European Journal of Sustainable Development Research

Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics
Great Umenweke 1 * , Patrick U. Okoye 2, Akindele Okewale 3, Kristinoba Olotu 4, Oluwasegun Muniru 5
More Detail
1 University of Kentucky, Lexington, USA
2 Institutio de Energias Renovables, Universidad Nacional Autonoma de Mexico, MEXICO
3 Department of Chemical Engineering, Federal University of Petroleum Resources Effurum, Warri, Delta State, NIGERIA
4 Department of Chemical Engineering, University of Benin, Edo State, NIGERIA
5 Chemical, Fiber and Environmental Technology division, Federal Institute of Industrial Research, Oshodi, Lagos State, NIGERIA
* Corresponding Author
Review Article

European Journal of Sustainable Development Research, 2021 - Volume 5 Issue 3, Article No: em0164
https://doi.org/10.21601/ejosdr/11002

Published Online: 23 Jun 2021

Views: 121 | Downloads: 86

How to cite this article
APA 6th edition
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, G., Okoye, P. U., Okewale, A., Olotu, K., & Muniru, O. (2021). Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics. European Journal of Sustainable Development Research, 5(3), em0164. https://doi.org/10.21601/ejosdr/11002
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Umenweke G, Okoye PU, Okewale A, Olotu K, Muniru O. Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics. EUR J SUSTAIN DEV RES. 2021;5(3):em0164. https://doi.org/10.21601/ejosdr/11002
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Umenweke G, Okoye PU, Okewale A, Olotu K, Muniru O. Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics. EUR J SUSTAIN DEV RES. 2021;5(3), em0164. https://doi.org/10.21601/ejosdr/11002
Chicago
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, Great, Patrick U. Okoye, Akindele Okewale, Kristinoba Olotu, and Oluwasegun Muniru. "Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics". European Journal of Sustainable Development Research 2021 5 no. 3 (2021): em0164. https://doi.org/10.21601/ejosdr/11002
Harvard
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, G., Okoye, P. U., Okewale, A., Olotu, K., and Muniru, O. (2021). Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics. European Journal of Sustainable Development Research, 5(3), em0164. https://doi.org/10.21601/ejosdr/11002
MLA
In-text citation: (Umenweke et al., 2021)
Reference: Umenweke, Great et al. "Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics". European Journal of Sustainable Development Research, vol. 5, no. 3, 2021, em0164. https://doi.org/10.21601/ejosdr/11002
ABSTRACT
Biodiesel researchers need to understand the optimal conditions involved in the production of biodiesel from readily available biological sources, as several research works have reported on biodiesel production. Therefore, this paper emphasizes specifically, the process parameters involved in biodiesel production and how they affect biodiesel yields. These parameters include, but not limited to the feedstock selection, catalyst type to use, free fatty acid, temperature, kinetics, hydrodynamics and reactor conditions. In biodiesel synthesis, a high fatty acid methyl ester yield of up to 100%w/w at 60 oC has been reported, which occurred with a methanol to oil molar ratio of 3.75, and 60 min reaction time. Homogeneous catalysts seems promising for the production of biodiesel, although they possess disposal challenges and reusability issues. In addition, carbon-based catalysts from natural sources have been used to resolve the presence of free fatty acids in biodiesel synthesis that results in the formation of soap. These carbon-derived catalysts prove their efficiency when modified with acids. The reactor suitable for biodiesel reaction, assume several configurations, like the batch, fixed bed and semi-batch configurations, with their respective reaction conditions. Furthermore, in the design of a hydrodynamic cavitation reactor operating on the rotor-stator mechanism, research has shown that the ratio of rotor to stator diameter Dr/Ds is maintained at 0.73 for efficient operation. Hence, a proper understanding of the process chemistry and techniques involved in biodiesel synthesis would ensure a high desired yield and sustainable process route.
