EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT RESEARCH
Research Article

Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey

European Journal of Sustainable Development Research, 2022, 6(4), em0193, https://doi.org/10.21601/ejosdr/12167
Publication date: Jun 16, 2022
Full Text (PDF)

ABSTRACT

Land-use/land-cover (LULC) simulation models predict the long-term effects of LULC changes under various scenarios. Patch-level land use simulation (PLUS) is a recently developed software that uses a rule-mining framework for LULC modelling. With a market share of 76% in the world, hazelnut is a strategic crop for Turkey. The hazelnut orchards have grown in Turkey since the first law was issued on 21 October 1935. This study was carried out to model the hazelnut orchards for 2030, 2042, 2054, and 2066 based on Samsun province and show the future impacts on land use types. Samsun was chosen as a case study due to the rapid expansion of hazelnut groves since 2006. According to PLUS results, by the year 2030, the increase in the hazelnut groves in Samsun is predicted as 9.38%, and hazelnut fields will be formed by the main transformation of open spaces with little or no vegetation, shrub and/or herbaceous vegetation associations, and forest; and this transformation will have severe effects on the ecosystem. The results clearly showed that hazelnut cultivation areas would continue to increase in the future and revealed that policymakers would need to conduct new regulations for environmental sustainability and to maintain Turkey’s power in this crop.

KEYWORDS

land use change hazelnut modelling PLUS simulation

CITATION (APA)

Aytaç, E. (2022). Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. European Journal of Sustainable Development Research, 6(4), em0193. https://doi.org/10.21601/ejosdr/12167
Harvard
Aytaç, E. (2022). Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. European Journal of Sustainable Development Research, 6(4), em0193. https://doi.org/10.21601/ejosdr/12167
Vancouver
Aytaç E. Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. EUR J SUSTAIN DEV RES. 2022;6(4):em0193. https://doi.org/10.21601/ejosdr/12167
AMA
Aytaç E. Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. EUR J SUSTAIN DEV RES. 2022;6(4), em0193. https://doi.org/10.21601/ejosdr/12167
Chicago
Aytaç, Ersin. "Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey". European Journal of Sustainable Development Research 2022 6 no. 4 (2022): em0193. https://doi.org/10.21601/ejosdr/12167
MLA
Aytaç, Ersin "Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey". European Journal of Sustainable Development Research, vol. 6, no. 4, 2022, em0193. https://doi.org/10.21601/ejosdr/12167

