Volume 3, Issue 1, 2019

Research Article
Influence of Exhaust Gas Recirculation on Dairy Scum Biodiesel Operated Diesel Engine Performance
European Journal of Sustainable Development Research, 2019, 3(1), em0064,
ABSTRACT: Effort towards prospective utilization of dairy waste scum oil methyl ester (DSOME) is extremely pronounced as a promising sustainable unconventional fuel for diesel engine as they have intrinsic oxygen content emits less HC and CO emission and contradictorily increases the NOx. In this regard, the present study elucidates the influence of engine exhaust gas recirculation (EGR) on diesel engine performance, combustion and emission characteristics operated with DSOME-B20 (20% dairy scum biodiesel, by volume). The brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) are appreciably improved for 5% and 10% EGR in comparison with 15% EGR rate. Mainly, about 49-57% of NOx can be reduced with 5-15% EGR rate but increasing EGR rate more than 10% dilutes the fresh intake air hence reduces the NOx and increases the HC, CO emissions. Hence use of 5-10% EGR in diesel engine is advantageous to get considerably improved performance and reduced HC, CO and NOx emissions.
Research Article
Uptake Hazardous Dye from Wastewater Using Water Hyacinth as Bio-Adsorbent
European Journal of Sustainable Development Research, 2019, 3(1), em0065,
ABSTRACT: The existing study demonstrates that water hyacinth (eichhorniacrassipes) is a potential adsorbent for the removal of Congo red dye from synthetic wastewater by batch process. The experiments were conducted to study the influence of various parameters such as initial dye concentration, pH, contact time and adsorbent dosage at different operating conditions. The effect of pH and dye concentration was found to be significant and the maximum removal was detected at pH 5 and concentration 100 ppm; considered to be optimum values. The removal of Congo red was consistent initially proportional to the adsorbent dosage. The adsorption process followed Langmuir adsorption isotherm model; point out that the process supported monolayer adsorption of Congo red on the adsorbent surface. Adsorption kinetics closely followed the pseudo-second-order model and mass transfer analysis indicated better transportation of adsorbate from solution phase to solid phase. These results point out suitability of the locally available low cost adsorbents in the niche area of wastewater treatment and can be implemented in commercial dye enriched industrial effluent.
Research Article
On Differential Temperature Controller Setpoint Selection for Active Photovoltaic-Thermal (PV-T) Systems
European Journal of Sustainable Development Research, 2019, 3(1), em0066,
ABSTRACT: Active photovoltaic-thermal (PV-T) systems for solar heating and electricity generation are likely to employ the same differential temperature pump controllers as equivalent non-hybrid solar thermal (ST) systems. However, the typical controller setpoint selection methods for cost-effective and stable pump operation fail to consider the effect on photovoltaic (PV) electricity generation taking place in PV-T systems. Analytical relations for the same goals were derived to anticipate this influence using the steady-state Florschuetz PV-T collector model and compared with equivalent numerical methods relying on an extension of the Perers model designed to encompass PV-T collectors, namely by modelling electricity generation and the associated thermal performance reduction. Both methods indicate the minimum turn-on and turn-off setpoints for cost-effective and stable operation increase and decrease, respectively, relative to those for non-hybrid operation of PV-T systems or equivalent non-hybrid systems, and more so at higher irradiance levels, though the variations are shown not to be significant for a range of PV-T systems represented and can be reasoned to be inflated or of limited practical relevance. In conclusion, the effect of pump operation on electricity generation is not predicted to be a determining factor for differential temperature controller setpoint selection in PV-T systems.
Research Article
Energy Analysis and Carbon Saving Potential of a Complex Heating System with Solar Assisted Heat Pump and Phase Change Material (PCM) Thermal Storage in Different Climatic Conditions
European Journal of Sustainable Development Research, 2019, 3(1), em0067,
ABSTRACT: Building sector still consumes 40% of total energy consumption. Therefore, an improved heating system with Solar Assisted Heat Pump (SAHP) was introduced in order to minimse the energy consumption of the fossil fuels and to lower the carbon dioxide emissions occurring from combustion. An energy analysis of the complex heating system for heating of buildings, consisting of solar collectors (SC), latent heat storage tank (LHS) and heat pump (HP) was performed. The analysis was made for the heating season within the time from October to March for different climatic conditions. These climatic conditions were defined using test reference years (TRY) for cities: Adana, Ljubljana, Rome and Stockholm. The energy analysis was performed using a mathematical model which allowed hourly dynamics calculation of losses and gains for a given system. In Adana, Rome and Ljubljana, it was found that the system could cover 80% of energy from the sun and the heat pump coefficient of performance (COP) reached 5.7. In Stockholm, the maximum COP of 5.12 was reached in March and October.