KEYWORDS
REFERENCES
  • Abbah, E. C., Nwandikom, G. I., Egwuonwu, C. C. and Nwakuba, N. R. (2016). Effect of reaction temperature on the yield of biodiesel from neem seed oil. American Journal of Energy Science, 3(3), 16-20.
  • Abbaszadeh-Mayvan, A., Ghobadian, B., Najafi, G. and Yusaf, T. (2018). Intensification of continuous biodiesel production from waste cooking oils using shockwave power reactor: Process evaluation and optimization through Response Surface Methodology (RSM). Energies, 11, 2845. https://doi.org/10.3390/en11102845
  • Abowei, M. F. N., Okewale, A. O., Agbogun, F. O. and Omoruwou, F. (2020). Mathematical modeling of reversible bimolecular catalyzed transesterification reaction kinetics for PKO and methanol synthesis. Petroleum and Chemical Industry International, 3(1), 28-36. https://doi.org/10.33140/PCII.03.01.07
  • Adeniyi, A. G., Ighalo, J. O. and Eletta, O. A. A. (2018). Process integration and feedstock optimisation of a two-step biodiesel production process from Jatropha Curcas using Aspen Plus. Chemical Product and Process Modeling, 20180055. https://doi.org/10.1515/cppm-2018-0055
  • Adeniyi, A. G., Ighalo, J. O., Adeoye, A. S. and Onifade, D. V. (2019). Modelling and optimisation of biodiesel production from Euphorbia lathyris using ASPEN Hysys. SN Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1522-0
  • Ahiekpor, J. C. and Kuwornoo, D. K. (2010). Kinetics of palm kernel oil and ethanol transesterification. International Journal of Energy and Environment, 1, 1097-1108.
  • Alamu, O., Waheed, A. and Jekayinfa, S. O. (2009) Determination of optimum temperature for the laboratory preparation of biodiesel from Nigerian palm kernel oil. Energy Sources Part A Recovery Utilization and Environmental effects. https://doi.org/10.1080/10916460801907195
  • Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H. and Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimumbasilicum L. (sweet basil) seed oil. Energy Conversion Management, 132, 82-90. https://doi.org/10.1016/j.enconman.2016.11.017
  • Amira, P., Babalola, O. O. and Oyediran, A. M. (2014). Physicochemical properties of palm kernel oil. Current Research Journal of Biological Sciences, 6, 205-207. https://doi.org/10.19026/crjbs.6.5194
  • Anuar, M. R. and Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208-223. https://doi.org/10.1016/j.rser.2015.12.296
  • Anusi, M. O., Umenweke, G. C., Nkuzinna, O., Igboko, N. and Njoku, C. N. (2018). Kinetics of alkali catalyzed transesterification reaction of palm kernel oil and physicochemical characterization of the biodiesel product. American Journal of Engineering Research, 7, 73-82.
  • Anusi, M. O., Umenweke, G. C., Oyoh, K. B., Nkuzinna, O. and Njoku, C. N. (2018). Characterization of non-edible oil from waste plant materials for biodiesel production. American Journal of Engineering Research (AJER), 7(4), 32-36.
  • Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H. and Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 16(4), 2070-2093. https://doi.org/10.1016/j.rser.2012.01.003
  • Ayoola, A., Hymore, C. K. and Omonhinmin, C. A. (2017) Optimization of Biodiesel production from selected waste oils using response surface methodology. Biotechnology, 16, 1-9. https://doi.org/10.3923/biotech.2017.1.9
  • Bala, D. D. and Chidambaram, D. (2016). Enhancing kinetics of biodiesel production using morpholine, Catal. Communication, 83, 48-52. https://doi.org/10.1016/j.catcom.2016.05.006
  • Balat, M. (2006). Fuel characteristics and the use of biodiesel as a transportation fuel. Energy source Part A, 28, 855-864. https://doi.org/10.1080/009083190951474
  • Bambase, M. E., Nakamura, N., Tanaka, J. and Matsumura, M. (2007). Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters. Journal of Chemical Technology & Biotechnology, 82(3), 273-280. https://doi.org/10.1002/jctb.1666
  • Bashiri, H. and Pourbeiram, N. (2016). Biodiesel production through transesterification of soybean oil: A kinetic Monte carlo study. Journal of Molecular Liquids, 223, 10-15. https://doi.org/10.1016/j.molliq.2016.08.029
  • Bello, E. I., Daniyan, I. A., Akinola, A. O. and Ogedengbe, T. I. (2013). Development of a biodiesel processor. Research Journal in Engineering and Applied Sciences, 2(3), 182-186.
