European Journal of Sustainable Development Research

Recent Developments in Biogas Manufacture and Biogas Utilization: A Review
C. M. Narayanan 1 * , Vikas Narayan 2
More Detail
1 National Institute of Technology, Durgapur, INDIA
2 Denmark Technical University, DENMARK
* Corresponding Author
Research Article

European Journal of Sustainable Development Research, 2020 - Volume 4 Issue 4, Article No: em0135
https://doi.org/10.29333/ejosdr/8366

Published Online: 25 Jun 2020

Views: 345 | Downloads: 220

How to cite this article
APA 6th edition
In-text citation: (Narayanan & Narayan, 2020)
Reference: Narayanan, C. M., & Narayan, V. (2020). Recent Developments in Biogas Manufacture and Biogas Utilization: A Review. European Journal of Sustainable Development Research, 4(4), em0135. https://doi.org/10.29333/ejosdr/8366
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Narayanan CM, Narayan V. Recent Developments in Biogas Manufacture and Biogas Utilization: A Review. EUR J SUSTAIN DEV RE. 2020;4(4):em0135. https://doi.org/10.29333/ejosdr/8366
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Narayanan CM, Narayan V. Recent Developments in Biogas Manufacture and Biogas Utilization: A Review. EUR J SUSTAIN DEV RE. 2020;4(4), em0135. https://doi.org/10.29333/ejosdr/8366
Chicago
In-text citation: (Narayanan and Narayan, 2020)
Reference: Narayanan, C. M., and Vikas Narayan. "Recent Developments in Biogas Manufacture and Biogas Utilization: A Review". European Journal of Sustainable Development Research 2020 4 no. 4 (2020): em0135. https://doi.org/10.29333/ejosdr/8366
Harvard
In-text citation: (Narayanan and Narayan, 2020)
Reference: Narayanan, C. M., and Narayan, V. (2020). Recent Developments in Biogas Manufacture and Biogas Utilization: A Review. European Journal of Sustainable Development Research, 4(4), em0135. https://doi.org/10.29333/ejosdr/8366
MLA
In-text citation: (Narayanan and Narayan, 2020)
Reference: Narayanan, C. M. et al. "Recent Developments in Biogas Manufacture and Biogas Utilization: A Review". European Journal of Sustainable Development Research, vol. 4, no. 4, 2020, em0135. https://doi.org/10.29333/ejosdr/8366
ABSTRACT
The various developments in the areas of biogas manufacture and utilization have been surveyed. This includes alternate / multiple substrates that could be economically employed for biogas production, biogas enrichment (carbon dioxide removal), biochemical desulfurization of biogas, utilization of enriched, desulfurized biogas as automobile fuel (in place of CNG, LNG), for the production of syngas and a host of chemicals (including nitrogenous fertilizers) therefrom, production of phosphatic biofertiliser from ADS (anaerobic digester sludge) and synthesis of liquid fuels (mainly, motor gasoline) using Fischer – Tropsch process. The technical details and economic viability of each process have also been analyzed and highlighted.
KEYWORDS
REFERENCES
  • Ajeej, A., Thanikal, J. V. and Narayanan, C. M. (2016). Studies on production of biogas by co-digestion of sewage sludge, wastepaper and waste grown algae. J Mod Chem Chem Technol, 7(1),74–81.
  • Ajeej, A., Thanikal, J. V., Narayanan, C. M. and Kumar, R. S. (2015). An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sust Energ Rev, 50, 270-276. https://doi.org/10.1016/j.rser.2015.04.121
  • Asalieva, E. Y., Kul’chakovskaya, E. V., Sineva, L. V. and Mordkovich, V. Z. (2020). Effect of zeolite on Fischer–Tropsch synthesis in the presence of a catalyst based on skeletal cobalt. Petroleum Chem, 60(1), 69-74. https://doi.org/10.1134/S0965544120010028
  • Bhattacharya, B. C. and Narayanan, C. M. (1992). Computer Aided Design of Chemical Process Equipment. Kolkota: New Central Book Agency.
  • Dwyer, O. E. and Dodge, B. F. (1941). Rate of absorption of ammonia by water in a packed tower. Ind Eng Chem, 33(4), 485-492. https://doi.org/10.1021/ie50376a012
  • Golueke, C. G., Oswald, W. J. and Gotaas, H. B. (1957). Anaerobic digestion of algae. Applied Microbiol, 5(1), 47-55. https://doi.org/10.1128/AEM.5.1.47-55.1957
  • Gromke, J. D., Rensberg, N., Denysenko, V., Stinner, W., Schmalfuß, T., Scheftelowitz, M., Nelles M. and Jan Liebetrau, J. (2018). Current developments in production and utilization of biogas and biomethane in Germany. Chem Ing Tech, 90(1-2),17-35. https://doi.org/10.1002/cite.201700077
  • Jingura, R. and Matengaifa, R. (2009). Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew Sust Energ Rev, 13(5), 1116-1120. https://doi.org/10.1016/j.rser.2007.06.015
  • Krustok, I., Nehrenheim, E. and Odlare, M. (2012). Cultivation of microalgae for potential heavy metal reduction in a wastewater treatment plant. In proceedings of International Conference on Applied Energy, Suzhou, July 5–8.
  • Lehtomäki, A., Huttunen, S. and Rintala, J. A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl, 51(3), 591-609. https://doi.org/10.1016/j.resconrec.2006.11.004