Research Article
Improving the Eco-Innovation Status of Africa using Sustainable Chemistry Principles
European Journal of Sustainable Development Research, 2019, 3(1), em0068,
ABSTRACT: Sustainable or green Chemistry has been identified as a crucial ingredient for sustainable development due to the vast array of chemical materials and processes that are utilized in the production of goods and services. This study reviews the concepts of sustainability and sustainable development in the context of sustainable chemistry and outlines its principles and benefits while presenting eco-innovation as an important approach to sustainability. The status of African countries in the eco-innovation movement is not encouraging and the continent is largely left out in this endeavour due factors like poor implementation and or domestication of existing eco-innovation policies; lack of eco-innovation policies and indigenous eco-innovations mentality. Areas for the application of sustainable chemistry principles and driving eco-innovations in Africa are highlighted and inherent challenges are analyzed.
Research Article
An Innovative Approach for Study of Thermal Behavior of an Unsteady Nanofluid Squeezing Flow between Two Parallel Plates Utilizing Artificial Neural Network
European Journal of Sustainable Development Research, 2019, 3(1), em0069,
ABSTRACT: This study reveals the thermal behavior of an unsteady nanofluid streaming between two parallel plates by using artificial neural network (ANN). Initially, a similarity solution is employed to simplify the partial differential equations (PDSs) and convert them into a system of coupled nonlinear ordinary differential equations (ODEs). Subsequently, a numerical analysis is undertaken to verify the predicted results applying forth order Runge Kutta method. ANN is utilized to provide a nonlinear map between the considered input parameters such as solid volume fraction (Φ), Eckert number (Ec) and a moving parameter which represents the movement of the parallel plates (S), and output parameters like Nusselt number (Nu). Considering the accuracy of the current results, it is concluded that ANN method can be a potential reliable approach for function approximation. Results indicate that an optimal network with 16 neurons exists in hidden layer for which the value of RMSE for testing data is found to be 0.001364.
Research Article
Biochemical Pathway for Hydrogen Production Using Coffee Cut-Stems as Raw Material
European Journal of Sustainable Development Research, 2019, 3(1), em0070,
ABSTRACT: In coffee-producing countries such as Colombia, Coffee Cut-Stems (CCS) as waste is abundant, either from cuts or renovation. On average, 17 tonnes of dry wood per hectare can be obtained from the renovation. These residues would serve to produce, approximately, 690 GWe every year; however, the energy content of these residues is not properly used and the direct emissions related to their combustion are relatively high. Based on this statement, this paper performs the techno-economic, energetic and environmental assessment for hydrogen production through dark fermentation using CCS as raw material aiming to improve the economic valorization of this wood waste. Low productivities, low energy performance, and high environmental impacts are obtained when considering the stand-alone production of hydrogen; nevertheless, the energetic valorization of by-products (ethanol, acetic acid and butyric acid) improved the profitability, energy performance and environmental impacts of the process scheme. Therefore, it is very understandable that the stand-alone ways for hydrogen production are not yet the solution, and different approaches should be included such as the integrated biorefinery pathways.
Research Article
An Overview of Renewable Energy Sources and Their Energy Potential for Sustainable Development in Myanmar
European Journal of Sustainable Development Research, 2019, 3(1), em0071,
ABSTRACT: Myanmar has an abundance of renewable energy resources. It has around 50% of forest cover and the gifted geographic locations with four main large rivers flowing across the country. Besides, its economy is mainly based on agriculture. Among the major renewable energy sources in Myanmar, hydropower plays a key role in electrification of Myanmar while biomass provides the major energy supply for cooking and heating in rural areas. Besides, in the years to come, the utilization of solar energy and wind energy will also be emerging to fulfill the additional energy requirements of the country. Therefore, this study highlighted the renewable energy sources and their future energy potential for increasing the energy self-sufficiency in Myanmar. It was observed that Myanmar had the total installed capacity of approximately 3300 Megawatts from the renewable energy sources in 2016, remaining a large amount of future installed capacity potential. If the sustainability and constraints about renewable energy sources would be managed efficiently, Myanmar could meet the future energy requirements for sustainable development of the country.
Research Article
Comparing Virtual Learning, Classical Classroom Learning and Blended Learning
European Journal of Sustainable Development Research, 2019, 3(1), em0072,
ABSTRACT: This reading aims to compare the role of Virtual Learning (VL), Classical Classroom Learning (CCL) and Blended Learning (VL&CCL) in higher education. The literature review is presented in themes – Virtual Learning, Classical Classroom Learning and Blended learning. A quantitative method is applied in this study; data was obtained from 100 students from Erasmus University of Rotterdam by using an online questionnaire and convenient sampling. Questions were developed by the author and internal consistency and reliability were measured by Cronbach. The main findings illustrate that there was a significant relationship between gender and CCL, though, female respondents have more inclination towards CCL than their counterpart. Furthermore, VL has a significant relationship with CCL and Blended Learning. Thus, the intent of the learners to use blended learning in the future. Hence, this reading recommends educational institutions and educators to empower themselves with the use of technology, design their teaching methods as well as curriculum in such a way that the aim of that education is effective, efficient, convenient and approachable for all the learners at campuses as well as from distance.
