Keyword: BSFC

2 results found.

Review Article
Impact of Biodiesel Engine Performance on Operations and the Environment: A Literature Review
European Journal of Sustainable Development Research, 2022, 6(4), em0200,
ABSTRACT: Fossil fuels have posed a great danger to the existence of living things in the world, and pollution is wreaking havoc on the planet’s ecosystems. Global fuel consumption has risen precipitously because of urbanization, industrialization, and an ever-increasing human population. It has become necessary to consider alternatives to petroleum-based fuels such as diesel and gasoline considering our current overdependence on these traditional sources of energy. In this scenario, biodiesel presents an excellent opportunity. Biodiesel is highly replicable since it is made mostly from renewable resources, such as food and non-edible plants. Biodiesel cannot be used directly in engines because of its high viscosity. The relevant literature is categorized in this study. This research also tries to highlight the benefits of utilizing biodiesel and the advances made by researchers. Various articles about biodiesel fuel and its blends in diesel and engines were gathered and sorted depending on the blending techniques used (complete substitution without diesel or partial substitution). The use of biodiesel in engines and its ability to compete with fossil fuel diesel in performance were among the topics covered in this research.
Biodiesel’s effect on engine performance and environmental impact will be examined in this article. The study reveals that B20 biodiesel will be a replacement for fossil fuel diesel as an alternate fuel. The results reveal that the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) for B20 biodiesel are identical to diesel and hence can serve as a potential alternative to petroleum-based fuels.
Research Article
Evaluation of Performance and Emission Characteristics of Diesel Engine Fuelled with Garcinia Gummi Gutta Biodiesel and Diethyl Ether Blends
European Journal of Sustainable Development Research, 2020, 4(4), em0134,
ABSTRACT: The novel garcinia gummi-gutta seed is used for extraction of biodiesel using transesterification process. The impact of diethyl ether (DEE) in biodiesel on the fuel properties was examined. The performance and emission characteristics of six fuels (B20DEE10, B30DEE10, B40DEE10, B100, B100DEE10 and D100) are tested on diesel engine from no-load to full load conditions. The addition of 10% diethyl ether to 20% biodiesel (B20) closely resemble the fuel properties of diesel fuel (D100) compared to other tested biodiesel blends. The performance parameters (brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE)) and emission characteristics (carbon monoxide (CO), nitrous oxide (NOx) and hydrocarbon (HC)) are examined for six fuels at different engine load conditions. BSFC of all biodiesel showed comparatively higher value to that of diesel fuel at all engine loading conditions. BTE of diesel fuel showed higher values compared to other biofuels. Biodiesel blends resulted in reduced carbon monoxide and hydrocarbon emissions compared to diesel fuel. NOx emissions are higher for biodiesel and its blends compared to diesel fuel at all loads. Addition of 10% diethyl ether to biodiesel (B100) fuel resulted in better performance and emission characteristics compared to B100 fuel tested at full load engine conditions.