  • Capodaglio, A. G. and Callegari, A. (2018). Feedstock and process influence on biodiesel produced from waste sewage sludge. Journal of Environment Management, 15, 176-182. https://doi.org/10.1016/j.jenvman.2017.03.089
  • Chen, Y., Xiao, B., Chang, J., Fu, Y., Iv, P. and Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Conversion and Management, 50, 668-673. https://doi.org/10.1016/j.enconman.2008.10.011
  • Chipurici, P., Vlaicu, A., Calinescu, I., Vinatoru, M., Vasilescu, M., Ignat, N. D. and Mason, T. J. (2019). Ultrasonic, hydrodynamic and microwave biodiesel synthesis – A comparative study for continuous process. Ultrasonics - Sonochemistry, 57, 38-47. https://doi.org/10.1016/j.ultsonch.2019.05.011
  • Chuah, L. F., Yusup, S., AbdAziz, A., Bokhari, A., Klemeš, J. J. and Abdullah, M. Z. (2015). Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of operating parameters on methyl ester conversion. Chemical Engineering and Processing, 95, 235-240. https://doi.org/10.1016/j.cep.2015.06.018
  • Clarke, C. J., Tu, W. C., Levers, O., Bröhl, A. and Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118, 747-800. https://doi.org/10.1021/acs.chemrev.7b00571
  • Degfie, T. A., Mamo, T. T. and Mekonnen, Y. S. (2019). Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano – catalyst. Scientific Reports Nature Research, 9, 18982. https://doi.org/10.1038/s41598-019-55403-4
  • Dianursanti, M., Delaamira, M., Bismo, S. and Muharam, Y. (2016) Effect of reaction temperature on biodiesel production from chlorella vulgaris using CuO/Zeolite as heterogeneous catalyst, IOP conference series: Earth and Environmental Science, 55(012033). https://doi.org/10.1088/1755-1315/55/1/012033
  • Du, W., Xu, Y. and Liu, D. (2003) Reprints of papers – American Chemical Society. Divisions of Fuel chemistry, 48, 532.
  • Dular, M., Griessler-Bulc, T., Gutierez, I., Heath, E., Kosjek, K., Klemenčič, A.K., Oder, M., Petkovšek, M., Rački, N., Ravnikar, M., Šarc, A., Širok, B., Zupanc, M., Žitnik, M. and Kompare, B. (2015). Use of hydrodynamic cavitation in (waste) water treatment. UltrasonicsSonochemistry, 29, 577-588. https://doi.org/10.1016/j.ultsonch. 2015.10.010
  • Fadhil, A. B., Dheyab, M. M., Ahmed, K. M. and Yahya, M. H. (2012). Biodiesel production from spent fish frying oil through acid-base catalyzed transesterification. Pakistan Journal of Analytical & Environmental Chemistry, 13(1), 9-15.
  • Ganesh, U., Gaikwad, R., Saner, S. and Sudhakar, W. A. (2018). Production of biodiesel from used kitchen oil using hydrodynamic cavitation. International Research Journal of Engineering and Technology (IRJET), 5(10), 951-958.