REFERENCES

  1. Ansari, A. and Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for desert wetlands–A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64-70. https://doi.org/10.1016/j.iswcr.2018.10.001
  2. Aytaç, E. (2020). Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea region of Turkey. International Soil and Water Conservation Research, 8(3), 321-331. https://doi.org/10.1016/j.iswcr.2020.05.002
  3. Aytaç, E. (2021a). Forecasting Turkey’s hazelnut export quantities with Facebook’s prophet algorithm and box-cox transformation. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 10(1), 33-47. https://doi.org/10.14201/ADCAIJ20211013347
  4. Aytaç, E. (2021b). Havzaların benzerliklerini tanımlamada alternatif bir yaklaşım: Hiyerarşik kümeleme yöntemi uygulaması [An alternative approach in defining the similarity of cathments: Application of hierarchical clustering method]. Afyon Kocatepe University Journal of Science and Engineering, 21, 958-970. https://doi.org/10.35414/akufemubid.870649
  5. Aytaç, E. (2022). Exploring electrocoagulation through data analysis and text mining perspectives. Environmental Engineering and Management Journal, 21(4), 671-685.
  6. Babar, B., Luppino, L. T., Boström, T. and Anfinsen, S. N. (2020). Random forest regression for improved mapping of solar irradiance at high latitudes. Solar Energy, 198, 81-92. https://doi.org/10.1016/j.solener.2020.01.034
  7. Bozoglu, M. and Ceyhan, V. (2007). Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey. Agricultural Systems, 94(3), 649-656. https://doi.org/10.1016/j.agsy.2007.01.007
  8. Bozoglu, M., Baser, U., Topuz, B. K. and Eroglu, N. A. (2019). An overview of hazelnut markets and policy in Turkey. KSU Tarım ve Doğa Dergisi [KSU Journal of Agriculture and Nature], 22(5), 733-743. https://doi.org/10.18016/ksutarimdoga.v22i45606.532645
  9. Castro, N. R. and Swart, J. (2017). Building a roundtable for a sustainable hazelnut supply chain. Journal of Cleaner Production, 168, 1398-1412. https://doi.org/10.1016/j.jclepro.2017.08.239
  10. Chen, Y. M., Li, X., Liu, X. P. and Ai, B. (2014). Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28(2), 234-255. https://doi.org/10.1080/13658816.2013.831868
  11. CORINE. (2020). Land use/land cover map. Coordination of Information on the Environment. Available at: https://land.copernicus.eu/pan-european/corine-land-cver/clc2018?tab=download (Accessed: 17 April 2020).
  12. Durmaz, G. and Gokmen, V. (2019) Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Research International, 116, 586-591. https://doi.org/10.1016/j.foodres.2018.08.077
  13. EPA. (2022). Land use. Environmental Protection Agency. Available at: https://www.epa.gov/report-environment/land-use#:~:text=have%20different%20uses).-,Effects%20of%20Land%20Use%20Changes,%2C%20climate%2C%20and%20human%20health (Accessed: 21 April 2022).
  14. FAO. (2020). Soil map. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (Accessed: 13 July 2020).
  15. Fuyong, S. U., Wenli, L. I. U. and Zhi, W. E. N. (2020). Three-dimensional cellular automaton simulation of austenite grain growth of Fe-1C-1.5Cr alloy steel. Journal of Materials Research and Technology, 9(1), 180-187. https://doi.org/10.1016/j.jmrt.2019.10.043
  16. Gorur, F. K., Keser, R., Dizman, S., & Okumusoglu, N. T. (2011). Annual effective dose and concentration levels of gross alpha and beta in various waters from Samsun, Turkey. Desalination, 1(3), 135-139. https://doi.org/10.1016/j.desal.2011.05.071
  17. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning with applications in R. New York: Springer.
  18. Jia, Z.-Q., Zhou, Z.-F., Zhang, H.-J., Li, B. and Zhang, Y.-X. (2020). Forecast of coal consumption in Gansu province based on Grey-Markov chain model. Energy, 199, 117444. https://doi.org/10.1016/j.energy.2020.117444
  19. Kanti, P. B. and Harun, R. (2017). Land use change and coastal management, in P. B. Kanti and R. Harun (eds), Climatic hazards in coastal Bangladesh (pp. 183-207). Boston, MA, USA: Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805276-1.00006-5
  20. Kayalak, S. and Ozcelik, A. (2012). Hazelnut policies in the world and Turkey (article in Turkish with an abstract in English). Tarım Ekonomisi Dergisi [Journal of Agricultural Economics], 18(2), 43-53.
  21. Kundu, S., Khare, D. and Mondal, A. (2017). Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP). Ecological Informatics, 42, 100-113. https://doi.org/10.1016/j.ecoinf.2017.10.007
  22. Kuntoro, A. A., Cahyono, M. and Soentoro, E. A. (2018). Land cover and climate change impact on river discharge: Case study of upper Citarum River Basin. Journal of Engineering and Technological Sciences, 50(3), 364-381. https://doi.org/10.5614/j.eng.technol.sci.2018.50.3.4
  23. LandScan. (2020). Population map. Available at: https://landscan.ornl.gov/downloads/2018 (Accessed: 19 April 2020).
  24. Li, X., Chen, G. Z., Liu, X. P., Liang, X., Wang, S. J., Chen, Y. M., Pei, F. S. and Xu, X. C. (2017). A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions. Annals of the American Association of Geographers, 107(5), 1040-1059. https://doi.org/10.1080/24694452.2017.1303357