  • Liang, M., Jin, K., Yi, R., Mengdi, C., Peng, J. and Pan, Y. (2020). Enhancement of bioenergy recovery from agricultural wastes through recycling of cellulosic alcoholic fermentation vinasse for anaerobic co-digestion. Bioresour Technol, 311, 123511. https://doi.org/10.1016/j.biortech.2020.123511
  • Liu, Y., Huang, T., Li, X., Huang, J., Peng, D., Maurer, C. and Kranert, M. (2020). Experiments and modeling for flexible biogas production by co-digestion of food waste and sewage sludge. Energies, 13, 818-831. https://doi.org/10.3390/en13040818
  • Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S. and Wyszynski, M. L. (2017). A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng, 2(1), 11–31. https://doi.org/10.1515/bfuel-2017-0002
  • Momoh, O. L. Y. and Nwaogazie, L. I. (2008). Effect of waste paper on biogas production from co-digestion of cow dung and water hyacinth in batch reactors. J Appl Sci Environ Manage, 12(4), 95-98. https://doi.org/10.4314/jasem.v12i4.55245
  • Narayanan, C. M. (2012). Production of phosphate rich biofertiliser using vermicompost and anaerobic digester sludge – a case study. Adv Chem Eng Sci, 2(2), 187-191. https://doi.org/10.4236/aces.2012.22022
  • Narayanan, C. M. and Bhattacharya, B. C. (1990). Computer aided analysis and optimization of biogas enrichment process. J Energy Heat Mass Transf, 12(1), 17-24.
  • Okewale, A. O. and Adesina, O. A. (2019). Evaluation of biogas production from co-digestion of pig dung, water hyacinth and poultry droppings. Waste Disposal & Sustainable Energy, 1, 271-277. https://doi.org/10.1007/s42768-019-00018-8
  • Olsson, J., Feng, X. M., Ascue, J., Gentili, F. G., Shabiimam, M. A., Nehrenheim, E., et al. (2014). Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour Technol, 171, 203-210. https://doi.org/10.1016/j.biortech.2014.08.069
  • Onda, K., Sada, E. and Takeuchi, H. (1968). Gas absorption with chemical reaction in packed columns. J Chem Eng Japan, 1, 62-66. https://doi.org/10.1252/jcej.1.62
  • Rajvaidya, A. S. (2002). Pre-combustion desulfurisation of gaseous fuels. In Proceedings of All India Seminar on Recent Trends in Automotive Fuels, Nagpur, Aug 23–24.
  • Samson, R. and LeDuy, A. (1983). Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett, 5(10), 677-682. https://doi.org/10.1007/BF01386361
  • Sekhar, D. M. R. and Aery, N. C. (2005). PROM manual. Udaipur: Himanshu Publishers.
  • Thanikal, J. V., Yazidi, H., Torrijos, M. and Rizwan, S. M. (2015). Biodegradability and bio methane potential of vegetable, fruit and oil fraction in anaerobic co-digestion. Int J Current Res, 7(07), 18379-18382.
  • Van Krevelen, D. W. and Hoftijzer, P. J. (1947). Studies of gas absorption. I. Liquid film resistance to gas absorption in scrubbers. Receuil des Trav Chim des Pays-Bas, 66, 49-70. https://doi.org/10.1002/recl.19470660106
  • Van Krevelen, D. W. and Hoftijzer, P. J. (1948). Enhancement factor in gas – liquid absorption. Receuil des Trav Chim des Pays-Bas, 67, 563-570. https://doi.org/10.1002/recl.19480670708
  • Van Krevelen, D. W. and Hoftijzer, P. J. (1948). Mass transfer coefficients in gas-liquid absorption in packed towers. Chem Eng Progr, 44, 529-533.
  • Vats, N., Khan, A. A. and Ahmad, K. (2019). Anaerobic co-digestion of thermal pre-treated sugarcane bagasse using poultry waste. J Environ Chemi Eng, 7(5), 103323. https://doi.org/10.1016/j.jece.2019.103323
  • Vats, N., Khan, A. A. and Ahmad, K. (2019). Effect of substrate ratio on biogas yield for anaerobic digestion of fruit vegetable wastes and sugar cane bagasse. Environ Tech and Innovation, 13, 331-339. https://doi.org/10.1016/j.eti.2019.01.003
  • Vats, N., Khan, A. A. and Ahmad, K. (2019). Observation of biogas production by sugarcane bagasse and food waste in different composition combinations. Energy, 185, 1100-1105. https://doi.org/10.1016/j.energy.2019.07.080
  • Wang, X., Yang, G., Feng, Y., Ren, G. and Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Biores Technol, 120, 78-83. https://doi.org/10.1016/j.biortech.2012.06.058
  • Weizhang, Z., Zhongzhi, Z., Yijing, L., Wei, Q., Meng, X. and Zhang, M. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw. Bioresour Technol, 114, 281-286. https://doi.org/10.1016/j.biortech.2012.02.111
  • Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F. and Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag, 33(12), 2653-2658. https://doi.org/10.1016/j.wasman.2013.05.014
  • Yen, H. W. and Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol, 98, 130-134. https://doi.org/10.1016/j.biortech.2005.11.010
  • Yuan, X., Wang, M., Park, C., Sahu, A. K. and Ergas, S. J. (2012). Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environ Res, 84, 396-404. https://doi.org/10.2175/106143011X13233670703242
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.