  • Gashaw, A. and Teshita, A. (2014) Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92-98. https://doi.org/10.11648/j.ijrse.20140305.12
  • Ghayal, D., Pandit, A. B. and Rathod, V. K. (2012). Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrasonics Sonochemistry, 20, 322-328. https://doi.org/10.1016/j.ultsonch.2012.07.009
  • Gole, V. L. and Gogate, P. R. (2012). A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing, 53, 1-9. https://doi.org/10.1016/j.cep.2011.12.008
  • Gole, V. L., Naveen, K. R. and Gogate, P. R. (2013). Hydrodynamic cavitation as an efficient approach for intensification of synthesis of methyl esters from sustainable feedstock. Chemical Engineering and Processing: Process Intensification, 71, 70-76. https://doi.org/10.1016/j.cep.2012.10.006
  • Gupta, A. R., Yadav S. V. and Rathod, V. K. (2015). Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel, 158, 800-806. https://doi.org/10.1016/j.fuel.2015.05.064
  • Hanumanth, M. H. and Navindgi, M. C. (2012). Extraction of biodiesel from vegetable oils and their comparisons. International Journal of Advansced scientific Research and Technology, 2(2), 2249-9954.
  • Hilares, R. T., Ramos, L., Da Silva, S. S., Dragone, G., Mussatto, S. I. and Santos, J. (2017). Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2017.1369932
  • Huaping, Z. H. U., Zongbin, W. U., Yuanxiong, C., Ping, Z., Shijie, D., Xiaohua, L. and Zonqiang, M. (2006). Preparation of biodiesel catalysted by solid super base of calcium oxide and its refining process. Chinese Journal of Catalysis, 27, 391-396. https://doi.org/10.1016/S1872-2067(06)60024-7
  • Igbokwe, J. and Nwafor, M. (2014). Synthesis and characterization of biodiesel from Nigeria palm kernel oil. American Journal of Engineering Research, 3, 264-266.
  • Igbum, O. G., Asemave, K. and Ocheme, P. C. (2012). Evaluation of biodiesel potential in palm kernel oil. International Journal of Natural Products Research, 1, 57-60.
  • Istiningrum, R. B., Aprianto, T. and Pamungkas, F. L. U. (2017). Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst. AIP Conference Proceedings 1911, 020031. https://doi.org/10.1063/1.5016024
  • Jiang, S., Xu, L. and Zhou, Q. (2011). Biodiesel production from cottonseed oil catalyzed by solid alkali catalyst. Transactions of the CSAE, 27(2011), 254-259.
  • Johnston, M. and Holloway, T. (2007). A global Ccomparison of national biodiesel production potentials. Environmental Science & Technology, 41(23), 7967-7973. https://doi.org/10.1021/es062459k
  • Kareem, S. O., Falokun, E. I., Balogun, S. A., Akinloye, O. A. and Omeike, S. O. (2017). Enzymatic biodiesel production from palm oil and palm kernel using free lipase. Egyptian Journal of Petroluem, 26, 635-642. https://doi.org/10.1016/j.ejpe.2016.09.002
  • Kargbo, D. M. (2010). Biodiesel Production from Municipal Sewage Sludges. Energy Fuels, 24, 2791-2794. https://doi.org/10.1021/ef1001106
  • Kelkar, M. A., Gogate, P. R. and Pandit, A. B. (2008). Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrasonics Sonochemistry, 15, 188-194. https://doi.org/10.1016/j.ultsonch.2007.04.003
  • Khan, I. A., Prasad, N., Pal, A. and Yadav, A. K. (2019). Efficient production of biodiesel from Cannabissativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 42(20), 2461-2470. https://doi.org/10.1080/15567036.2019.1607946
  • Klofutar, B., Golob, J., Likozar, B., Klofutar, C., Zagar, E. and Poljansek, I. (2010). The transesterification of rapeseed and waste sunflower oils: Mass – transfer and kinetics in a laboratory batch reactor and in an industrial – scale reactor/separator setup. Bioresource Technology, 101, 3333-3344. https://doi.org/10.1016/j.biortech.2010.01.007
  • Kolhe, N. S., Gupta, A. R. and Rathod V. K. (2017). Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation. Resource-Efficient Technologies, 3(2), 198-203. https://doi.org/10.1016/j.reffit.2017.04.008