  25. Li, Y., Zou, C. F., Berecibar, M., Nanini-Maury, E., Chan, J. C. W., van den Bossche, P., Van Mierlo, J. and Omar, N. (2018). Random forest regression for online capacity estimation of lithium-ion batteries. Applied Energy, 232, 197-210. https://doi.org/10.1016/j.apenergy.2018.09.182
  26. Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B. and Yao, Y. (2020). Understanding the drivers of land expansion for sustainable land use using a patch-level land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems, 85, 101569. https://doi.org/10.1016/j.compenvurbsys.2020.101569
  27. Liang, X., Liu, X. P., Li, D., Zhao, H. and Chen, G. Z. (2018). Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International Journal of Geographical Information Science, 32(11), 2294-2316. https://doi.org/10.1080/13658816.2018.1502441
  28. Liao, J. F., Shao, G. F., Wang, C. P., Tang, L. N., Huang, Q. L. and Qiu, Q. Y. (2019). Urban sprawl scenario simulations based on cellular automata and ordered weighted averaging ecological constraints. Ecological Indicators, 107, 105572. https://doi.org/10.1016/j.ecolind.2019.105572
  29. Liu, D. Y., Zheng, X. Q. and Wang, H. B. (2020). Land-use simulation and decision-support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecological Modelling, 417, 108924. https://doi.org/10.1016/j.ecolmodel.2019.108924
  30. Liu, X. P., Liang, X., Li, X., Xu, X. C., Ou, J. P., Chen, Y. M., Li, S. Y., Wang, S. J. and Pei, F. S. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94-116. https://doi.org/10.1016/j.landurbplan.2017.09.019
  31. Mzuza, M. K., Zhang, W., Kapute, F. and Wei, X. (2019). The impact of land use and land cover changes on the Nkula dam in the Middle Shire River Catchment, Malawi, in A. Pepe and Q. Zhao (eds), Geospatial analyses of earth observation (EO) data (pp. 1-20). IntechOpen. https://doi.org/10.5772/intechopen.86452
  32. Nery, T., Sadler, R., White, B. and Polyakov, M. (2019). Predicting future plantation forest development in response to policy initiatives: A case study of the Warren River Catchment in Western Australia. Environmental Science & Policy, 92, 299-310. https://doi.org/10.1016/j.envsci.2018.11.021
  33. Ortigoza, G., Brauer, F. and Neri, I. (2020). Modelling and simulating Chikungunya spread with an unstructured triangular cellular automata. Infectious Disease Modelling, 5, 197-220. https://doi.org/10.1016/j.idm.2019.12.005
  34. OSM. (2020). Spatial variables. Available at: https://download.geofabrik.de/europe/turkey.html (Accessed: 16 January 2020).
  35. Pontius, R. G., Boersma, W., Castella, J. C., Clarke, K., de Nijs, T., et al. (2008). Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42(1), 11-37. https://doi.org/10.1007/s00168-007-0138-2
  36. Sheng, X. W., Cao, Y. G., Zhou, W., Zhang, H. and Song, L. (2018). Multiple scenario simulations of land use changes and countermeasures for collaborative development mode in Chaobai River region of Jing-Jin-Ji, China. Habitat International, 82, 38-47. https://doi.org/10.1016/j.habitatint.2018.10.008
  37. Silva, A. R., Silva, A. R. and Gouvea, M. M., (2019). A novel model to simulate cloud dynamics with cellular automaton. Environmental Modelling & Software, 122, 104537. https://doi.org/10.1016/j.envsoft.2019.104537
  38. Silva, L. P. E., Xavier, A. P. C., da Silva, R. M. and Santos, C. A. G. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21, e00811. https://doi.org/10.1016/j.gecco.2019.e00811
  39. Tas, N. G., Yilmaz, C., & Gokmen, V. (2019). Investigation of serotonin, free and protein-bound tryptophan in Turkish hazelnut varieties and effect of roasting on serotonin content. Food Research International, 120, 865-871. https://doi.org/10.1016/j.foodres.2018.11.051
  40. TUIK. (2021). Data portal of Turkish Republic. Available at: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Accessed: 2 May 2021).
  41. Ullah, S., Ahmad, K., Sajjad, R. U., Abbasi, A. M., Nazeer, A. and Tahir, A. A. (2019). Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. Journal of Environmental Management, 245, 348-357. https://doi.org/10.1016/j.jenvman.2019.05.063
  42. USGS. (2020). Digital elevation model. Available at: https://earthexplorer.usgs.gov (Accessed: 20 July 2020).
  43. Uzuna, A. O., Usta, T., Dundar, E. B. and Korkmaz, E. E. (2018). A solution to the classification problem with cellular automata. Pattern Recognition Letters, 116, 114-120. https://doi.org/10.1016/j.patrec.2018.10.007
  44. Wang, C. L., Jiang, Q. O., Shao, Y. Q., Sun, S. Y., Xiao, L. and Guo, J. B. (2019). Ecological environment assessment based on land use simulation: A case study in the Heihe River Basin. Science of the Total Environment, 697, 133928. https://doi.org/10.1016/j.scitotenv.2019.133928
  45. Xing, W., Qian, Y., Guan, X., Yang, T. and Wu, H. (2020). A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Computers & Geosciences, 137, 104430. https://doi.org/10.1016/j.cageo.2020.104430
  46. Zhao, W., Wu, H., Yin, G. F. and Duan, S. B. (2019). Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 109-118. https://doi.org/10.1016/j.isprsjprs.2019.04.008

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.