Research Article
Investigation of Dissolution of Cuprous Chloride in Aqueous Hydrochloric Acid Solution with Application to Hydrogen Production Technologies
European Journal of Sustainable Development Research, 2019, 3(1), em0073,
ABSTRACT: Fossil-fuel-based methods of production, transformation and use of energy are causing environmental concerns such as ozone depletion, acid rain and climate change while depleting the earth of its resources. Sustainable alternatives for energy transformation are being sought and a hydrogen economy is a potential avenue. The thermochemical copper-chlorine (Cu-Cl) cycle for water splitting into its constituents is a promising option to produce high quantities of hydrogen. One of the steps involved in the process of hydrogen production from water using the thermochemical Cu-Cl cycle is the dissolution of cuprous chloride particles in hydrochloric acid. The purpose of this study is to propose an experimental design to examine the dissolution of cuprous chloride in an aqueous hydrochloric acid solution in order to observe the reaction time and kinetics. This data will be used to develop an empirical model that correlates quantity of cuprous chloride, concentration of hydrochloric acid, electrical conductivity, and dissolution time using analysis of variance (ANOVA). Extrapolating the data gathered from the empirical model to an industrial scale will enable dissolution time prediction based on concentration and temperature for complex multiphase reactions.
Research Article
Delimiting Future Urban Sprawl Boundaries Using a GIS-based Model for Ecological Sensitivity Index Assessment and Optimization Techniques. The Case of Mytilene (Lesvos Island, Greece)
European Journal of Sustainable Development Research, 2019, 3(1), em0074,
ABSTRACT: Delimiting urban sprawl boundaries have been generally regarded as a regulatory policy measure to control chaotic and sparse urban expansion and for the protection of ecological areas towards sustainable development. The conservation of ecologically sensitive areas plays a key role in environmental protection; so, harmonizing urban sprawling with nature conservation can be viewed as a binary compatibility planning problem. This study aims to employ a geographical allocation model, based on the minimization of the environmental cost in order to apply complex spatial clustering techniques. Firstly, five ecological sensitivity factors affecting the ecological footprint of the study area are modeled through Geographic Information Systems (GIS) and Analytic Hierarchy Process (AHP) method in order to evaluate the Ecological Sensitivity Index. Then, several spatial objectives and constraints such as distance from the shoreline, continuity, and compactness are applied and finally, the most optimal areas are extracted for future urban sprawl. Spatial regulations, siting rules considerations and scenarios based on the parameters of the spatial clusters outputs are tested to the commune of Mytilene, located on Lesvos Island, Greece, where strong land use changes have been recorded by the urban sprawl over the last three decades.
Research Article
Investigation of Heat Extraction Methods from Cuprous Chloride for Improving the Efficiency of the Thermochemical Copper-Chlorine Cycle
European Journal of Sustainable Development Research, 2019, 3(1), em0075,
ABSTRACT: In order to improve the efficiency of the thermochemical copper-chlorine cycle (Cu-Cl) for hydrogen production, a quench cell configuration for the quenching of cuprous chloride (CuCl) is being investigated. Initial testing has been performed in water to determine whether the molten cuprous chloride can be cooled enough to be quenched in hydrochloric acid (HCl (aq)). Quenching in HCl (aq) would reduce the number of components in the overall cycle, simplifying it and potentially making it more cost effective. A thermal camera was used to experimentally obtain the heat loss as the CuCl falls through the heat exchanger and into the quench cell. In addition, a FlowSense 2M shadow imaging camera was used to observe the behavior of the CuCl droplets interacting with the quench solution. It was observed that the CuCl droplet disintegrating into dust like particles as it enters the water pool and vapour was generated hence the temperature at the surface of the droplet as it entered the liquid water exceeded 100 °C.
Research Article
The Motivation for Renewable Energy and its Comparison with Other Energy Sources: A Review
European Journal of Sustainable Development Research, 2019, 3(1), em0076,
ABSTRACT: Energy is the backbone of the evolution of humanity, it has assisted mankind to endeavor through various ages of history. The quest to obtain energy with minimal expenditure and pollution is still being worked on and will continue on in the future. Even in this modern age, energy production in several developing countries often falls short of energy requirements which results in frequent power cuts. As the world economy continues to grow, energy consumption is expected to continue to grow. Fossil fuel is limited, so it is important to consider other sources of energy e.g. renewables especially solar to meet the energy demands in the future. The world has diverse solar energy sources which are not yet fully explored. This review sheds light on the solar renewable energy and other non-renewable sources of energy available in the world and a comparative analysis of both the energy resources across the world is also included as a separate section titled ‘Comparative analysis’. It also gives a brief overview of the various techniques employed by different countries to overcome the energy crisis through and also a framework for employing such techniques in countries which are lagging in energy production in order to fully avail the benefits of energy sources, which are abundant in the world.