  • Kumar, R., Tiwari, P. and Garg, S. (2013). Alkali transesterification of linseed oil for biodiesel production. Fuel, 104, 553-560. https://doi.org/10.1016/j.fuel.2012.05.002
  • Kumari, A., Mahapatra, P., Garlapati, V. K. and Banerjee, R. (2009). Enzymatic transesterification of Jatropha Oil. Biotechnology for Biofuel, 2, 1-7. https://doi.org/10.1186/1754-6834-2-1
  • Loe, R., Lavoignat Y., Maier, M., Abdallah M., Morgan, T., Qian, D., Pace, R., Santillan-Jimenez, E. and Crocker, M. (2019). Continuous Catalytic Deoxygenation of Waste Free Fatty Acid-Based Feeds to Fuel-Like Hydrocarbons over a Supported Ni-Cu Catalyst. Catalysts, 9, 123. https://doi.org/10.3390/catal9020123
  • Maddikeri, G. L., Gogate, P. R. and Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285-292. https://doi.org/10.1016/j.fuel.2014.08.013
  • Masterton, W. L., Hurley, C. N. and Neth, E. (2011). Chemical principles and reactions. Cengage learning.
  • Mathiyazhagan, M., Ganapathi, A., Jaganath, B., Renganayaki, N. and Sasireka, N. (2011). Production of biodiesel from non – edibile plant oils having high FFA content, International Journal of Chemical and Environmental Engineering, 2, 119-122.
  • Milanoa, J., Onga, H. C., Masjukia, H. H., Silitongab, A. S., Chene, W., Kusumoa, F., Dharmaa, S. and Sebayanga, A. H. (2018). Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophylluminophyllum oil via response surface methodology. Energy Conversion and Management, 158, 400-415. https://doi.org/10.1016/j.enconman.2017.12.027
  • Narwal, S. K., Saun, N. K., Dogra, P., Chauhan, G. and Gupta, R. (2015). Production and characterization of biodiesel using Nonedible castor oil by immobilized lipase from Bacillus aerius. Biomed Research International, Article. 281934. https://doi.org/10.1155/2015/281934
  • Noureddini, H. and Zhu, D. (1997). Kinetics of transesterification of soybean oil. Journal of American Oil Chemical Society, 74, 1457-1463. https://doi.org/10.1007/s11746-997-0254-2
  • Pahola, T. B. and Urmila, D. (2012). Optimal control of biodiesel production in a batch reactor part I: Deterministic control. Fuel Process technology, 94, 211-217. https://doi.org/10.1016/j.fuel.2011.08.035
  • Pazouki, P., Zamani, F., Zamzamian, S. A. H. and Najafpour, G. (2011). Study on reaction conditions in whole cell biocatalyst methanolysis of pretreated used cooking oil. Linköping Electronic Conference Proceedings, 57(13), 93-100. https://doi.org/10.3384/ecp1105793
  • Pecha, J., Sanek, L., Furst, T. and Kolomaznik, K. (2016). A kinetics study of thee simultaneous methanolysis and hydrolysis of triglycerides. Chemical Engineering Journal, 288, 680-688. https://doi.org/10.1016/j.cej.2015.12.033
  • Pieta, I. S., Epling, W. S., Kazmierczuk, A., Lisowski, P., Nowakowski, R. and Serwicka, E. M. (2018). Waste into fuel—catalyst and process development for MSW valorisation. Catalysts, 8, 113. https://doi.org/10.3390/catal8030113
  • Pramanik, K. (2003). Properties and use of Jatrophacurcas oil and diesel fuel blends in compression ignition engine. International Journal of Renewable Energy, 28, 239-248. https://doi.org/10.1016/S0960-1481(02)00027-7
  • Qin, H., Yan, X., Yun, T. and Dong, W. (2008). Biodiesel production catalyzed by whole cell lipase from Rhizopus Chinensis. Chinese Journal of Catalysis, 29, 41-46. https://doi.org/10.1016/S1872-2067(08)60015-7
  • Ramirez-Cadavid, D. A., Kozyuk, O., Lyle, P., Michel, F. C., Jr. (2016). Effects of hydrodynamic cavitation on dry mill corn ethanol production. Process Biochemistry, 51, 500-508. https://doi.org/10.1016/j.procbio.2016.01.001
  • Ribeiro, A., Castro, F. and Carvalho, J. (2011). Influence of free fatty acid content in biodiesel production on non-edible oils. WASTES: Solutions. Treatments and Opportunities. 1st International Conference, September 12-14, 2011.
