, T. E., Urlacher, S. S., Madimenos, F. C., … Bohannan, B. J. M. (2018). Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development. mSystems 3. https://doi.org/10.1128/mSystems.00122-17
  129. Stenseke, M. (2009). Local participation in cultural landscape maintenance: Lessons from Sweden. Land use policy 26, 214-223. https://doi.org/10.1016/j.landusepol.2008.01.005
  130. Stepankova, R., Tonar, Z., Bartova, J., Nedorost, L., Rossman, P., Poledne, R., Schwarzer, M., & Tlaskalova-Hogenova, H. (2010). Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb. 17, 796-804. https://doi.org/10.5551/jat.3285
  131. Storm, L., & Shebitz, D. (2006). Evaluating the purpose, extent, and ecological restoration applications of indigenous burning practices in southwestern washington. Ecological Restoration 24, 256-268. https://doi.org/10.3368/er.24.4.256
  132. Sudhakar, P., Jacomin, A.-C., Hautefort, I., Samavedam, S., Fatemian, K., Ari, E., et al. (2019). Targeted interplay between bacterial pathogens and host autophagy. Autophagy 15, 1620-1633. https://doi.org/10.1080/15548627.2019.1590519
  133. Sui, J., Ji, C., Wang, X., Liu, Z., Sa, R., Hu, Y., Wang, C., Li, Q., & Liu, X. (2019). A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees’ rhizosphere. J. Appl. Microbiol. 126, 1209-1220. https://doi.org/10.1111/jam.14194
  134. Sun, Y., Li, L., Xia, Y., Li, W., Wang, K., Wang, L., Miao, Y., & Ma, S. (2019). The gut microbiota heterogeneity and assembly changes associated with the IBD. Sci. Rep. 9, 440. https://doi.org/10.1038/s41598-018-37143-z
  135. Tang, M.-J., Zhu, Q., Zhang, F.-M., Zhang, W., Yuan, J., Sun, K., Xu, F.-J., & Dai, C.-C. (2019). Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiol. Res. 221, 50-59. https://doi.org/10.1016/j.micres.2019.02.005
  136. Telle-Hansen, V. H., Holven, K. B., & Ulven, S. M. (2018). Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients 10. https://doi.org/10.3390/nu10111783
  137. Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P., & Spierenburg, M. (2014). Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. Ambio 43, 579-591. https://doi.org/10.1007/s13280-014-0501-3
  138. Thornton, T., Deur, D., & Kitka, H. (2015). Cultivation of Salmon and other Marine Resources on the Northwest Coast of North America. Hum. Ecol. 43, 189-199. https://doi.org/10.1007/s10745-015-9747-z
  139. Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., … Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364-371. https://doi.org/10.2337/db11-1019
  140. Tomas-Barberan, F., García-Villalba, R., Quartieri, A., Raimondi, S., Amaretti, A., Leonardi, A., & Rossi, M. (2014). In vitro transformation of chlorogenic acid by human gut microbiota. Mol. Nutr. Food Res. 58, 1122-1131. https://doi.org/10.1002/mnfr.201300441
  141. Topalović, O., & Heuer, H. (2019). Plant-Nematode Interactions Assisted by Microbes in the Rhizosphere. Curr. Issues Mol. Biol. 30, 75-88. https://doi.org/10.21775/cimb.030.075
  142. Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J., & Bowman, D. M. J. S. (2015). Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908-1918. https://doi.org/10.1002/ece3.1494
  143. Trivedi, P., Schenk, P. M., Wallenstein, M. D., & Singh, B. K. (2017). Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microb. Biotechnol. 10, 999-1003. https://doi.org/10.1111/1751-7915.12804
  144. Tsvetkov, I., Atanassov, A., Vlahova, M., Carlier, L., Christov, N., Lefort, F., et al. (2018). Plant organic farming research - current status and opportunities for future development. Biotechnology & Biotechnological Equipment 32, 241-260. https://doi.org/10.1080/13102818.2018.1427509
  145. Vannier, N., Agler, M., & Hacquard, S. (2019). Microbiota-mediated disease resistance in plants. PLoS Pathog. 15, e1007740. https://doi.org/10.1371/journal.ppat.1007740
  146. Van Eldere, J., Celis, P., De Pauw, G., Lesaffre, E., & Eyssen, H. (1996). Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl. Environ. Microbiol. 62, 656-661. https://doi.org/10.1128/AEM.62.2.656-661.1996
  147. van Riper, C. J., Landon, A. C., Kidd, S., Bitterman, P., Fitzgerald, L. A., Granek, E. F., Ibarra, S., Iwaniec, D., Raymond, C. M., & Toledo, D. (2017). Incorporating Sociocultural Phenomena into Ecosystem-Service Valuation: The Importance of Critical Pluralism. Bioscience 67, 233-244. https://doi.org/10.1093/biosci/biw170
  148. Villa, F., Bagstad, K. J., Voigt, B., Johnson, G. W., Athanasiadis, I. N., & Balbi, S. (2014). The misconception of ecosystem disservices: How a catchy term may yield the wrong messages for science and society. Ecosystem Services 10, 52-53. https://doi.org/10.1016/j.ecoser.2014.09.003
  149. Wangpakapattanawong, P., Kavinchan, N., Vaidhayakarn, C., Schmidt-Vogt, D., & Elliott, S. (2010). Fallow to forest: Applying indigenous and scientific knowledge of swidden cultivation to tropical forest restoration. Forest Ecology and Management 260, 1399-1406. https://doi.org/10.1016/j.foreco.2010.07.042
  150. Wang, W., Chen, L., Zhou, R., Wang, X., Song, L., Huang, S., Wang, G., & Xia, B. (2014). Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52, 398-406. https://doi.org/10.1128/JCM.01500-13
  151. Williams, A., Kennedy, S., Philipp, F., & Whiteman, G. (2017). Systems thinking: A review of sustainability management research. J. Clean. Prod. 148, 866-881. https://doi.org/10.1016/j.jclepro.2017.02.002
  152. Wirbel, J., Pyl, P. T., Kartal, E., Zych, K., Kashani, A., Milanese, A., et al. (2019). Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679-689. https://doi.org/10.1038/s41591-019-0406-6
  153. Xu, M., Li, X., Cai, X., Li, X., Christie, P., & Zhang, J. (2017). Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Sci. Rep. 7, 3067. https://doi.org/10.1038/s41598-017-03248-0
  154. Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M., & Berendsen, R. L. (2019). Beneficial microbes going underground of root immunity. Plant Cell Environ. https://doi.org/10.1111/pce.13632
  155. Zhuang, L., Chen, H., Zhang, S., Zhuang, J., Li, Q., & Feng, Z. (2019). Intestinal microbiota in early life and its implications on childhood health. Genomics Proteomics Bioinformatics 17, 13-25. https://doi.org/10.1016/j.gpb.2018.10.002

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.