EUROPEAN JOURNAL OF SUSTAINABLE DEVELOPMENT RESEARCH

Keyword: CI engine

2 results found.

Research Article
Performance and Emission Characteristics of Compression Ignition Engine Running on a Blend of Cashew Nut Shell Liquid and Biodiesel Produced from Orange Peel
European Journal of Sustainable Development Research, 2022, 6(4), em0197, https://doi.org/10.21601/ejosdr/12233
ABSTRACT: This study evaluates the performance and emission characteristics of an orange peel biodiesel blended with cashew nut shell liquid. It investigates the efficacy of cashew nut shell liquid in reducing nitrogen oxide (NOX) emissions resulting from the combustion of the biodiesel, while optimizing its performance.
The biodiesel was prepared via transesterification. It was obtained by reacting orange peel oil produced through Soxhlet extraction with methanol in the presence of NaOH. The biodiesel was blended with cashew nut shell liquid in the ratio 70%:30% (B70).
Experimental results demonstrate that blending cashew nut shell liquid with orange peel biodiesel causes a slight decrease in NOX emission. B70 generates 150 ppm of NOX, while B100 and diesel produce 159 ppm and 193 ppm, respectively. The hydrocarbon emission of B70 was 8% lower than that of B100 and 22.3% lower than that of diesel. As regards CO and CO2 emission, B70 performs better than B100 and diesel. The performance parameters were computed at brake powers of 2.5 kW, 5.0 kW, 7.5 kW, and 10 kW. In comparison to diesel and B100, B70 has higher brake thermal efficiency at all loads. The brake specific fuel consumption (BSFC) of B70 is higher than that of diesel, but less than that of B100 at 2.5 kW and 5.0 kW. At 7.5 kW and 10 kW, the BSFC of B70 is higher than that of B100 and diesel. Conclusively, B70 gives optimal performance and less emission. Hence, cashew nut shell liquid is a good additive.
Research Article
Influence of Exhaust Gas Recirculation on Dairy Scum Biodiesel Operated Diesel Engine Performance
European Journal of Sustainable Development Research, 2019, 3(1), em0064, https://doi.org/10.20897/ejosdr/3915
ABSTRACT: Effort towards prospective utilization of dairy waste scum oil methyl ester (DSOME) is extremely pronounced as a promising sustainable unconventional fuel for diesel engine as they have intrinsic oxygen content emits less HC and CO emission and contradictorily increases the NOx. In this regard, the present study elucidates the influence of engine exhaust gas recirculation (EGR) on diesel engine performance, combustion and emission characteristics operated with DSOME-B20 (20% dairy scum biodiesel, by volume). The brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) are appreciably improved for 5% and 10% EGR in comparison with 15% EGR rate. Mainly, about 49-57% of NOx can be reduced with 5-15% EGR rate but increasing EGR rate more than 10% dilutes the fresh intake air hence reduces the NOx and increases the HC, CO emissions. Hence use of 5-10% EGR in diesel engine is advantageous to get considerably improved performance and reduced HC, CO and NOx emissions.