  • Romano, S. D. and Sorichetti, P. A. (2011). Dielectric spectroscopy in biodiesel production and characterization. Green Energy and Technology, 3, 7-24. https://doi.org/10.1007/978-1-84996-519-4_2
  • Shahid, E. M. and Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732-4745. https://doi.org/10.1016/j.rser.2011.07.079
  • Shereena, K. M. and Thangaraj, T. (2020). Biodiesel: An alternative fuel produced from vegetable oils by transesterification. Electronic Journal of Biology, 5, 67-74.
  • Srivastave, A. and Prasad, R. (2000). Triglycerides – based diesel fuels. Renewable Energy Review, 4, 111-133. https://doi.org/10.1016/S1364-0321(99)00013-1
  • Syam, A. M., Hamid, H. A., Yunus, R. and Rashid, U. (2013). Dynamic modeling of reversible methanolysis of Jatrophacurcas oil to biodiesel. Science World Journal, 2013, 268385. https://doi.org/10.1155/2013/268385
  • Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, M. and Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239-303. https://doi.org/10.1016/j.pecs.2019.06.001
  • Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y. and Farid, M. M. (2011). A Review of Enzymatic Transesterification of Microalgal Oil-Based Biodiesel Using Supercritical Technology. Enzyme Research, 2011, Article ID 468292. https://doi.org/10.4061/2011/468292
  • Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S. and Lin, L. (2019). Catalysis in biodiesel production—a review. Clean Energy, 3(1), 2-23, https://doi.org/10.1093/ce/zky020
  • Tubino, M., Junior, J. G. R. and Bauerfeldt, G. F. (2016). Biodiesel synthesis: A study of the triglyceride mmethanolysis reaction with alkaline catalysts. Catalysis Communication, 75, 6-12. https://doi.org/10.1016/j.catcom.2015.10.033
  • Umenweke, G. (2020). Advancements in biorefinery processing. Scientific Journal of Research & Reviews, 2(5), 2020. https://doi.org/10.33552/SJRR.2020.02.000548
  • Usman, M. (2018). Production of biodiesel from wastewater sludge treatment by direct lipids extraction. Journal of Fundamentals of Renewable Energy and Applications, 8(3), 1000261. https://doi.org/10.4172/2090-4541.1000261
  • Van Gerpen, J., B. Shanks, Pruszko, R., Clements, D. and Knothe, G. (2004). Biodiesel production technology. National Renewable Energy Laboratory, Colorado.
  • Wu, L., Wei, T., Lin, Z., Zou, Y., Tong, Z. and Sun, J. (2016) Bentonite-enhanced biodiesel production by NaOH -catalysedtransesterification: process optimization and kinetics and thermodynamic analysis. Fuel, 182, 920- 927. https://doi.org/10.1016/j.fuel.2016.05.065
  • Wu, X., Zhu, F., Qi, J. and Zhao, L. (2016). Biodiesel productions from sewage sludge by using alkali catalyst catalyze. Procedia Environmental Sciences, 31, 26-30. https://doi.org/10.1016/j.proenv.2016.02.004
  • Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.